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Abstract

It is expensive to label images with 3D structure or pre-

cise camera pose. Yet, this is precisely the kind of annota-

tion required to train single-view 3D reconstruction mod-

els. In contrast, unlabeled images or images with just cat-

egory labels are easy to acquire, but few current models

can use this weak supervision. We present a unified frame-

work that can combine both types of supervision: a small

amount of camera pose annotations are used to enforce

pose-invariance and view-point consistency, and unlabeled

images combined with an adversarial loss are used to en-

force the realism of rendered, generated models. We use this

unified framework to measure the impact of each form of su-

pervision in three paradigms: semi-supervised, multi-task,

and transfer learning. We show that with a combination of

these ideas, we can train single-view reconstruction models

that improve up to 7 points in performance (AP) when using

only 1% pose annotated training data.

1. Introduction

The ability to understand 3D structure from single im-

ages is a hallmark of the human visual system and a crucial

step in visual reasoning and interaction. Of course, a single

image by itself does not have enough information to allow

3D reconstruction, and a machine vision system must rely

on some prior over shape: all cars have wheels, for exam-

ple. The crucial question is how a machine vision system

can acquire such priors.

One possibility is to leverage datasets of 3D shapes [4],

but obtaining such a dataset for a wide variety of categories

requires either 3D modeling expertise or 3D scanning tools

and is therefore expensive. Another option, extensively ex-

plored recently [27, 21], is to show the machine many differ-

ent views of a multitude of objects from calibrated cameras.

The machine can then use photometric consistency between

rendered views of hypothesized shape and the correspond-

ing view of the real object as a learning signal. Although

more tractable than collecting 3D models, this approach is

still very expensive in practice: one needs to either phys-

ically acquire thousands of objects and place them on a
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Figure 1. We propose a unified framework for single-view 3D re-

construction. Our model can be trained with different types of

data, including pose-annotated images from the same object cate-

gory or across multiple categories, and unlabeled images.

turntable, or ask human annotators to annotate images in

the wild with both the camera parameters and the precise

instance that the image depicts. The assumption that multi-

ple, calibrated views of thousands of objects are available

is also biologically implausible: a human infant must phys-

ically interact with objects to acquire such training data, but

most humans can understand airplane shape very easily de-

spite having played with very few airplanes.

Our goal in this paper is to learn effective single-view

3D reconstruction models when calibrated multi-view im-

ages are available for very few objects. To do so we look at

two additional sources of information. First, what if we had

a large collection of images of a category but without any

annotation of the precise instance or pose? Such a dataset is

easy to acquire by simply downloading images of this cat-

egory from the web (Fig. 1, lower right). While it might

be hard to extract 3D information from such images, they

can capture the distribution of the visual appearance of ob-

jects from this category. Second, we look at annotations

from other semantic classes (Fig. 1, lower middle). These

other classes might not tell us about the nuances of a par-

ticular class, but they can still help delineate what shapes in

general look like. For example, most shapes are compact,

smooth, tend to be convex, etc.

This paper presents a framework that can effectively use

all these sources of information. First, we design a unified

model architecture and loss functions that combine pose su-
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Figure 2. Different forms of training annotations for single-view

3D reconstruction. Note that some annotations (e.g. category) are

cheaper to obtain than others (e.g. 3D shapes); and conversely

some offer a better training signal than others.

pervision with weaker supervision from unlabeled images.

Then, we use our model and training framework to evaluate

and compare many training paradigms and forms of super-

vision to come up with the best way of using a small number

of pose annotations effectively. In particular, we show that:

1. Images without instance or pose annotations are in-

deed useful and can provide significant gains in perfor-

mance (up to 5 points in AP). At the same time a little

bit of pose supervision (< 50 objects) gives a large

gain (> 20 points AP) when compared to not using

pose information at all.

2. Category-agnostic priors obtained by pooling training

data across classes work just as well as, but not bet-

ter than, category-specific priors trained on each class

individually.

3. Fine-tuning category-agnostic models for a novel se-

mantic class using a small amount (i.e. only 1%) of

pose supervision significantly improves performance

(up to 7 points in AP).

