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Abstract

The knowledge about the skeleton of a given geomet-

ric shape has many practical applications such as shape

animation, shape comparison, shape recognition, and es-

timating structural strength. Skeleton extraction becomes

a more challenging problem when the topology is repre-

sented in point cloud domain. In this paper, we present the

network architecture, PSPU-SkelNet, for TeamPH which

ranked 3rd in Point SkelNetOn 2019 challenge [2]. PSPU-

SkelNet is a pyramid of three U-Nets that predicts the

skeleton from a given shape point cloud. PSPU-SkelNet

achieves a Chamfer Distance (CD) of 2.9105 on the final

test dataset. The code of PSPU-SkelNet is available at

https://github.com/roatienza/skelnet.

1. Introduction

The knowledge about the skeleton provides a compact

and intuitive representation of the shape for modeling, syn-

thesis, compression, and analysis [2]. Practical applications

of skeleton include shape animation, comparison, recogni-

tion, and estimating structural strength.

In 2D, shapes can be represented in terms of pixels or

point clouds depending on the generating or acquisition de-

vice used. While image is the more common 2D shape for-

mat, point clouds are the natural outputs of laser scanning

devices. Point clouds are simply an unordered set of points.

For 2D shapes, a point cloud is a list of (x, y) coordinates

with no fixed length. In this paper, we focus on extracting

skeletons from 2D shape point clouds.

For the Point SkelNetOn 2019 competition [2], the

ground truth skeletons are extracted from shape images us-

ing the method of [3, 8]. The candidate skeletons are pro-

duced by propagating a circle inside the shape. The poten-

tial skeletons are 2, 4 and 6-pixel Hausdorff distance away

from the shape. The candidate that is most visually appeal-

ing is chosen. Alternative methods in skeleton extraction

include determining the shape medial axis [17], continuous

medial axis using an extended distance function [9], locus

Figure 1. Example extracted shape and skeleton point clouds from

train split.

of midpoints of optimally corresponding boundary points

using A* algorithm [10], and medial axis as singularities

formed during a propagation from boundaries known as

shock graphs and trees [14].

Given the shape images, the shape point clouds ground

truths are generated by first finding the boundary points.

Once the boundary points have been identified, the shape

point cloud is filled by points perturbed by noise from a

uniform distribution. The skeletal point cloud is derived by

choosing points from the shape point cloud that are near the

image skeleton points and skeleton edges.

Given the shape and skeletal point cloud dataset [2, 1, 9,

15], we tried different network architectures, data and hy-

perparameter configurations, and loss functions. The best

performing network architecture is obtained by assuming

the point cloud as image forming data that can be processed

using deep convolutional networks. More precisely we em-

ployed a pyramid of U-Nets. The pyramid network is in-



spired by PSPNet [16] for scene parsing. U-Net [13] is a

known reliable network configuration for many segmenta-

tion and style transfer tasks . We call the network PSPU-

SkelNet. The best performing results for our team is 2.9105

in terms of Chamfer Distance metric.

In the following sections, we describe the dataset, the

metric of evaluation, our proposed network, and experimen-

tal results.

2. Dataset

The dataset of Point SkelNetOn 2019 competition [2, 1,

9, 15] for skeletal point cloud prediction is made of 1219

shapes with corresponding ground truth skeletons for the

train split. This is initially evaluated on 242 shape point

clouds during development phase. The final test split is

made of 266 shape point clouds. Figure 1 shows example

shapes and skeletons from the train split.

3. Metric

The leaderboard score is measured in terms of Chamfer

Distance (CD). Given two point clouds p1 ∈ S1 ⊆ R
2 and

p2 ∈ S2 ⊆ R
2:

CD =
1

|S1|

∑

p1∈S1

min
p2∈S2

‖p1 − p2‖2+

1

|S2|

∑

p2∈S2

min
p1∈S1

‖p1 − p2‖2 (1)

For the first summation, given a point p1 in the first point

cloud S1, find the nearest corresponding point p2 in the sec-

ond point cloud S2. The same process is done from p2 to

p1 for the second summation. S1 and S2 do not necessarily

have the same number of points. CD is differentiable and is

computationally efficient.

