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Abstract

Geometric shape understanding provides an intuitive

representation of object shapes. Skeleton is typical geo-

metrical information. Lots of traditional approaches are

developed for skeleton extraction and pruning, while it is

still a new area to investigate deep learning for geomet-

ric shape understanding. In this paper, we build a fully

convolutional network named Feature Hourglass Network

(FHN) for skeleton detection. FHN uses rich features of

a fully convolutional network by hierarchically integrating

side-outputs with a deep-to-shallow manner to decrease the

residual between the prediction result and the ground-truth.

Experiment data shows that FHN achieves better perfor-

mance compared with baseline on both Pixel SkelNetOn

and Point SkelNetOn datasets.

1. Introduction

Geometric shape understanding provides an intuitive

representation of object shapes, which can be used for fore-

ground extraction, shape modeling, object proposal, et al.

Even though deep learning approaches obtain great success

for detection and segmentation tasks, it is still a new area to

investigate deep learning for geometric shape understand-

ing, especially for extracting topological and geometric in-

formation from shapes.

For geometric shape understanding, we focus on skele-

ton detection, i.e., skeleton pixels for images and skeleton

points for point clouds. With traditional methods, it usually

takes morphological operation [12] and Multiple Instance

Learning [15]. In [15], each pixel is treated as an instance

bag considering multi-scale and multi-orientation. MIL is

used to train a binary classifier to determine whether a pixel

is on the skeleton curve. Recently, various structure of Con-

volutional Neural Networks (CNN) are proposed, which
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can naturally learn from low to high or high to low level

features in a shallow to deep way. In [8], Lin et al. pro-

pose FPN, developing a topdown architecture with lateral

connections, exploiting the inherent multi-scale, pyramidal

hierarchy of deep convolutional networks to construct fea-

ture pyramids with marginal extra cost. He et al. propose

SPPNet in [5], adopting spatial pyramid pooling and some

additional feature transformations to generate a pool of fea-

ture maps with different sizes.

With the success of CNN, several deep learning ap-

proaches are proposed for skeleton detection [6, 9, 10, 11],

which also deal with skeleton detection as a binary clas-

sification problem. In these approaches, the structure of

convolutional neural networks almost consist of backbone

network and side-output modules. The backbone is used to

generate predictions for multi-scale, while the side-output

modules are designed to integrate the predictions.

In this paper, we build a fully convolutional network

named Feature Hourglass Network (FHN) for skeleton de-

tection. Specifically, we choose feature hourglass network

as the backbone. Experiment data shows that the proposed

FHN improves skeleton detection performance compared

with baseline both on Pixel SkelNetOn and Point SkelNe-

tOn datasets [1, 3, 7, 13].

2. Methodology

In this section, we review various kinds of backbone and

side-output of deep convolutonal networks with different

multi-scale fusion strategies and introduce Feature Hour-

glass Network (FHN) in detail.

2.1. Multi-scale Architecture Review

Multi-scale is an essential property of skeleton, for ex-

ample, the scale of the skeleton pixels on the leg of a horse

are smaller than the pixels on the body. It impels us to em-

ploy all stages of one convolutional neural network as the

receptive fields increases from shallow stage to deep stage.
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Figure 1. Illustration of multi-scale architecture. Including the

structure of the backbone (top) and the fusion of the side outputs

(bottom).

Roughly, the backbone with multi-scale is divided into

three types: feature pyramid, spatial pyramid pooling, and

feature hourglass, as shown in Fig. 1(a) to Fig. 1(c). Fea-

ture pyramid is a straightforward way for multi-scale fea-

ture extraction. The receptive field increases in the orien-

tation from shallow to deep, which corresponding to scale

from small to large. Spatial pyramid pooling takes down-

sampling with different kernel sizes, it will lose informa-

tion for elaborate context. The feature hourglass not only

takes the advantage of feature pyramid, but also increasing

the range of scale with the same model size.

With different backbones, the side-output can be fused

as shown in Fig. 1(1) to Fig. 1(3). Hypercolumns pre-

dict side-outputs for each stage and integrate them with

weighted sum operation. Deep-to-shallow integrates side-

outputs one by one so that the residual between the side-

output and ground-truth decreases in order. The bi-direction

integration manner adopts a different strategy to adapt scale

varience.

2.2. Architecture of FHN

In this section, the backbone, a strategy of side-output

integrating and learning of the proposed Feature Hourglass

Network (FHN) is introduced in detail.

Backbone Construction: The backbone is built on VG-

GNet [14], Fig. 2. The first four stages of VGG are shown

on the top of Fig. 2. It consists of 2, 2, 3 and 3 convolutional

layers followed by a pooling layer for different stages, re-

spectively.

