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Abstract

The mainstream methods for person re-identification

(ReID) mainly focus on the correspondence between in-

dividual sample images and labels, while ignoring rich

global mutual information resides in the whole sample set.

We propose a method called Masked Graph Attention Net-

work (MGAT) to address this problem. MGAT operates

on the complete graph constructed with the extracted fea-

tures, where nodes are able to directionally attend over

other nodes’ features under the guidance of label informa-

tion in the form of mask matrix. By using MGAT module,

the previously neglected global mutual information is ex-

ploited to generate an optimized feature space with more

discriminant power. Meanwhile, we propose to feedback

the optimization information learned by MGAT module to

the feature-embedding network to enhance the mapping ca-

pability, thus avoiding the difficulty to handle large-scale

graphs in testing phase. To evaluate our method, we con-

duct experiments on three commonly used ReID datasets.

The results show that our method outperforms most main-

stream methods, and is highly comparable to the state-of-

the-art method.

1. Introduction

Person Re-identification (ReID) aims at matching pedes-

trians in different tracks from multiple non-overlapping

cameras. This task has drawn increasing attention in re-

cent years due to its importance in applications, such as

surveillance [29], activity analysis [19] and tracking [38].

Important though it is, this task remains a challenging prob-

lem because of complex variations in camera viewpoints,

human poses, lighting, occlusions, and background clutter.

However, as illustrated in Figure 1, most current main-

stream methods learn the feature embedding network by

independently estimating the class label for single feature

with identification loss, while neglecting the rich mutual in-

formation resides in the whole graph constructed by all the
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Figure 1: Illustration of node-focuesd ReID. Most existing ap-

proaches only used the vertical node classification pipeline (black

arrows), but omitted the mutual information transfer (green lines)

between the nodes in the graph formed by features.

features. In other words, they only pay attention to the clas-

sification characteristic of features which indicates to what

extent the features correspond to their correct labels, while

the clustering characteristic of features fails to receive as

much attention, which indicates how greatly the features

of the same class are clustered and the features of differ-

ent classes are separated. Whereas the discriminant analy-

sis shows that more discriminative features requires better

clustering characteristic, current methods rarely take it into

consideration.

There are several existing methods attempting to over-

come this defect, such as manifold learning [3, 18] and

re-ranking [44, 9, 35]. Both of them are capable of using

mutual information to improve the clustering characteris-

tic of feature space. But as Yantao et al. conclude in [23],

they all have two major limitations: One is that most man-

ifold learning and re-ranking approaches are weakly super-
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vised or unsupervised, which could not fully exploit the pro-

vided training labels into the learning process. The other is

that these two kinds of approaches could not benefit feature

learning since they are not involved in training process.

The burgeoning graph attention networks (GATs) [26]

shows its potential to exploit the mutual information in

nodes to improve the clustering characteristic, due to its in-

trinsic power to aggregate information from other nodes’

features. The GATs successfully introduced the attention

mechanism into graph neural networks (GNNs) [21], by

which nodes are able to attend over their neighborhoods’

features and specify different weights to different nodes in

a neighborhood. More importantly, it requires no compu-

tational intensive matrix operation. Nevertheless, conven-

tional GATs only utilize the relative importance of nodes

without label information, which is capable of aggregating

similar nodes, but is hard to directly separate nodes of dif-

ferent classes.

We propose a novel extension of GATs called Masked

Graph Attention Network (MGAT) to exploit the rich mu-

tual information between features in the present paper for

ReID. The heart of MGAT lies in the innovative masked

attention mechanism for node updating, which is differ-

ent from the conventional GATs that only aggregate similar

nodes by an attention matrix. Specifically, we first reform

the features learned by the feature embedding network as

a complete graph. Then our MGAT uses an attention ma-

trix to provide the weights for updating, and a mask matrix

guided with label information to decide in what direction to

update (i.e. pull the nodes of the same class closer or push

the nodes of different classes). Thus the features finally gain

an improved clustering characteristic.

