
 

 

Abstract 
 

Deep Learning for Geometric Shape Understating has 

organized a challenge for extracting different kinds of 

skeletons from the images of different objects. This 

competition is organized in association with CVPR 2019. 

There are three different tracks of this competition. The 

present manuscript describes the method used to train the 

model for the dataset provided in the first track. The first 

track aims to extract skeleton pixels from the shape pixels 

of 89 different objects. For the purpose of extracting the 

skeleton, a U-net model which is comprised of an encoder-

decoder structure has been used. In our proposed 

architecture, unlike the plain decoder in the traditional U 

net, we have designed the decoder in the format of HED 

architecture, wherein we have introduced 4 side layers and 

fused them to one dilation convolutional layer to connect 

the broken links of the skeleton. Our proposed architecture 

achieved the F1 score of 0.77 on test data. 

 

1. Introduction 

The extracted skeletons from the images are widely used 

in various areas like computer vision and image processing 

for optical character recognition [17], fingerprint 

recognition [28], motion detection [14], object tracking [13], 

etc. Skeletons are also widely used in life sciences for plant 

morphology [4].  Deep Learning for Geometric Shape 

Understanding at CVPR 2019 has organized SkelNetOn 

challenge. In this challenge, a pre-segmented image dataset 

with the corresponding skeleton representations in three 

tracks is provided [25]. The first track has posed the 

challenge of extracting the skeleton pixels from the given 

pre-segmented images [25][16][19][24]. We have 

approached this challenge as an edge detection problem and 

introduced a version of HED architecture in the decoder 

part of our proposed architecture. The rest of the sections of 

this manuscript describe the dataset, related work, 

methodology and results of the model used to secure 3rd 

place in the challenge. 

2. Related Work 

Skeleton extraction is a widely researched area in the last 

10 years. However, the most recent works are mainly 

focused on the extracting skeleton from the RGB images 

[22][11], which involves segmentation or detection of the 

objects and extract the skeleton at the same time. Also, an 

extensive research is done either on edge detection 

[8][3][27][23] or segmentation [27][10] individually. These 

kinds of works do not suit fully to the present task. Some 

initial works are done on the extracting skeleton from the 

pre-segmented images [2][1][5] [9] which is similar to our 

task. However, most of these works are focused on the 

skeleton pruning to remove the unwanted branches rather 

than skeleton extraction. In the work done by [7], the 

authors introduced the boundary noise to avoid the 

uninformative branch creations. [15] used skeleton strength 

maps (SSM) which are calculated by the isotropic diffusion 

of the Euclidian distance transformation of binary images 

and their gradient. After calculating the SSM, they 

connected all the local maxima points of SSM with the 

shortest possible line to extract the skeletons.  [6] 

approached the task of skeleton extraction as image 

generation model and used the generative adversarial 

network to extract the skeletons.   

We have approached the present task as an edge detection 

problem and hence our work is more inspired by 

Holistically-nested Edge Detection (HED) model [26]. 

Similar to HED architecture, we have also fused the side 

layers into the final output layer. But to improve the 

performance of HED, instead of taking the output of 

convolution layers as side layers, we have introduced CS-

SE layers at the end of each up-sampling layer and have 

considered the output of CS-SE layers as side layers. The 

detail of our approach is presented in section 3.1. 

3. Dataset 

The challenge is organized in two phases. In the 

development phase, 1219 images with their ground-truth 

for training and 242 images without ground-truth for 

validation are provided. In the final phase, a total of 266 test 

images are given. Participants are asked to submit their 

prediction for validation images in the development phase 
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and test images in the final phase. For the purpose of 

training, we have split the training images into 80:20. While 

splitting, we have ensured to split object-wise, so that both 

training and validation sets would have all the objects. After 

splitting the dataset into train and validation, we found that 

the data is quite imbalanced. It ranges from 1image to 58 

images across the 89 objects in the dataset. Hence, we have 

augmented the train set (975) images into 1296 images.  For 

the purpose of augmentation, image and mask rotation from 

-45 degree to +45 degree are used. 