4. When faced with a novel category with nothing but a

tiny set of pose-annotated images, a category-agnostic

model trained on pooled data and fine-tuned on the

category of interest outperforms a baseline trained on

only the novel category by an enormous margin.

In summary, our results convincingly show large accu-

racy gains to be accrued from combining multiple sources

of data (unlabeled or labeled from different classes) with a

single unified model.

2. Training Paradigms

For single-view 3D reconstruction, we consider four

types of annotations for an image as illustrated in Fig 2. Our

goal is to minimize the need for the more expensive anno-

tations (instance ID, camera pose and 3D shape). Towards

this end, we look at three different training paradigms.

2.1. Semi­supervised single­category

In this setting, we assume all images are from a sin-

gle category. Noting the fact that camera pose and model-

instance annotations are difficult to collect in the wild, we
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Figure 3. Overview of the proposed model architecture.

restrict to a semi-supervised setting where only some of

the images are labeled with camera pose and most of them

are unlabeled. Formally, we are given a dataset of im-

ages annotated with both camera pose and the instance ID:

Xl = {(xij ,pij , i)}i,j , where xij represents the j-th image

of the i-th instance when projected with camera pose pij .

We also have a dataset without any annotation: Xu = {xi}i.
The goal is to use Xl and Xu to learn a category-specific

model for single image 3D reconstruction.

2.2. Semi­supervised multi­category

An alternative to building a separate model for each cat-

egory is to build a category-agnostic model. This allows

one to combine training data across multiple categories, and

even use training images that do not have any category la-

bels. Thus, instead of a separate labeled training set X c
l for

each category c, here we only assume a combined dataset

Xmulti
l = X c1

l ∪X c2
l ∪· · ·∪X cn

l . Similarly, we assume ac-

cess to an unlabeled set of images Xmulti
u (now without cat-

egory labels). Note that this multi-category setting is harder

than the single-category since it introduces cross-category

confusion, but it also allows the model to learn category-

agnostic shape information across different categories.

2.3. Few­shot transfer learning

Collecting a large dataset that can cover all categories is

infeasible. Therefore, we also need a way to adapt a pre-

trained model to a new category. This strategy can also

be used for adapting a category-agnostic model to a spe-

cific category. We assume that for this adaptation, a dataset

X
(new)
l containing a very small number of images with pose

and instance annotations (< 100) are available for the cat-

egory of interest. We also assume that the semi-supervised

multi-category dataset described above is available as a pre-

training dataset: X pre
l = Xmulti

l and X pre
u = Xmulti

u .

3. A Unified Framework

We need a model and a training framework that can uti-

lize both images with pose and instance annotations, and
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images without any labels. To utilize these data, we propose

a unified model architecture with an encoder E, a generator

G, and a discriminator D as illustrated in Figure 3. In ad-

dition, we make use of a perspective “projector” module P

that takes a voxel and a viewpoint as input, and it renders

the voxel from the inputted viewpoint. The training process

alternates between an iteration on images labeled with pose

and instance, and an iteration on unlabeled images.

3.1. Training on pose­annotated images

The encoder is provided with pairs of images xi1, xi2

of the same 3D object i taken from different camera poses

p1 and p2, and embeds each image into latent vectors z1,

z2. The generator (decoder) G need to predict the 3D voxel

grid from z1 and z2. The 3D voxel grid produced by the

generator should be: 1) a good reconstruction of the object

and 2) invariant to the pose of the input image [27]. This

requires that the latent shape representation also be invariant

to the camera pose of the input image. With these intuitions

in mind, we explore the following three losses.

Reconstruction loss: Let (x1,p1) and (x2,p2) be two

pairs of image-pose pair sampled from a 3D-model, then the

voxel reconstructed from E(x1) should produce the same

image as x2 if projected from camera pose p2. Same for

the other view. Let P (v,p) represent the image generated

by projecting voxel v using camera pose p. We define the

reconstruction loss to address this requirement as:

Lrecon =‖P (G(E(x2)),p1)− x1‖1+2+

‖P (G(E(x1)),p2)− x2‖1+2

(1)

where ‖ · ‖1+2 = ‖ · ‖1 + ‖ · ‖2 is the summation of ℓ1 and

ℓ2 reconstruction losses.