The optimized output features of MGAT are directly su-

pervised by the identification loss to guarantee the classifi-

cation characteristic. Besides, the optimization information

learned from MGAT is further fed back to the original fea-

tures using an optimization feedback (OF) loss. The purpose

of which is to enhance the mapping capability of the feature

embedding network, so as to avoid any post or non-end-to-

end process like re-ranking.

2. Related Work

2.1. Person Re­identification

Existing mainstream methods [36, 42, 20, 46, 33, 17, 24,

39, 15] usually follow the routine that first extracts discrim-

inative and robust features from person images with iden-

tification loss, and then adopts a metric distance to match

between probe and gallery sets. For image-based ReID, Li

et al. [16] proposed a novel filter pairing neural network,

which could jointly handle feature learning, misalignment,

and classification in an end-to-end manner. Ahmed et al. [1]

introduced a model called cross-input neighborhood differ-

ence CNN model, which compares image features in each

patch of one input image to the other images’ patch. For

video-based ReID, McLaughlin et al. [20] first extracted

features with CNN from images using identification loss

and then used RNN and temporal pooling to aggregate those

features. Chung et al. [7] presented a two stream method,

of which each stream was a Siamese network and superiv-

ized by identification loss, then RNN and temporal pooling

were used to aggregate features. Liu et al. [17] used a CNN

model to learn the quality for each image with classification

score, and then aggregated all the frame features weighted

by the quality.

Besides feature representation learning with identifica-

tion loss devoted to improve the classification characteris-

tic, there were some preliminary attempts on incorporating

affinities between gallery images into the ranking process

[27, 34, 35, 44, 3, 18]. First, manifold learning [3, 18, 37]

and re-rank approaches [44, 34, 35, 9] are utilized to en-

hance the performance of person re-identification model.

Bai et al. [3] introduced Supervised Smoothed Manifold,

which aimed at estimating the context of other pairs of per-

son images thus the learned relationships between samples

are smooth on the manifold. Loy et al. [18] introduced man-

ifold ranking for revealing manifold structure by plenty of

gallery images. Zhong et al. [44] utilized k-reciprocal en-

coding to optimize the ranking list result by exploiting re-

lationships between top rank gallery instances for a probe

sample. Note that all the methods mentioned above are con-

ducted as post-processing procedure during testing, which

is not end-to-end trainable to optimize the feature embed-

ding network.

Shen et al. [22] proposed Group-Shuffling Random Walk

Network to utilize the affinity information between gallery

images in both training and testing stages. The approach

tried to optimize the probe-gallery (P2G) affinities based

on gallery-gallery (G2G) affinity information with a sim-

ple matrix operation, which can be integrated into deep

neural networks. They [23] also proposed a deep learn-

ing framework named Similarity-Guided Graph Neural Net-

work (SGGNN) to utilize relationships between different

feature pairs. The input features as nodes to the graph are

the relation features of different probe-gallery image pairs,

and the node updating is performed by the messages pass-

ing, which takes other nodes’ information into account for

similarity estimation.

2.2. Graph Attention Network

Many computer vision tasks involve data that can not

be represented in a regularly used grid-like structure, like

graph. GNNs were introduced in [21] as a generalization

of recursive neural networks that can directly deal with a

more general class of graphs. Then Bruna et al. [4] and

Duvenaud et al. [8] started the research of Graph Convolu-
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Figure 2: Left: Overall depiction of MGAT integrated with CNN for ReID task. When a mini-batch of images is fed, CNN will first

generate a feature set X, which will be then optimized by MGAT to a new set X′. OF loss will use the optimization information to further

enhance the learning ability of CNN. Right: Visualization of the inner mechanism of MGAT. The elementwise product of the attention

matrix A and the mask matrix M represents the directional forces between nodes.

tional Networks (GCNs) in spectral and non-spectral man-

ners respectively. Petar Velickovic et al. [26] introduced

an attention-based architecture named Graph Attention Net-

works (GATs), which operate directly on graphs, leveraging

masked self-attentional layers to address the shortcomings

of prior methods based on graph convolutions or their ap-

proximations. By stacking layers in which nodes are able to

attend over their neighborhoods’ features, thus enables im-

plicitly specifying different weights to different nodes in a

neighborhood, without requiring any kind of computation-

ally intensive matrix operation or depending on knowing the

graph structure upfront.

