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Abstract

In this paper, we explore deep learning models that

learn joint multi-modal embeddings in videos where the au-

dio and visual streams are loosely synchronized. Specifi-

cally, we consider cooking show videos from the YouCook2

dataset and a subset of the YouTube-8M dataset. We in-

troduce varying levels of supervision into the learning pro-

cess to guide the sampling of audio-visual pairs for train-

ing the models. This includes (1) a fully-unsupervised ap-

proach that samples audio-visual segments uniformly from

an entire video, and (2) sampling audio-visual segments us-

ing weak supervision from off-the-shelf automatic speech

and visual recognition systems. Although these models are

preliminary, even with no supervision they are capable of

learning cross-modal correlations, and with weak supervi-

sion we see significant amounts of cross-modal learning.

1. Introduction

Babies learn to perceive the world around them by un-

derstanding speech and recognizing objects with extremely

weak supervision, aided only by observation, repetition,

and multi-modal context. An obvious existence proof that

this occurs is the feedback a young child gets when ini-

tially learning language. For example, take the case when

a child sees a round object and hears the audio segment

corresponding to the word “ball”. After seeing these two

events co-occur some number of times, the child learns that

a round object is called a “ball” and that the term “ball”

refers to a round object. In this paper, we explore this type

of loosely synchronous, multi-stream, audio-visual learn-

ing in a machine learning context. Specifically, we develop

deep learning models that demonstrate cross-modal learn-

ing capabilities trained using unannotated videos. By lever-

aging naturally occurring cross-modal correspondences, we

demonstrate that these models can learn relationships be-

tween what they see and what they hear in both general au-

dio and speech.

There is a growing body of research which studies the

problem of joint audio-visual modeling. Correlating visual

objects with the sounds they produce has been used as a sig-

nal for self-supervised learning of both auditory and visual

features [2, 4, 16, 17]. This idea has been further developed

for visually-guided audio source separation [8,18,19], gen-

erating sounds from silent videos [17,21], localizing sounds

in video frames [3, 19], learning association of faces and

voices [13,15], and video-based audio spatialization [7,14].

Most of the recent work targets synchronous audio and vi-

sual signals (such as sight and sound of waterfalls, musi-

cal instruments, etc.). In contrast, our work focuses on

the speech audio and visual pairing which is loosely syn-

chronous. More closely related to our work, there have been

limited attempts to combine visual and speech information

in the zero resource (unsupervised) setting [6,9,10,12]. Our

work builds upon recent research results that demonstrate

an ability to uncover concepts from images paired with spo-

ken descriptions [9, 10] by learning a joint audio-visual la-

tent space which reflects the underlying semantics of both

modalities. We extend the aforementioned work by learn-

ing from videos containing descriptive speech. In this initial

work, we focus on cooking shows as they exhibit tight re-

lationships between the audio and video components. The

key challenge taken up in our work is the asynchronous na-

ture of spoken audio and visual descriptions in such videos.

We study the effect of introducing varying levels of su-

pervision into the learning process and create soft perfor-

mance upper bounds that a completely unsupervised learn-

ing system can achieve in such scenarios. We plan to release

the machine and human labeled audio-visual pairs which

formed the basis of our evaluation in this paper in an at-

tempt to create a collaborative research ecosystem around

joint speech-visual pair modeling.

2. DAVEnet Modeling

We make use of the Deep Audio-Visual Embedding net-

work (DAVEnet) architecture [10] to model the grounding

between image frames and audio segments. The DAVEnet

model is comprised of two convolutional branches: an im-

age branch f which takes as input an RGB image and an
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audio branch g which accepts a log-Mel frequency spectro-

gram. Both f and g output D-dimensional feature maps

which attempt to capture the semantics of both modalities.

We follow [10] and use the triplet loss function as a training

objective [5] with a margin hyperparameter of 1 and the dot

product similarity between average-pooled feature maps.

We blend two variants of the triplet loss with equal weight:

in the first case, impostor samples are randomly drawn from

other examples within a minibatch, as in [10]. The second

loss term employs semi-hard negative mining [11].

3. Video Processing

The DAVEnet model takes still images paired with vari-

able length audio segments as input. Applying the DAVEnet

model to continuous video requires us to process each

video in the dataset into discrete pairs of video frames and

corresponding audio segments. Discretizing a video into

frame-audio pairs presents the challenge of identifying all

conceptually-relevant pairs in the video while minimizing

the number of redundant pairs. For example, sampling too

frequently may lead to adjacent pairs that contain redun-

dant information, while sampling too few pairs may miss

important concepts from the video. In our approach, we

uniformly extract video frames at rate of 1 frame per second

(fps). Each extracted frame is paired with the T seconds of

audio centered around it. T is a tunable parameter that we

explored and found T = 2 seconds to perform the best.