4. Pyramid U-Net

In our experiments, the best performing network archi-

tecture for extracting skeletons from shape point clouds is a

pyramid of U-Nets as shown in Figure 2. The shape point

clouds are deserialized into shape images for fast and effi-

cient 2D convolution processing. The output skeleton im-

ages are serialized back into skeleton point clouds for per-

formance benchmarking. Sigmoid predictions greater than

threshold = 0.5 are considered skeletal point clouds.

In PSPU-SkelNet, we used three U-Nets with different

depths based on strides. PSPU-SkelNet has strides = 2, 4,
and 8. Each U-Net extracts features at different receptive

field sizes. The U-Net structure is inspired by pix2pix [6]

for image to image translation. Instead of batch normaliza-

tion, we utilized instance normalization since it has a better

performance in style transfer problems [4].

The outputs of each left branch of U-Net are feature

maps that are upsampled and stacked together on the right

branch. This configuration is inspired by PSPNet [16] used

in scene parsing. PSPNet network processes feature maps

at different coverage and depths.

PSPU-SkelNet uses binary cross-entropy loss. The opti-

mizer is Adam [7] with initial learning rate of 1e − 3. The

batch size is set to 8.

5. Experimental Results

Since the dataset is small, we performed data augmenta-

tion before training. Each pair of shape and skeleton point

cloud is subjected to random translation, rotation, scaling,

and flipping. The resulting total amount of data is 26x the

original train dataset size.

We trained PSPU-SkelNet for 200 epochs starting with a

learning rate of 1e− 3 and decreased to 1e− 4 at 60 epochs

and 1e − 5 at 120 epochs. Each epoch takes about 20mins

to complete on a single NVIDIA GTX 1080Ti GPU.

As of submission deadline our team, TeamPH, ranks 3rd

with a prediction score of 2.9105 on the test data split as

shown in Table 1. Example prediction results are shown in

Figure 3. Visually, majority of the predictions are near the

expected skeletons. The network struggles on point clouds

with small number of samples from the train datasset such

as those under a specific device category.

5.1. Things that we tried but did not work out

There are many network, data, and hyperparameter con-

figurations that we tried. We enumerate the failed experi-

ments as follows:

• We tried the native point cloud data format and built

the pyramid U-Net using 1D convolution similar to

PointNet [11]. We used a differentiable CD loss func-

tion. Since the point cloud has no fixed length, we

padded with (0, 0) to make the length constant at

1024 × 12. After training the network, points near

(0, 0) were removed. The resulting skeleton predic-

tions contain many outlier point clouds. Since (0, 0)
is also a valid point that may introduce spurious data,

we tried resampling the point cloud to complete the

1024× 12 points. This technique did not help.

• We tried using MAE instead of binary cross-entropy.

The resulting skeleton point clouds are thicker result-

ing to lower scores.

• Similar to pix2pix [6], we tried using dropout after ev-

ery encoder and decoder layer in U-Net. This resulted

to lower prediction scores.

• Higher number of filters in U-Net results to a huge

number of parameters that can easily approach 100M.



Figure 2. Network architecture of PSPU-SkelNet. f is number of filters. s is strides. k is kernel size (default is 3). Conv2D is 2D

convolution while Conv2DT is transposed 2D convolution. IN is instance normalization. ReLU is rectified linear unit.

Figure 3. Example shape and skeleton point clouds from test split.

This network became impractical to train in a reason-

able amount of time. Our current network is already

big at 57M parameters. We did not perform pruning

or apply compression due to resource and time con-

straints.

Table 1. Point SkelNetOn Leaderboard as of April 3, 2019

Rank Username Team Name Prediction Score

1 digitalspecialists RG 1.8706

2 Vvf Prisdl 2.6789

3 rowel TeamPH 2.9105

• We tried using GAN [5, 12] to improve the CD score.

The PSPU-SkelNet is treated as a generator. A sepa-

rate discriminator network was used with the standard

binary cross-entropy loss. The performance did not

improve. Instead, many outlier point clouds were in-

troduced.

6. Conclusion

We described a proposed network as a solution to the

problem for skeletal point cloud prediction using a pyramid

of U-Net. Quantitative results rank TeamPH as 3rd in terms

of prediction scores.
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