3. Method

In this section, we introduce our MGAT integrated with

ResNet50 [10] baseline for ReID tasks. We first describe

the overall network architecture and then elaborate on the

design of MGAT module and the OF loss.

3.1. Overview

The pipeline is shown on the left in Figure 2. The ar-

chitecture mainly consists of three components, the first is

the extraction of features, what follows is the feature op-

timization by the proposed MGAT. The OF loss is applied

to feed the leaned optimization information back to CNN

(feature-embedding network).

Given a mini-batch of images, we first extract a set of

features X with CNN, where each feature uniquely repre-

sents the visual information of the corresponding image.

Considering the set of features as a set of nodes, we then

construct a complete graph, on which each edge character-

izes the similarity between connected nodes (including self-

joins). Inspired by [30], the similarity function can be im-

plemented in many ways. Then the constructed graph will

be fed into the proposed MGAT to be optimized. Note that

the output features X ′ of MGAT are directly supervised by

identification loss to guarantee the classification character-

istic.

We at the same time introduce the OF loss to constraint

the difference between the output features and the original

features. It is used to feed back the optimization informa-

tion learned by MGAT to the feature-embedding network,

so that the feature-embedding network is able to directly

generate optimized features without applying MGAT or any

post-processing methods in testing phase. The probe and

gallery sets are always very large, it is inefficient or even

impossible to directly process on them as graphs.

In general, the principle of the whole network architec-

ture is to enhance the learning of feature-embedding net-

work by utilizing the optimization information learned by

the proposed MGAT, so that we can find a more discrimina-

tive feature space for ReID tasks.

3.2. Masked Graph Attention Network

MGAT is designed to address the person re-identification

scenario where a lot of valuable mutual information is

neglected to obtain the optimal clustering characteristic.

Like the attentional structure in [26], the attention setup of

MGAT also follows the work of Bahdanau et al. [2], but

with different attention mechanism. We start with describ-

ing the input and output of MGAT, and then focus on build-

ing the interesting masked attention mechanism.

The input of MGAT is a set of features that is ex-

tracted by CNN (i.e. ResNet50 in our implementation),

X = {~x1, ~x2, · · · , ~xN}, ~xi ∈ R
d, where N is the number

of features, and d is the dimension of single feature. The

proposed MGAT generates a new set of optimized features

X ′ = {~x′

1, ~x
′

2, · · · , ~x
′

N}, ~x′

i ∈ R
d′

as its output. In order to

use the optimized features to further supervise the original



features, we specify that the dimension of the output is the

same as that of the input, meaning d′ = d.

MGAT works on data with graph structure. Consider-

ing the set of input features X as a set of nodes, and the

distances between any two nodes as a set of edges E, we

construct a complete graph G(X,E). In our implementa-

tion, we use the Euclidean distance to determine the edge

eij between two nodes ~xi and ~xj ,

eij = ‖~xi − ~xj‖2. (1)

The core of MGAT lies in its innovative masked attention

mechanism. It is specifically designed on edges to reach

the goal of improving the clustering characteristic, by ag-

gregating nodes of the same class and separating nodes of

different classes based in an attentional manner. To be spe-

cific, our masked attention mechanism includes two main

components, namely the attention matrix A and the mask

matrix M, see the visualization on the right in Figure 2.

3.2.1 Attention Matrix

The attention mechanism is usually used to reveal the rela-

tive importance between two features. In our graph, since

the relation between two nodes is uniquely decided by the

edge, we can simply define an attention function f : R → R

to map edge to attention. In practice, we define the attention

as:

αij = exp(−e2ij/γ). (2)

In the above αij specifies the relative importance of the j-th

node to the i-th node, and γ is a hyper parameter that helps

to map the attention in a small range near zero. We can

observe that the shorter the edge, the higher the attention.

