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Abstract

We propose an efficient and effective control point ex-

traction algorithm for parametric skeleton generation. The

object skeleton pixels are predicted via an hourglass net-

work and partitioned into skeleton branches using Gaussian

Mixture Models. For each skeleton branch, a Bezier curve

is utilized to generate the control points. The radius of the

skeleton is computed by the distance between the border of

the object and the Bezier curve. The branches are sorted

by the area so that the parametric skeleton representation is

unique. For the Parametric SkelNetOn competition, the pro-

posed approach achieves the prediction score of 11793.89,

which is in the first place on the performance leader-board.

1. Introduction

For the skeleton extraction task that draws attention for

several decades, deep learning methods demonstrate un-

precedented performance. Nevertheless, the problem about

how to convert the discrete skeleton points to parametric

representation remains seldom investigated.

Bezier curve is a spontaneous way for parametric skele-

ton, as shown in Fig. 1. The skeleton is fitted with Bezier

curves and represented by the control points of the curves.

By associating with the radius of each points, the object

mask is well represented and reconstructed [1, 3, 7, 13].

Mestetsk et al. proposed several approaches for para-

metric representation [10, 11, 12]. In [10], a skeleton is

represented as a plan view with edges that are linear and

quadratic Bezier curves. A description of the radial function

in the Bezier spline form is given. Mestetsk also proposed

a approach using Compound Bezier Curves to represent the

binary image skeleton [12]. After that, Mestetsk proposed a
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Figure 1. Illustration of a parametric skeleton. The skeleton is

fitted with a Bezier curve and represented by the control points

of the curve. By associating with the radius of points, the object

mask is reconstructed.

shape analysis of the continuous medial representation us-

ing Bezier curves [11].

In this paper, we utilize the Bezier curve to fit the discrete

skeleton points and thereby creating an efficient and effec-

tive control point extraction algorithm for parametric skele-

ton generation. Given an image, a deep learning approach

is used to predict skeleton curves of objects. The skeleton

curve is then partitioned into skeleton branches by Gaussian

Mixture Models (GMMs). For each skeleton branch, Bezier

curve fitting is utilized to generate the control points. The

radius of the skeleton is computed by the distance between

the border of the object and the curve. The branches are

sorted by the area of branches so that it reduces discontinu-

ous fragments on the skeleton curve.
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Figure 2. Flowchart of the proposed parametric skeleton generation procedure. (Best viewed in color and zoom in.)

2. Methodology

Supposing an image I has skeleton S, the parametric

skeletons is represented as {Ck, rk}
K
k=1

, where Ck and rk
are control points and radius for the k-th skeleton branch,

and K is the number of skeleton branches. The parametric

skeleton generation approach is shown in Fig. 2 and detailed

in Algorithm 1, which consists CNN-based skeleton pre-

dicting, GMMs-based skeleton branch producing, Bezier

curve fitting, radius calculating, and area based sorting.

Skeleton prediction. We build a fully convolutional

neural network (FCN) for skeleton prediction, by updat-

ing the VGGNet to an hourglass architecture with the pur-

pose of increasing the size of receptive field, named feature

hourglass network (FHN) [5]. By adding a 1 × 1 convo-

lutional layer to each convolutional layer of the hourglass,

side-outputs are generated. The final skeleton S is by fusing

the side-outputs.

Branch partition. Following the second step of Algo-

rithm 1, a skeleton is divided to branches by GMMs.

Control point fitting. Given the control points {Ck}, a

Bezier curve is constructed as

Bk(t) =

n
∑

j=0

(

n
j

)

Pj(N − t)n−jtj , t ∈ [0, N ], (1)

where Pj = Ck,j denotes the j-th control point. We set

n = 5 as the 6th order Bezier curves are used.

To fit the skeleton, we design an optimization procedure

to calculate the control points as Algorithm 1. Six con-

trol points are randomly chosen for initialization. A Bezier

curve is constructed with these control points using Eq. 1.

The control points are updated by minimizing the objective

loss function as

Lk,t =

N
∑

t=0

||(Bk(t)− Lk,t||2. (2)

Algorithm 1: Parametric Skeleton Generation.

Input: An image I
Output: Parametric skeletons {Ck, rk}

K
k=1

, which is

represented by the control points and radius

of K skeleton branches.