The original architecture of VGG keeps the same struc-

ture for the fifth stage with 3 convolutional layers, as shown

at the bottom-left of Fig. 2. For the proposed backbone, we

delete the pooling layer following the fourth stage of VGG

and insert deconvolutional layers among the convolutional

layers of the fifth stage, which further improve the size of

receptive field and output features, as shown at the bottom-

VGG FHN

pool,/2 

pool,/2

pool,/2 

pool,/2

up, 2 

up, 2 

rf1_2 = 5

rf2_2 = 14

rf3_3 = 40

rf5_1 = 140

rf5_2 = 212

rf5_3 = 284

rf5_1 = 132

rf5_2 = 164 

rf5_3 = 196

Stage 5

Figure 2. Comparison of the network backbone architecture be-

tween VGG and FHN. The first 4 stages are the same.

right of Fig. 2. Dilation [2] is utilized to increase the re-

ceptive field which has the same size of model compared

with the original VGG. Updating VGG backbone to FHN

backbone, we add a prefix ’H-’ to name the FHN version

of VGG based state-of-the-art networks, such as H-VGG,

H-RCF, H-HIFI, H-RSRN and so on.

For geometric shape understanding condensing both lo-

cal and global information about the shape, the receptive

field size of the deep convolutional network has important

influence on the effect of multi-scale feature fusion. FHN

with larger receptive field size has more potential to adapt

severe scale varied skeleton detection task.

Side-output Integrating: We follow RSRN [9] to inte-

grate our side-output. 12 Residual Units (RU) are stacked

to take full use of features from all convolutional layers. All

side-outputs are then fused together to get the final output.

The overall loss function of the proposed FHN is formulated

as:

L =

M∑

i=1

Lside(h(X |W, θi),G) + Lfuse(h(X |W, θ),G),

where h(X |W, θ) is the result of side-output prediction. M ,

equal to 13, is the number of layers in the architecture of

backbone. X , W, θi, and G represent the input image, the

parameter of backbone model, the parameter of the added

simple 1 × 1 convolutional layer for the i-th layer of the



backbone, and the ground-truth of final fused output, re-

spectively.

Balanced entropy loss is used to compute the side loss

and fuse loss, which is defined as:

L(P ,G) = −β
∑

j∈Y+

logPj1(Gj = 1)

− (1− β)
∑

j∈Y
−

logPj1(Gj = 0),

where P is the prediction h(X |Θ), the balancing weight

β = [
∑|x|

j=1
1(Gj �= 0)]/|X|, and 1(.) is an indicator func-

tion.

We can obtain the optimal parameters (W∗,Θ∗)by a

standard stochastic gradient descent (SGD):

(W∗,Θ∗) = argmin L.

3. Experimental results

In this section, we discuss the implementation of FHN in

detail and compare FHN with other approaches for skeleton

detection. All the experiments are performed with NVIDIA

GTX 1080Ti.

3.1. Implementation

Dataset: Pixel SkelNetOn and Point SkelNetOn are used

to evaluate the proposed FHN.

Pixel SkelNetOn contains 1,727 binary images with size

256 × 256 pixels, splitting into 1,219 images for training,

242 images for validating, and 266 images for testing. The

ground truth of Pixel SkelNetOn are the skeleton images

which represent the skeletons corresponding to the shape

images. Pixel SkelNetOn is focused on extracting the skele-

ton pixels from the shape of training images.

Point SkelNetOn consists of 1,727 shape point clouds

with format .pts, splitting into 1,219 training point clouds,

242 validation point clouds, and 266 test point clouds.

Ground truth for Point SkelNetOn are given as point clouds

which represent the skeletons. Point SkelNetOn represents

the full shape by point clouds, and focus on extracting the

skeleton points from given point clouds. In order to use the

same input form, every Point SkelNetOn data is drawn in

a white background according to the corresponding coordi-

nate before training. And then the results are converted to

point clouds form before testing.

Protocol: The precision-recall (PR) metric with max-

imum F-measure is used to evaluate the performance of

skeleton detection[15], as F = 2PR
P+R

.

The point skeleton extraction results are evaluated by us-

ing the symmetric Chamfer distance function, defined by:

Ch(A,B) =
1

|A|

∑

a∈A

min
b∈B

||a−b||2+
1

|B|

∑

b∈B

min
a∈A

||a−b||2,

Backbone&sideout Score(%) Runtime (s)

VGG 12.71 0.026

H-VGG 50.39 0.059

H-RCF 59.12∗ 0.244

H-HIFI 64.56∗ 0.632

H-RSRN 64.77∗ 0.396

Table 1. Comparison of backbones and our backbone with differ-

ent side outputs on Pixel SkelNetOn validation dataset. ∗ indicates

score on test dataset.