Note that in many implementations of GCNs, to integrate

the graph structure, a node usually considers the influence

of the nodes in the first-order domain adjacent to it. Yet

since the graph we construct is a complete graph involving

only a mini-batch of features, we can calculate the attention

for each node with all other nodes to capture the global in-

formation without worrying about computational complex-

ity. In order to make the attention with different nodes com-

parable, we then perform L1 normalization:

αij =
exp(−e2ij/γ)

∑

k∈N exp(−e2ik/γ)
. (3)

For a mini-batch containing N images, we can get a row

normalized N ×N attention matrix A, in which the atten-

tion values of the i-th node to all the nodes serves as the i-th
row.

3.2.2 Mask Matrix

The attention matrix represents the mutual importance in-

formation of the nodes in the graph, conventional GCNs and

GATs utilize this information to update the nodes due to the

assumption that connected nodes in the graph are likely to

share the same label [13]. However, this assumption might

restrict modeling capacity, because it only considers simi-

larity, but neglects the dissimilarity. And it fails to handle

hard samples.

To address this problem, alone with the attention matrix,

we introduce a mask matrix to decide in which direction

we aggregate the nodes (to shorten or lengthen the edges).

For example, we shorten the edges between nodes with the

same labels, and lengthen the edge otherwise, in an atten-

tional manner. More specifically, the N -size mini-batch we

use contains M person identities with each identity has K
images, in which the label distribution has the following

structure
{
y1, · · · , y1
︸ ︷︷ ︸

K

}

,

{
y2, · · · , y2
︸ ︷︷ ︸

K

}

, · · · ,

{
yM , · · · , yM
︸ ︷︷ ︸

K

}

where yi is the label for i-th person identity. Element of the

mask matrix is then formulated as:

µij =

{

1 if ⌊ i
K
⌋ = ⌊ j

K
⌋,

−1 otherwise.
(4)

In the above, ⌊ ⌋ is the floor function, making M a matrix

filled with M 1
(K×K) matrices aligning on the diagonal

while all other elements is -1.

The mask matrix functions as an attention mask, when

elementwisely multiplied to the attention matrix, it ensures

that the attention values between nodes in the same class is

positive, and the attention values between nodes from dif-

ferent classes are negative. In this way, the similarity be-

tween nodes in the same class increases (shorter edge) af-

ter node updating, while that of different classes reduces

(longer edge). In brief, the mask matrix converts the in-

formation carried by node labels into the supervision for

attention, thus to reach optimized clustering characteristic.

There is a doubt that the negative masks will damage the

normalization results, but in fact the role of normalization

here is to make the attention values comparable, and such

operations also have the effect of weight decay.

3.2.3 Node Updating

Let’s represent the feature sets X and X ′ as X and X
′ in the

form of matrix. While updating, to review that the conven-

tional GATs only utilize the attention matrix A, and obtain

the output features of nodes by linear combination:

X
′ = AX. (5)

And the update for a single node ~xi is:

~x′

i =
∑

k∈N

αik~xk. (6)
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(b) Node updating of MGAT.

Figure 3: An comparison of the node updating process between

the conventional GATs and the proposed MGAT. Circles of dif-

ferent colors denote different classes, and different arrow styles

denote different attention processing (straight arrows for aggre-

gation, and wavy arrows for separation). The nodes are linearly

combined based on the directional forces to obtain ~x
′

1.