 

4. Method: 
 

4.1  Details of the Architecture: 

 
 

 

 

Unlike the plethora of classification and segmentation 

task, here we need to focus on the skeleton of images from 

the masks which is somewhat related to the problem of edge 

detection. In the process of extracting the skeleton from the 

mask of the objects, we have designed an encoder-decoder 

structure proposed in [20] with side layers inspired by HED 

architecture [26]. We have used a unique version of the 

HED architecture in the decoder part of U-net. The detail of 

the architecture is shown in Figure 1. As shown in Figure 1, 

before passing the image into the encoder, we have first 

passed the input image into a coordinate convolution layer 

as proposed by [18]. Coordinate convolutional layer helps 

the network to decide on the features related to translation 

invariance which further improves the generalization 

capacity of the model.  

As suggested in the original paper, with the help of 

coordinate convolutional layer, spatial coordinates can be 

mapped with the coordinates in Cartesian space through the 

use of extra coordinate channels which gives the power to 

the model to use either complete or varying degree of 

translation features. Here, we have used the same two extra 

coordinate channels (i, j) which are suggested in the original 

paper.  Figure 2 shows the detailed coordinate 

convolutional layer as given in the original paper. The 

coordinate channel i is a matrix in which row one is filled 

with all zeros, row 2 is all 1s, row three is all 2s and so on. 

Channel j is also similar to channel i but in this channel, the 

columns are filled with the numbers. Also, since we added 

two more channels, we have used a special residual 

squeezed block to extract the feature map in the encoder 

part (Figure 3). In our residual squeezed block, we have 

included the squeezed and excitation block to pass the 

output of the convolution layer and then have added this to 

the identity layer as the normal procedure of the residual 

block. The purpose of passing the output of residuals in the 

squeezed and excitation block is to prevent the overfitting 

caused by the extra feature maps. The squeezed and 

excitation block have adaptively weighed to all the feature 

maps [12]. As far as the decoder part is concerned, we have 

Figure 1: SkeletonNet: A detailed view of Proposed Architecture 

Figure 2: Coordinate convolutional layer as proposed in 

original paper 



 

passed the output of up-sampling layer to the residual 

squeezed block. The output of the residual squeezed block 

is further passed to the channel squeeze and spatial 

excitation (CS-SE) block [21]. The CS-SE block slices its 

input corresponding to the spatial location (x,y) where, x ∈ 

{1,2, ….H} and y ∈ {1,2, ….W}. This spatial mapping has 

helped the network in concentrating the meaningful 

features over the weak features.

 
 

 

 

As discussed before, we have used side layers inspired by 

the HED network. Total of 4 side layers are fused to the 

final output layer. The output of the fused layer is passed to 

the dilation layer to get the strongest features without losing 

the received resolution of the output of the fused layer. 

Further, side layers’ output and the output of the final layer 

are then passed through a sigmoid layer individually under 

the supervision of ground truth (Figure 4). This approach 

helped us to connect the broken links of the skeleton 

predicted. 

 

 
 

 

 

4.2 Image Preprocessing 

Images are divided by 255 to normalize the value of each 

pixel between 0 and 1. 

4.3 Training 

We have trained the network for five outputs which include 

the four side layers and one fused output layer for the 

skeletons of the input images. Adam optimizer is used to 

update the weights while training. The learning rate is 

initialized with 0.001 and reduced after 10 epochs to 10% 

if validation loss does not improve. The batch size is set to 

4. The total epochs are set to 500. However, training is 

stopped early when the network started overfitting. The 

dataset is trained using Nvidia 1080 GTX GPU.  

4.4 Loss Function: 

We have proposed a novel yet simple loss function. Our 

loss function is the sum of binary cross-entropy and Dice 

Loss as defined in equation 1. The network is trained to 

minimize the Binary loss with sigmoid activation function. 

ݏݏ݋ܮ																	  ൌ ܮ ൅ 																											ݏݏ݋ܮ݁ܿ݅ܦ … ሺ1ሻ 
 

Dice Loss is defined in equation (2) and L is cross-entropy 

loss defined in equation (3)  

ݏݏ݋ܮ	݁ܿ݅ܦ			  ൌ 1 െ 2∑ ௜௞௜ୀ଴݌௜ݕ ൅ ∑ߝ ௜௞௜ୀ଴ݕ ൅ ∑ ௜௞௜ୀ଴݌ ൅ ߝ 									… . ሺ2ሻ 
ܮ                                                        ൌ െ∑ ሾݕ௜ log ௜݌ ൅ሺ1 െ ௜ሻݕ logሺ1 െ ௜ሻ௞௜ୀ଴݌ ሿ …	(3) 

 

where, ݕ௜  and ݌௜  are the ground truth and the predicted 

skeleton images respectively. The coefficient ε is used to 

ensure the loss function stability by avoiding the zero value 

in the denominator of dice loss. 