1. Predict skeleton S of I with a FCN.

2. Produce branches {Lk}
K
k=1

via GMMs.

2.1 Set threshold θ for loss computed by GMMs.

2.2 Set default branch number K.

2.3 Cluster skeleton pixels S into K groups via

GMMs. K groups refer to K branches {Lk}
K
k=1

.

2.4 Calculate the loss of GMMs.

2.5 Increase K and go back to 2.3, if loss ≥ θ
3. Fit the branches {Lk}

K
k=1

for k ← 1 to K do
3.1 Calculate length N for k-th branch Lk.

3.2 Initialize n+ 1 points Ck as control points

for the branch.

3.3 Calculate N points of Bezier curves B(t)
with Ck as Eq. 1.

3.4 Compute the loss between the Bezier curves

{Bk(t)}
N
t=0 and branch {Lk,t}

N
t=0 with Eq. 2.

3.5 Go to 3.3 if loss ≤ 0.0001.
end

4. Calculate the distance (r) between control points

Ck,j and a projected point Cp
k,j in the border. r is

computed as Eq. 3 Ck,j refers to the j-th control

point of k-th branch.

5. Sort all branches by their areas calculated by Eq. 4.

Radius calculation. The final Bezier curve is con-

structed with the optimized control points. Each control

point, Ck,j = (xk,j , yk,j), is projected to the Bezier curve

to find a projected point Cp
k,j = (xp

j , y
p
j ). The radius is

calculated as the minimum distance between the projected



point and the border of the object mask, as

rk,j =

{

||Ck,j − Cp
k,j ||2 Bl ∈ Shape

− ||Ck,j − Cp
k,j ||2 Bl /∈ Shape.

(3)

Sorting. Sorting is used to output a single paramet-

ric skeleton without ambiguity. The skeleton branches are

sorted by their part areas calculated as

Sk =
1

2

n−1
∑

j=0

(rk,j + rk,j+1) ∗ ||Ck,j+1 − Ck,j+1||2. (4)

3. Experimental results

In this section, we describe the experimental settings, ap-

proah implementation details, and the parametric skeletion

generation performance.

3.1. Dataset and Performance Metrics

Dataset: Parametric SkelNetOn contains 1,725 shape

images, where 1,219 images are used for training, 242

for validation, and 266 for testing. The parametric

skeleton ground-truth is given as a set of triplets like

{xj,k, yj,k, rj,k}
K
k=1

, where j = 1 . . . 6 denoting 6 control

points, K is the number of skeleton fragments. x, y and r
respectively denote the coordinates of the control point and

the radius of skeleton points.

Protocol: The parametric skeleton generation results are

evaluated by the mean squared distance (MSD) between the

control points on the original and predicted branches, and

the missing branch error (MBE) for each missing or extra

branch b. The MSD is defined as

MSD(b, b̃) =
1

6

5
∑

i=0

(

(xi − x̃i)
2 +(yi − ỹi)

2 +(ri − r̃i)
2
)

,

where b = (xi, yi, ri)i={0..5} is a branch in the ground

truth, and b̃ = (x̃i, ỹi, r̃i)i={0..5} is the corresponding

branch in the output. The MBE is defined as

MBE (b) =
1

5

4
∑

i=0

(

(xi+1−xi)
2+(yi+1−yi)

2
)

+
1

6

5
∑

i=0

r2i .

The evaluation function between an output vector Ṽ and

its ground truth V is defined as

D(V , Ṽ ) =
1

Nb

nb−1
∑

j=0

MSD(bj , b̃j ) +

Nb−1
∑

j=nb

MBE (b̂j),

where Nb and nb respectively denote the minimal and max-

imal numbers of branches in the ground truth and in the out-

put, and b̂ are branches in the vector containing the maximal
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Figure 3. Examples of parametric skeleton results on the Paramet-

ric SkelNetOn test set.

number of branches.

3.2. Skeleton Pixel Prediction

Network architecture: We built the fully convolutional

neural network for skeleton pixels prediction with hourglass

architecture, which is built on the VGGNet [14]. The first

four stages of VGG are kept, while the pool4 is removed.

Then we insert deconvolutional layers among the convo-

lutional layers of the fifth stage. In addition, the dilation

technique [2] is applied in the convolutional layers to fur-

ther enlarge the receptive field and facilitate extracting fine-

details. Rich side-outputs are generated by adding a 1 × 1
convolutional layer to each layer in the hourglass backbone

and hierarchical side-outputs are fused [8, 9].