In our work, with the introduction of an extra mask ma-

trix M, we have got the label supervised directional infor-

mation to tackle with the clustering characteristic of node

features. The output has the following formulation:

X
′ = (A ◦M)X, (7)

where A ◦ M is the element-wise product of A and M,

called the masked attention matrix. Similarly, the updating

for a single node is:

~x′

i =
∑

k∈N

sgn(yi, yk)αik~xk (8)

=
∑

k∈Np

αik~xk −
∑

k∈Nn

αik~xk (9)

where Np is the number of nodes with the same class label

as ~xi, Nn is the number of nodes with different class label

from ~xi, and sgn is the sign function:

sgn(yi, yj) =

{

1, if yi = yj

−1, otherwise
. (10)

The node updating process of MGAT compared to the

conventional GATs is illustrated by Figure 3. Note that the

convolutional GATs use attention values to compute a lin-

ear combination of the node features corresponding to them

to serve as the final output node features, while no label

supervision is involved to directly separate nodes of differ-

ent classes. As a comparison, given the mask information

form the mask matrix, our proposed MGAT applies differ-

ent attention processing to nodes from different classes. In-

tuitively, the first term of Formula 9 depicts the aggregation

of the i-th node to nodes from the same class, while the sec-

ond term depicts the separation of the i-th node to nodes

from different classes. After such an updating process, each

node is subjected to the information transmission from the

surrounding environment. Thus it is expected to obtain an

improved clustering characteristic, and lead to a consider-

able promotion on node-focused recognition task like ReID.

3.3. OF loss

As is mentioned in Section 3.1 that it is always not a

good idea to process probe set and gallery set as graphs in

the test phase. We propose to make it possible for CNN

to directly generate optimized features by applying the OF

loss. We adopt the simplest implementation by using the

mean squared error (MSE) loss to constraint the difference

between the output features of MGAT and the original fea-

tures:

LOF =
∑

i∈N

‖~x′

i − ~xi‖2 (11)

=
∑

i∈N

‖
∑

k∈Np

(αik~xk − ~xi)−
∑

k∈Nn

αik~xk‖2 (12)

Note that the OF loss is an auxiliary component for

MGAT to enhance the learning of CNN, so as to avoid

the massive graph construction work in test phase, thus we

don’t independently study how it contribute to the final per-

formances.

4. Experiments

To validate the effectiveness of our proposed approach

for ReID, we conduct extensive experiments and ablation

study on three popular video-based ReID datasets namely

iLIDS-VID [28], PRID2011 [12] and MARS [42], all of

them have multi-shot images for a person identity that make

it possible to optimize features space. Besides, to justify

that our method also works on image-based dataset, We also

evaluate our method on Market1501 [43].

4.1. Datasets and metric

iLIDS-VID. iLIDS-VID dataset collected 600 trajecto-

ries for 300 identities, based on the assumption that the real

ReID system should have the trajectory for each identity.

The problem of extremely heavy occlusion makes it a very

challenging dataset for ReID task.

PRID2011. PRID2011 dataset has 385 trajectories from

camera A and 749 trajectories from camera B. Among them,

only 200 persons are commonly used in ReID tasks, in that

they appear in both cameras. Although some trajectories

are not well-synchronized, this dataset is much easier for

simple and clean backgrounds.

MARS. MARS is the first large scale video based ReID

dataset. Since all bounding boxes and tracklets are gener-

ated automatically, it contains distractors and each identity

may have more than one tracklets.



Market1501. Market1501 is a classic image-based

ReID dataset, which contains a large number of identities

and each identity has several images from six dis-joint cam-

eras. This dataset also includes 2793 false alarms from

DPM as distractors to mimic the real scenario.

Evaluation metrics. We adopt the Cumulative Match-

ing Characteristics (CMC) top-1, top-5, top-10, top-20 ac-

curacies and Mean Average Precision (mAP) as evaluation

metrics and strictly adopt the original evaluation protocol

provided by the dataset. The final results are reported as the

average of “10-fold cross validation”.

4.2. Implementation details

As is mentioned in Section 3, we use ResNet50-bn as

our baseline. The original ResNet50 is pretrained on the

ImageNet dataset and then used to initialize the modules in

ResNet50-bn except for the BN layer and the customized

classifier module. All the input images are resized to

256×128. For data augmentation, only random horizontal

flipping is adopted.

The most important part is our training procedure, which

consists of two stages. In the first stage, we train the fea-

ture embedding network (the baseline). For all datasets, we

set 0.01 as the initial learning rate for the BN layer and the

classifier module, and 0.001 for other pretrained modules.