  

5. Results: 
 

 

 

Output F1-score 

Side Layer 1  0.7708 

Side Layer 2  0.7245 

Side Layer 3  0.5832 

Side Layer 4  0.3759 

Fused Output 0.7686 

Ensembled 0.7877 

 

The official metric for evaluation was F1-score. We have 

used the same to evaluate the results. Since the network is 

trained for 5 outputs, we have evaluated the output of each 

layer to get the best results. Table 1 shows the F1-score of 

all five layers. From Table 1, it is very clear that the output 

of first side layer is most important in the fused output. 

Hence, we tried to ensemble the results of the first side 

output layer and the fused layer. The weighted average 

ensemble method is used to ensemble the results. 

Figure 3: Residual Squeezed (RS) block used in the 

encoder and decoder part 

Figure 4: Side – Layers and Fused layer guidance with 

the Ground-truth images 

Table 1: Results of the side layer, fused layer and the ensemble 

output for the validation (split) data



 

The resulted images of this ensemble are used for final 

submission. The results on all the datasets are presented in 

Table 2. 

 
 

 

  
No. of 

Images 

F1-score 

(ours) 

F1-score 

(baseline [6]) 

Train 1296 0.8406 - 

Validation 

(Split) 
244 0.7877 - 

Validation 

(Original) 
242 0.7480 0.6244 

Test 266 0.7711 - 

Figure 5 shows the resulted images of all the outputs layers 

and ensembled image as well. 

 
 

 

 

6. Discussion: 
 

The proposed architecture is a combination of many 

proven state-of-art algorithms. As discussed in section 4.1, 

we have used the coordinate convolutional layer to choose 

upon the translation features, this has helped our model to  

 

 

 

 

focus on more important features during the training. When 

compared to the plain encoder, the use of coordinate 

convolutional layer helped to improve the F1-score by more 

than 3%. However, this impact may be considered as 

insignificant in alone but when combined with our custom 

loss, it has shown the significant improvement in the 

learning process of the model as the F1-score have 

increased to 0.7686 from 0.6546 (in case of Binary Cross 

Entropy) on the validation (split) data. 

Further, we have introduced the HED architecture i.e. the 

side layers in the decoder part along with the dilation layer 

after fusing. This has boosted up the model performance 

by more than 10%. Table 4 shows the F1 scores with and 

without side-layers in the decoder part (Table 4). 

 

 

  
Vanilla Decoder 

Decoder with Side-

Layers 

F1-score 0.6973 0.7686 

Some images from the training data along with the 

predicted output and ground truth are presented in Figure 6. 

 

 

 

 

7. Conclusion and Future Work: 
 

In the present task, we have experimented a unique 

version of HED architecture along with the U-net structure 

to extract the skeleton from the pre-segmented images. Also, 

we have proposed a new loss function for converging the 

network for the best results. The present work also proves 

the role of side- layers in achieving the best output. As 

future work, we would like to explore the role of side layers 

in segmenting and extracting the skeleton from RGB 

images.  
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No Coordinate Conv 

Layer 

With Coordinate 

Conv Layer 

Loss 

Function 

Binary 

Cross 

Entropy 

Our Loss 

Function 

Binary 

Cross 

Entropy 

Our Loss 

Function 

F1-score  0.6546 0.7212 0.7043 0.7686 

Table 2: Results of the Proposed network: Skeleton. These 

results are the results of the final ensembled layers 

Figure 6: Illustrations of the predicted results. Results are 

directly compared with the ground truth images 

Table 4: F1 score on the validation (split) data with and 

without side-layer 

Figure 5: Side – Layers, Fused layer output and Ensembled 

output 

Table 3: Impact of Using Coordination Convolutional 

Layer on the F1-score 
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