3.1. Offtheshelf Systems for Labeling

We weakly label our dataset by passing the extracted

video frames through the IBM food detector (built as part

of IBM Watson Visual Recognition service1). The detec-

tor uses a multi-branch network, consisting of a backbone

ResNet50 CNN to classify an image into a set of 2200 food

classes, and a parallel sub-network branch to perform food

versus non-food classification on the image. The food con-

cept detector produces posteriors for food/non-food and all

2200 food classes for each input frame.

We transcribe the audio channel of each video using the

US English broadband model of IBM’s Watson Speech-To-

Text (STT) service.2 The acoustic and language models

used in the STT system were both trained on a large set of

data from various corpora. The STT system predicts a se-

quence of word hypotheses and word boundaries given the

input audio. We did not adapt the food concept detector or

the STT system on the YouCook2 or YouTube-8M datasets.

We use these automatic labels to construct the

conceptually-relevant audio-video frame pairs for our

weakly-supervised experiments. The details of this data

preparation are in Section 6.

1https://www.ibm.com/watson/services/visual-recognition/
2https://www.ibm.com/watson/services/speech-to-text/

4. Datasets

In real world descriptive video datasets, the audio and vi-

sual channels are often disjoint (e.g. a chef speaking about a

childhood memory while chopping vegetables). In order to

increase the number of semantically relevant frame-audio

pairs used to train our model, we combine the YouCook2

dataset [20] and the YouTube-8M dataset [1], which are

summarized in Table 1.

YouCook2: The YouCook2 dataset consists of approxi-

mately 2000 cooking videos from YouTube filmed from the

third person point of view. The videos were randomly sep-

arated into a 67-23-10 training, validation, and testing split

and categorized into one of 89 recipe types. Each recipe

type contains 22 videos on average.

YouTube-8M: The YouTube-8M dataset is a large scale

video dataset consisting of 6.1 million YouTube videos.

Videos in the training and validation sets are assigned to

one or more of over 3800 categories. To maintain consis-

tency with the YouCook2 dataset, we only use videos from

the baking, cooking, cooking show, cuisine, dish, food, and

recipe categories. The resulting corpus contains videos with

speech from many different languages, as well as videos

that do not contain any speech. To address these inconsis-

tencies, we select approximately 3500 English videos from

the YouTube-8M dataset using their YouTube metadata au-

dio language tag.

Video Length (sec)

Subset N Videos Min Max Mean

YC2 Train 1262 46.0 1106.1 317.7

YC2 Val 439 44.3 829.4 308.9

YC2 Test 205 37.8 722.8 318.1

YT8 English 3535 119.0 499.8 275.5

Table 1: A summary of the YouCook2 dataset and the En-

glish cooking subset of the YouTube-8M dataset.

Food Word Analysis: To better understand the semantic

content of the videos in our dataset, we analyze the number

of food-related words spoken per video. We manually se-

lect 350 food nouns from the entire set of words generated

by the automatic speech recognizer on the YouCook2 and

metadata-tagged YouTube-8M videos (see Section 3.1). In

our dataset, each video contains an average of 10.5 unique

food words and 22 total food words. Together, these results

suggest there are a significant number of food concepts spo-

ken and repeated throughout the videos that can be used as

a basis for learning.
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Synchronization Analysis: We analyze the temporal

synchronization between the audio and visual streams of

our video data to better understand the nature of descrip-

tive data and to motivate our video parsing scheme and

weakly-supervised experiments. As described in Section 3,

we parse the videos in our dataset into frames and pair them

with a symmetric window of T seconds of audio. This pro-

cedure assumes that the chosen audio segment describes the

center video frame.

In order to test the validity of this assumption, we utilize

the automatically-derived food labels (see Section 3.1). We

select all video frames from the YouCook2 validation set

with a food probability greater than 0.5 as determined by

the food concept detector. For each selected video frame,

we select its five most likely food labels from the food con-

cept detector. We then search for any word in these food

labels within the STT transcript of the audio in a T second

window centered around the frame. We find that in nearly

16% of the cases, at least one food label word occurred in

the transcript within a 20 second window of audio around

the video frame. This is a non-trivial number of frames con-

sidering that the automatically-derived audio/video labels

may have errors, and we are searching for an exact match

of the visual food label words in the audio transcription.

5. Unsupervised Semantic Learning

In this section, we evaluate the performance of an un-

supervised approach to learning audio-visual objects from

unannotated video. We first parse the YouCook2 and

metadata-tagged YouTube-8M datasets by uniformly ex-

tracting frame-audio pairs, as described in Section 3. This

results in 1,169,255 training pairs which are separated into

minibatches of 100 pairs each for training DAVEnet (see

Section 2) with stochastic gradient descent.

In the evaluation task, the model is given a set of frame-

audio pairs, but not told the specific pairings. Given a frame,

the model must rank the similarity of each audio segment to

that frame. We evaluate this task using Recall@10, which

we define as the fraction of examples for which the model

returns the true audio pair in the top ten most similar audio

segments. We also perform this task in the reverse, holding

the audio segment constant and searching on the frames.