Data augmentation: We follow [6] to rotate each image

to 4 angles (0◦, 90◦, 180◦, 270◦) and flip it with three axes.

Finally, we re-size each training image to 3 different scales

(0.5, 1, 1.5).

Model parameters: Following the setting of RSRN [8],

we train the network by fine-tuning the pre-trained 16-layer

VGGNet [14]. The hyper-parameters include: mini-batch

size (1), learning rate (1e-6 for Pixel SkelNetOn), loss-

weight for each RU output (1.0), momentum (0.9), weight

decay (0.0002), and maximum number of training iterations

(150k). In the testing phase, a standard non-maximal sup-

pression algorithm [4] is applied on the output map.



Backbone Backbone with side-outputs

VGG H-VGG H-RCF H-HIFI H-RSRN

12.71 50.39 59.12∗ 64.56∗ 64.77∗

Table 1. F-measure on the Pixel SkelNetOn validation set. ∗ in-

dicates F-measure on the test set. ”H-” denotes that the feature

hourglass network (FHN) [5] backbone is used.

Skeleton pixel prediction: The evaluation of skeleton

extraction is shown in Table 1, which shows that the hour-

glass architecture significantly outperforms the VGG back-

bone. With hourglass architecture and the hierarchical in-

tegration strategy, H-RSRN achieves the best F-measure of

64.77% on the test set.

3.3. Parametric Skeleton Generation

3.3.1 Skeleton Branch Partition

Cross points and GMMs are respectively used to partition

skeleton branches given skeleton pixels. A cross point is

identified if there are more than 2 of the 8 skeleton pixels

around it. Deleting the cross points can divide a skeleton

to branches using connected component analysis. For the

loss of GMMs varies greatly in the dataset, it is hard to use

a fixed threshold to get the accurate number of branches of

different shape. Instead, we fix the number of branches to

20 as a matter of experience.

The comparison of the branch extraction approaches is

shown in Table 2. It can be seen that GMMs significantly

outperforms cross-points approach. We observed that a long

skeleton branch could be broken by a wrong cross point.

In contrast, GMMs can cluster separate points in the same

branches.

3.3.2 Skeleton Branch Sorting

We propose using max area and max radius to sort skeleton

branches.

Max area: We construct 5 trapezoids with six control

points for each branch. Branches are sorted by the total

area of trapezoids.

Max radius: Branches are sorted by the max radius of

each branch. In Table 2, one can see that sorting the para-

metric skeleton by the max radius of each skeleton branch

achieves better performance than by the area of trapezoids.

3.3.3 Skeleton Branch Fitting

We do not implement fitting branches via a settle threshold

as the loss varies greatly. We instead try setting different

iterations in training. In Table 3, we compared the perfor-

mance with different training iteration numbers. One can

Cross points GMMs Cross points GMMs

Sorting Max area Max area Max radius Max radius

Score 13366.37 12335.72 13383.23 11796.58

Table 2. Comparisons of branch partition and sorting strategies.

Lower score indicates better performance.

see that the score of 50 times is better than those of 25 and

100 either in radius-based sorting or area-based sorting.

The final performance on validation set and test set is

shown in Table 4, which is from the leader-board of the

Parametric SkelNetOn challenge [3].

Sorting Method Iteration Score

Max radius

25 11933.16

50 11793.89

100 11796.58

Max area

25 12433.02

50 12376.80

100 12335.72

Table 3. Performance of different hyperparameters, with the set-

ting of GMMs based skeleton branch generation.

Team Prisdl x2 RG

Val 10609.96 20532.78 12705.34

Test 11793.89 12462.39 13277.47

Table 4. Performance comparison on validation and test datasets

of the Parametric SkelNetOn Challenge.

4. Conclusion

In this paper we propose a parametric skeleton gener-

ation approach. The skeleton is predicted by hourglass

convolutinal neural network and partitioned into skeleton

branches via Gaussian Mixture Models (GMMs). The

Bezier curve is utilized to parametrize the skeleton branches

and parametric skeletons are sorted according to the area

of branches. Experimental results show that the proposed

parametric skeleton generation approach achieves the pre-

diction score of 11793.89 on test dataset, which is in the

first place on the performance leader-board.
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