We reduce the learning rate by 10 times every 3 epoches,

and train a total of 9 epoches. In the second stage, we en-

hance the learned feature embedding network by MGATs.

We adopt the previously trained classifier in the first stage

to classify the optimized features. For initial learning rate

for all the modules and the hyper parameter γ, we empiri-

cally set them to 1e-6 and 250. For every 10 epoches, we

again reduce the learning rate by 10 times. Note that we use

different mini-batch settings for the two stages mentioned

above. A mini-batch for the training of feature embedding

network includes 8 randomly selected persons, and only one

image is in turn selected for every person from the cross-

camera image set. But for the training of MGAT, a mini-

batch contains M persons. With K randomly selected im-

ages for each person from cross-camera image sets, a mini-

batch of size M ×K is constructed. We empirically set M
and K to 8 and 16 in the training, which results in a mini-

batch of size 128. We select Stochastic Gradient Descent

(SGD) as the optimization method for both stages.

For the testing procedure, we directly utilize the feature

embedding network enhanced by MGAT to extract features

for probe and gallery sets without any extra post-processing

methods, because the enhanced feature embedding network

has the capability to generate features of optimal discrimi-

nant power. This operation is consistent with the evaluation

procedure in baseline, which is both simple and efficient.

Table 1: CHI of baseline and graph optimized features on

probe and gallery sets.

Dataset Methods probe gallery

iLIDS-VID
Baseline 140.0140 198.5689

Optimized 140.0694 198.9442

PRID2011
Baseline 515.4785 275.5601

Optimized 519.3805 279.3300

MARS
Baseline 276.6798 296.8376

Optimized 314.6908 322.3207

4.3. Ablation study

In this section, we investigate the effectiveness of our

proposed MGAT by conducting a series of experiments on

the iLIDS-VID, PRID2011 and MARS datasets.

Clustering characteristic. As the main idea of our

method is to improve the clustering characteristic of the

learned features, we now investigate how greatly it is

achieved with the proposed MGAT.

We use the feature-embedding network in baseline and

the optimized version to extract the features for the probe

and gallery sets of all the datasets. As for metrics to

evaluate the clustering characteristic, we adopt the classi-

cal Calinski-Harabaz Index (CHI) [6]. When evaluating, a

higher Calinski-Harabaz score relates to a model with bet-

ter defined clusters. The results of CHI are shown in Table

1 respectively. Obviously, our approach has undoubtedly

achieved the best performance in both evaluations.

In order to understand the role of MGAT more intu-

itively, we randomly selected M individuals, each contain-

ing K samples, visualized their distance matrix after using

MGAT, and compared with that of the baseline. Figure 4

shows the visualization results. We can clearly see that with

the use of MGAT, the distances between samples belonging

to the same person are smaller, while the distances between

samples belonging to different persons are increased visi-

bly.

Comparison with original GAT. The original GAT [21]

is proposed to address the problem of node classification on

graph. There are some limitations to directly apply it in

ReID tasks, for the reason that it only takes advantage of

similarity to pull nodes, but neglects the dissimilarity. We

conduct experiments to verify that our improved MGAT is

better suited for ReID tasks. Results can be found in Fig-

ure 5. For all the datasets we use, our MGAT has achieved

better performances.

4.4. Comparison with State­of­the­art methods

Results on iLIDS-VID dataset. The results of our

proposed MGAT and other state-of-the-art methods on the

iLIDS-VID dataset are listed in Table 2. The top-1 accuracy



(a) M=4, K=4, w/o MGAT(b) M=4, K=4, w/ MGAT

(a) M=8, K=8, w/o MGAT(b) M=8, K=8, w/ MGAT

Figure 4: Visualization of distance matrices. The use of MGAT

can better reduce the intra-class distance and increase the inter-

class distance. (the colder the tone, the smaller the value).