To perform the evaluation, we create two validation

datasets from the YouCook2 validation set: the Val 1000

dataset and the Food Val 1000 dataset. The Val 1000 dataset

consists of 1000 randomly chosen pairs from the YouCook2

validation set. The Food Val 1000 dataset contains 1000

frame-audio pairs from the YouCook2 validation set whose

audio segment contains a food word as identified by the au-

tomatic speech recognition model (see Section 3.1). The

best performance of our model on these two datasets is

shown in Table 2.

We visualize the model’s output to further evaluate its

Validation Set Audio R@10 Visual R@10

Val 1000 18.2% 18.3%

Food Val 1000 20.3% 19.4%

Table 2: Performance of the unsupervised model on held

out validation data.

Figure 1: Examples of the unsupervised model’s seman-

tic correlation on videos from the YouCook2 dataset. The

top row shows positive examples where the highlighted por-

tions of the frame are related to the audio shown below. The

bottom row shows examples in which our model fails to

pick up on semantically relevant pixels or identifies pixels

unrelated to the audio.

results and better interpret the learned features. For a subset

of evaluation videos, we extract the frame-audio pairs at a

rate of 24 fps. We feed each pair into the trained DAVEnet

model and extract the similarity matchmap for the frame-

audio relationship. Using the matchmap, we highlight the

pixels in the frame that have a high similarity to the au-

dio segment. These highlighted frames are then recombined

with the original audio track, resulting in a video showing

the semantically relevant parts of the image in real time.

Frame level examples are shown in Figure 1. Objec-

tively, our model performs best on videos where the camera

is focused on the food items. On videos focused primarily

on the chef, our model tends to learn the relationship be-

tween the person’s voice and the scene, due to the smaller

number of semantically relevant pixels in each frame.

6. Weakly-Supervised Semantic Learning

To evaluate the validity of a weakly supervised learning

approach, we utilize the food concept detector and STT sys-

tems described in Section 3.1 to weakly-label the YouCook2

dataset. We identify the set of frames from all video frames

in YouCook2 that have been assigned to a food class by the

food concept detector with a probability of at least 0.5. For

each identified frame, we select its top-5 food classes and

search for the exact food class name within the STT tran-
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scription of the 20 second audio segment surrounding the

frame. There are a total of 2860/1067/381 such food frame-

audio pairs in the YouCook2 training/validation/testing sets,

respectively. We further augment the training examples

with an equal number of non-food frames as predicted by

the food classifier with a confidence at least 0.95 and pair

each one with the surrounding 1 second segment of audio.

Before conducting the weakly-supervised experiments,

we performed manual checking of the 1067 YouCook2 val-

idation set food frame-audio pairs. A total of 845 exam-

ples contained correct labels and were picked to evaluate

the models. We note that this validation set is different from

the one used in Table 2.

We first evaluate the recall performance of DAVEnet

trained in an unsupervised fashion. This unsupervised DAV-

Enet obtains an audio Recall@10 of 21.9% and video Re-

call@10 of 22.1% on the YouCook2 validation set. In Ta-

ble 3, we analyze the effect of using weak-supervision to

fine-tune the unsupervised DAVEnet model as well as an

untrained model and a model whose vision channel was

pretrained on ImageNet. We find that weak supervision im-

proves the recall of the DAVEnet model trained in fully un-

supervised fashion. Weak supervision is also able to achieve

audio/visual recalls of 39.1%/38.1% with only ImageNet-

supervised pretraining of the visual sub-network.

Recall@10

Audio Init Visual Init Audio Visual

Random Random 13.4% 14.6%

Random ImageNet 39.1% 38.1%

Unsupervised Unsupervised 27.2% 23.3%

Table 3: Audio and visual Recall@10 for the labeled

YouCook2 validation set with initialization settings. “Ran-

dom” refers to random initialization, “ImageNet” refers to

initialization of visual sub-network by a ImageNet-trained

VGG network, and “Unsupervised” refers to unsupervised

training on YouCook2 + YouTube-8M data sets as shown in

Section 5.

7. Conclusion

We present a novel unsupervised approach to cross-

modal learning of audio-visual concepts from unannotated

instructional video. We eliminate the need for expensive

and time consuming data collection and annotation by ex-

tending our model to learn from publicly available videos.

This work establishes a benchmark and sets a basis for fu-

ture work on unsupervised multi-modal learning of video

and speech. We have begun to explore such future work in-

cluding: unsupervised methods to guide video frame extrac-

tion (e.g. zero resource pattern discovery), tools for mod-

elling audio and visual alignment (e.g. multiple instance

learning), and application of these methods to a larger cor-

pora of descriptive video (e.g. utilizing language detection

techniques to mine English videos from YouTube-8M).
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