Iteration 1-1 4-1 9-1 12-1 14-1

Aug 51.02 55.93 58.67 59.44 59.61

W/O aug 54.72 57.18 59.17∗ 58.72∗ 58.86∗

Table 2. Performance of different iterations with augmentation and

without augmentation. i-j means that the learning rate is set to 1e-6

for the first i*10k iterations and reduced to 1e-7 for the remaining

j*10k iterations.

where A and B represent the skeleton point sets to be com-

pared.

Data augmentation: In [6], Ke et al. discuss the data

augmentation for medial axis training in deep learning ap-

proaches. We follow the data augmentation manner in [6],

by rotating each image to 4 angles (0◦, 90◦, 180◦, 270◦)

and flipping it with three different axes. Finally, we resize

training images to 3 different scales (0.5, 1, 1.5).

Model Parameters: Following the setting of RSRN [9],

we train FHN by fine-tuning the pre-trained 16-layer VGG

net [14]. The hyper-parameters of FHN include: minibatch

size (1), initial learning rate (1e-6 for Pixel SkelNetOn,1e-

7 for Point SkelNetOn), loss-weight for each RU output

(1.0), momentum (0.9), weight decay (0.0002), and max-

imum number of training iterations (150k for Pixel Skel-

NetOn, 80k for Point SkelNetOn). In the testing phase, a

standard non-maximal suppression algorithm [4] is applied

on the output map to obtain thinner skeleton.

3.2. Results

We measure performance in terms of F1 score in

Pixel SkelNetOn validation dataset, considering the fac-

tors of various backbone, different strategies of side-output

integration, data augmentation, training strategy, Non-

maximum Suppression (NMS), and threshold for binariza-

tion.

The performance comparison with different backbone

and strategies of side-output integration is shown in Table

1. Our hourglass backbone achieves significant better F-

measure compared with the original VGG from 12.71% to

50.39%. With the same hourglass backbone, our method

gets the best F-measure of 64.77%.

Table 2 illustrates the performance comparison with dif-



Threshold 150 200 250

Score 3.23 2.90 2.66

Table 3. Performance of different thresholds with NMS on Point

SKelNetOn validation dataset. Lower score indicates better per-

formance.

Iteration 60k 80k 100k 120k

Score 2.71 2.68 2.70 2.75

Table 4. Performance of different iterations on Point SKelNetOn

test dataset.

Skeleton pixel(%) Skeleton point

Team x2 Prisdl RG Prisdl

Val 75.82 63.25 2.26 2.40

Test 78.46 64.77 1.87 2.68

Table 5. Performance comparison of skeleton pixel detection and

skeleton point datasets from leaderboard. Higher score indicates

better performance on Pixel SkelNetOn dataset, while lower score

indicates better performance on Point SkelNetOn dataset. Prisdl is

ours.

ferent data augmentation and training strategies. With data

augmentation, the best F-measure is achieved by training

the network for 140k iterations with the initial learning rate

being 1e-6 and another 10k iterations with 1e-7.

We compare the influence of NMS and the threshold for

binarization in Tabel 3. It achieves the best score of 2.66

when NMS is taken and threshold is set as 250.

As shown in Table 4, we compare the performance with

different training iteration numbers following the best set-

ting in Tabel 3. Finally, we find FHN achieves the best per-

formance in 80k iterations with the learning rate being 1e-7.

3.3. Evaluation of Skeleton Detection

The final performance on skeleton pixel and skeleton

point is shown in Table 5.Through multiscale strategy, our

proposed method scored 63.25% on Pixel SkelNetOn vali-

dation dataset, 64.77% on test dataset. And it scored 2.40 on

Point SkelNetOn validation dataset, 2.68 on test dataset. In

Pixel SkelNetOn challenge, four teams ranked above us. In

Point SkeletOn challenge, we took the second place. Some

qualitative results for skeleton pixel and skeleton point de-

tection are shown in Fig. 3 and 4. Fig. 3 shows that H-

RSRN has less noise compared with others. It can be seen

that skeleton information can be obtained very well by point

clouds from Fig. 4.

4. Conclusion

In this paper we propose FHN for geometric shape un-

derstanding. One can see that FHN significantly outper-

forms the baseline on both Pixel SkelNetOn and Point Skel-
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Figure 3. Skeleton detection on Pixel SkelNetOn.
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Figure 4. Skeleton detection on Point SkelNetOn.

NetOn datasets. Experimental results show that the pro-

posed approach achieves the prediction score of 2.68 on test

dataset, which is in the second place on the performance

leader-board.
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