Pose-invariance loss on representations: Given two

randomly sampled views of an object, the encoder E should

be able to embed their latent representations close by, irre-

spective of pose. Therefore, we define a pose-invariance

loss on the latent representations:

Lpinv = ‖E(x1)− E(x2)‖2 (2)

Pose-invariance loss on voxels: Similarly, the 3D voxel

output reconstructed by the generator G from two different

views of the same object should be the same. Thus, we

introduce a voxel-based pose invariance loss:

Lvinv = ‖G(E(x1))−G(E(x2))‖1 (3)

Losses are illustrated by the dashed lines in Fig. 3. Each

training step on the images with pose annotations tries to

minimize the combined supervised loss.

3.2. Training on unlabeled images

In order to learn from unlabeled images, we use an ad-

versarial loss, as illustrated in the bottom of Fig. 3. When

projected from a random viewpoint, the 3D voxel grid gen-

erated from G should be able to produce an image that is

indistinguishable from a real image. Specifically, we first

sample a vector z ∼ N (0, I) and a viewpoint p uniformly

sampled from the range of camera poses observed in the

training set. Then the generator G will take the latent vec-

tor z and reconstruct a 3D shape. This 3D shape will be

projected to an image using the random pose p. No matter

which camera pose we project, the projected image should

look like an image sampled from the dataset.

4. Experiments

4.1. Dataset and evaluation metrics

We use voxelized 3D shapes from the ShapeNetCore [4]

dataset. We first rotate the voxelized 3D model around its

center using a rotation vector r = [rx, ry, 0] uniformly sam-

pled from a fixed range. We then project the rotated 3D

voxel into a binary mask as the image where the rotation

vector r is the camera pose. A model is trained with r%
of pose supervision if r% of model instances are annotated

with poses. All training images are used as unlabeled im-

ages. We evaluate the moels using Intersection-over-Union

(IoU) with threshold and Average Precision (AP).

4.2. Semi­supervised single­category

In this setting, we train a separate model for each cate-

gory. We experiment with varying amounts of pose super-

vision from 0% to 100%.

Comparison with prior work: We first compare with

prior work that uses full pose/instance supervision. We

train our models with 50% of the images annotated with

instance and pose. Performance comparisons are shown in

Table 1. The performance of our model is comparable with

prior work across multiple metrics. However, note that due

to differences in the setting across different approaches, the

numbers are not exactly commensurate.

Are unlabeled images useful? Is using unlabeled im-

ages and an adversarial loss to provide additional supervi-

sion and regularization useful? We compare three models

on the chair category: 1) a model trained with both pose-

annotated and unlabeled images; 2) a model trained on just

the pose-annotated images; and 3) a model trained on only

the unlabeled images. Fig. 4 shows that pose supervision is

necessary as 1% of pose supervision significantly increases

the performance over the unsupervised model. Second, the

model that combines pose annotations with unlabeled im-

ages outperforms the one that uses only pose-annotated im-

ages. The lesser the pose annotation available, the larger the

gain. When there are enough images with pose annotations

(e.g. > 50%), leveraging unlabeled data is unnecessary.
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Table 1. Comparison between our model and prior work on single-view 3D reconstruction (single category).

Category
MVC [20] McRecon [10] PTN [27] Ours (50% pose annotations)

IoU AP IoU0.4 IoU0.5 IoU AP IoU0.4 IoU0.5

airplanes 0.55 0.59 0.37 - 0.57 0.75 0.56 0.57

cars 0.75 0.82 0.56 - 0.78 0.92 0.77 0.77

chairs 0.42 0.48 0.35 0.49 0.44 0.60 0.43 0.42

0 (0%) 46 (1%) 461 (10%) 2306 (50%) 4612 (100%)
Pose Supervision

0.20

0.25

0.30

0.35

0.40

0.45

Io
U

Pose Annotation + Unlabeled
Pose Annotation Only
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Figure 4. Comparison between three variations of our models.