Top 0-5% Top 5-10% Top 10-20% Top 20-50%
Performance Percentile

80

85

90

95

100

C
M

C

GAT on iLIDS-VID
MGAT on iLIDS-VID
GAT on PRID2011
MGAT on PRID2011
GAT on MARS
MGAT on MARS

Figure 5: CMC curves for the original GAT and our proposed

MGAT.

of our proposed method is 80.3, which outperforms all the

compared methods.

To solve the problem of more obscure inter-class dif-

ference for video-based re-identification than still-image-

based re-identification, TDL [36] integrates a top-push con-

strain to enforce the optimization on top-rank matching.

Our proposed method outperforms TDL by 24% for top-1

accuracy. CNN+XQDA [42] acts as a baseline for com-

bining CNN features with traditional metric to solve the

problem of re-identification in the early years. Using bet-

ter CNN network and feature optimization, our end-to-end

approach outperforms CNN+XQDA by 27.3% for top-1 ac-

curacy. CNN+RNN [20] is the first end-to-end method for

Table 2: Comparison with related methods on iLIDS-VID

dataset. (∗ means additional datasets are used in training)

Methods top-1 top-5 top-10 top-20

TDL [36] 56.3 87.6 95.6 98.3

CNN+XQDA [42] 53.0 81.4 - 95.1

CNN+RNN [20] 58 84 91 96

JSTRNN [46] 55.2 86.5 - 97.0

ASTPN [33] 62 86 94 98

QAN [17] 68.0 86.8 95.4 97.4

RQEN [24] 77.1 93.2 97.7 99.4

SDM [39] 60.2 84.7 91.7 95.2

DRSA∗ [15] 80.2 - - -

Baseline 76.0 94.0 98.7 99.3

MGAT 80.3 94.7 98.7 99.5

video-based re-identification, which uses a RNN to fuse

frame features obtained by CNN, and then the contrastive

loss is used to learn the metric. Our approach outperforms

it by 22.3% for top-1 accuracy. JSTRNN [46] handles spa-

tial and temporal information simultaneously by carefully

designed spatial recurrent module and temporal attention

module. Our approach outperforms it by 25.1% for top-1

accuracy. ASTPN [33] enables the feature extractor to be

aware of the current input video sequences, in a way that

interdependency from the matching items can directly in-

fluence the computation of each other’s representation. Our

approach outperforms it by 18.3% for top-1 accuracy.

QAN [17] is based on the idea that samples with poor

quality will hurt the metric, it implicitly learns the qual-

ity of each sample by then fuse features by their quality

scores. Our approach outperforms it by 12.3% for top-1 ac-

curacy. RQEN [24] holds the same idea with QAN, it tries

to aggregate complementary information from all frames

in a sequence for video-based re-identification, using bet-

ter regions from other frames to compensate the influence

of an image region with poor quality. Our approach outper-

forms it by 3.2% for top-1 accuracy. SDM [39] proposed

an interpretable reinforcement learning method to decide

whether a pair of images belong to the same or different

person. Our approach outperforms it by 20.1% for top-1

accuracy. DRSA [15] introduces multiple spatiotemporal

attention model to automatically discovers the diverse set of

distinctive body to address the problem of image occlusion.

Though it utilizes 6 additional ReID datasets to pretrain the

model before training on each dataset we use, our method

still outperforms it.

Results on PRID2011 dataset. Table 3 illustrates the

performance of our proposed MGAT and other state-of-

the-art methods on the PRID2011 dataset. Our proposed

MGAT outperforms all the introduced methods above ex-

cept DRSA [15] for top-1 accuracy. We attribute our fail-



Table 3: Comparison with related methods on PRID2011

dataset. (∗ means additional datasets are used in training)

Methods top-1 top-5 top-10 top-20

TDL [36] 56.7 80.0 87.6 93.6

CNN+XQDA [42] 77.3 93.5 - 99.3

CNN+RNN [20] 70 90 95 97

JSTRNN [46] 79.4 94.4 - 99.3

ASTPN [33] 77 95 99 99

QAN [17] 90.3 98.2 99.32 100.0

RQEN [24] 91.8 98.4 99.3 99.8

SDM [39] 85.2 97.1 98.9 99.6

DRSA∗ [15] 93.2 - - -

Baseline 87.6 96.6 98.9 100.0

MGAT 92.1 97.1 99.2 100.0

ure to the extra ReID datasets DRSA uses. Considering the

small gap, we are confident that if the same additional infor-

mation is used, our approach will be also greatly improved.