Table 2. Performance of category-agnostic models.

Test categories
Single Multi

IoU AP IoU AP

airplanes 0.57 0.75 0.57 0.73

cars 0.78 0.92 0.78 0.93

chairs 0.44 0.60 0.44 0.57

4.3. Semi­supervised multi­category

We next experiment with a category-agnostic model on

combined training data from 3 categories. Results are re-

ported in Table 2. With the same amount of pose supervi-

sion (50%) for each category, the category-agnostic model

achieves similar performance compared with the category-

specific models. This suggests that the model is able to

remedy the removal of category information by learning a

category-agnostic representation.

4.4. Few­shot transfer learning

To evaluate whether the model can transfer the knowl-

edge and adapt it to a new class with very limited anno-

tated training data, we use the category-agnostic model,

pre-trained on the dataset described in Sec 4.3, and adapt

it to three unseen categories: benches, vessels, and

carbinets. For each of the novel categories, only 1% of

the pose-annotated data is provided (i.e. each novel cate-

gory contains about 13 3D-shapes).

We compare three models in this experiment. From

scratch: a model trained from scratch on the given

novel category without using any pre-training; Out-of-

Category [27]: the pre-trained category-agnostic model di-

rectly applied on the novel classes without any additional

training; and Fine-tuning: a pre-trained category-agnostic

model fine-tuned on the given novel category. The fine-

tuning is done by fixing the encoder and training the gener-

1% 10% 50% 100%

1% 10% 50% 100% 1% 10% 50% 100% 1% 10% 50% 100%

1% 10% 50% 100% 1% 10% 50% 100%

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Io
U

B enches
F rom scratch
Out-of-Category
F ine-tuning

Pre-tra in ing Pose Supervision

0.25

0.30

0.35

0.40

0.45

AP

B enches
F rom scratch
Out-of-Category
F ine-tuning

0.30

0.35

0.40

0.45

0.50

Io
U

Cabinets

F rom scratch
Out-of-Category
F ine-tuning

0.40

0.45

0.50

0.55

0.60

0.65

AP

Cabinets

F rom scratch
Out-of-Category
F ine-tuning

0.38

0.40

0.42

0.44

0.46

Io
U

Vessels
F rom scratch
Out-of-Category
F ine-tuning

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

AP

Vessels
F rom scratch
Out-of-Category
F ine-tuning

Pre-tra in ing Pose Supervision Pre-tra in ing Pose Supervision

Figure 5. Few-shot transfer learning on novel categories. Each

column represents the performance on a novel category (IoU in

top row and AP in bottom row). Notice that the horizontal axis

shows the amount of pose annotated supervision in pre-training.

Table 3. Different training strategies on chairs with 1% pose.

Model IoU AP

S, P 0.2913 0.3800

S, U 0.2065 0.2180

S, P+U 0.3175 0.4162

M 0.3104 0.3859

FT 0.3250 0.4247

ator only using pose-annotated images for a few iterations.

In this experiment, we varies the amount of pose annota-

tions used for pre-traning. The results are shown in Fig. 5.

We observe that fine-tuning a pre-trained model for a novel

category performs much better than training from scratch

without pre-training. Compared with the out-of-category

baseline, fine-tuning improves the performance a lot upon

directly using the pre-trained model, especially in the case

of limited pose supervision.

4.5. How best to use limited annotation?

We now have all the ingredients necessary to answer the

question: given a very small number of pose annotations,

what is the best way to train a single-view 3D reconstruction

model? Table 3 compares multiple training strategies on

chairs: using just the pose-annotated images of chairs

(S, P), using just unlabeled images of chairs (S, U), using

both pose-annotated and unlabeled images of chairs (S,

P+U), combining multiple categories to train a category-

agnostic model (M), and fine-tuning a category-agnostic

model for chairs (FT). The fine-tuned model works best.
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