Results on MARS dataset. Being the first large scale

video-based re-identification dataset, MARS [42] is a more

objective and fair evaluation criteria for video-based meth-

ods. The results of our proposed MGAT and other state-of-

the-art methods on the MARS dataset are shown in Table

4. Note that all the experiments are conducted in the single-

query mode. Our method outperforms all the compared ap-

proaches for top-1 accuracy except DRSA [15]. But for

top-5 accuracy and mAP, our method outperforms all the

methods by a large margin. The reason why DRSA de-

feats our proposed MGAT is discussed in the analysis for

the PRID2011 dataset.

Besides all the approaches introduced above such as

CNN+XQDA [42], JSTRNN [46] and QAN [17], our

method also outperforms two new approaches for MARS.

DCFBLP [14] stacks designed multi-scale context-aware

network (MSCAN) to learn powerful features over full

body and body parts, and uses spatial transformer networks

(STN) to learn and localize deformable person parts. Our

method outperforms it by 9.3% and 15.7% for top-1 accu-

racy and mAP. TriNet [11] uses a variant of the triplet loss to

perform deep metric learning in defense of triplet loss. Our

method outperforms it by 1.3% and 4.1% for top-1 accuracy

and mAP.

Results on Market1501 dataset. HA-CNN [31] de-

signs a lightweight yet deep CNN architecture by devising a

holistic attention mechanism for locating the most discrim-

inative pixels and regions in order to identify optimal visual

patterns for ReID. Our result outperforms it by 0.8% for

mAP and 0.3% for top-1 accuracy. AlignedReID [5] is said

to surpass human-level performance in ReID, which outper-

forms our method by 14.2% and 2.9% for mAP and top-1

accuracy. However, the result is not surprising, since it is

Table 4: Comparison with related methods on MARS

dataset. (∗ means additional datasets are used in training)

Methods top-1 top-5 top-20 mAP

CNN+XQDA [42] 65.3 82.0 89.0 47.6

JSTRNN [46] 70.6 90.0 97.6 50.7

DCFBLP [14] 71.8 86.6 93.0 56.1

QAN [17] 73.74 84.9 91.6 51.7

TriNet [11] 79.8 91.4 - 67.7

SDM [39] 71.2 85.7 91.8 -

DRSA∗ [15] 82.3 - - 65.8

Baseline 79.8 91.9 96.4 71.2

MGAT 81.1 92.2 97.7 71.8

Table 5: Comparison with related methods on Market1501

dataset.

Methods mAP top-1 top-5 top-10

OIM Loss [32] 60.9 82.1 - -

SpindleNet [40] - 76.9 91.5 94.6

MSCAN [14] 53.1 76.3 - -

k-reciprocal [44] 63.6 77.1 - -

Point 2 Set [45] 44.3 70.7 - -

SVDNet [25] 62.1 82.3 - 92.3

Part Aligned [41] 63.4 81.0 92.0 94.7

HA-CNN [31] 75.7 91.2 - -

AlignedReID [5] 90.7 94.4 - -

Baseline 76.0 90.3 95.8 97.1

MGAT 76.5 91.5 97.2 98.0

a bundle of advanced methods for ReID, including metric

learning, feature fusion, mutual learning, re-ranking.

5. Conclusion

In this paper, we argue that the mainstream methods for

person re-identification (ReID) mainly focus on the corre-

spondence between individual sample images and labels,

while ignoring rich global mutual information resides in

the whole sample set. To address this defect, we propose

MGAT module that enables nodes to directionally attend

over other nodes’ features under the guidance of label infor-

mation. In this way, the previously neglected global mutual

information is exploited to generate an optimized feature

space with more discriminant power.
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