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Abstract

Person re-identification becomes a more and more im-

portant task due to its wide applications. In practice, per-

son re-identification still remains challenging due to the

variation of person pose, different lighting, occlusion, mis-

alignment, background clutter, etc. In this paper, we pro-

pose a multi-scale body-part mask guided attention net-

work (MMGA), which jointly learns whole-body and part-

body attention to help extract global and local features

simultaneously. In MMGA, body-part masks are used to

guide the training of corresponding attention. Experiments

show that our proposed method can reduce the negative

influence of variation of person pose, misalignment and

background clutter. Our method achieves rank-1/mAP of

95.0%/87.2% on the Market1501 dataset, 89.5%/78.1% on

the DukeMTMC-reID dataset, outperforming current state-

of-the-art methods.

1. Introduction

Person re-identification (re-ID) aims at identifying the

presence of same person in different cameras with different

backgrounds, poses and positions. It is still a challenging

task due to large variations on persons like pose, occlusion,

clothes, background clutter and detection failure which are

shown in Figure 1.

Low-level features like colors, shapes, contours and lo-

cal descriptors are used to train traditional re-ID models

with low accuracy [8, 12]. Nowadays, with the fast de-

velopment of deep neural networks, deep features of hu-

man image learned through convolutional neural network

(CNN) is demonstrated to have better discrimination and

robustness to represent the image, which has made signifi-

cant improvement on the re-ID problem [6, 24, 26, 33]. The

features learned from deep learning network should capture

the most salient clues that can represent identities of differ-

ent persons. However, most of the existing deep learning

methods learn features from the whole image that contains

not only the human body parts, but also the background re-

gions [40, 37]. The background regions containing clutter
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Figure 1. Examples of challenges in person re-identification and

how our attention mechanism can handle the challenges. (a-b) oc-

clusions, (c-d) inaccurate bounding-box detection, (e-f) variation

of pose. The second to forth images in each group are the global

attention map in original image, upper-body attention map and

bottom-body attention map generated by our proposed MMGA

network.

and occlusions may lead to a misalignment problem . To

address this issue, some recent works [31, 38, 45, 6, 34, 18]

show that locating the significant body parts and learning

the discriminative features from these informative regions

can reduce the negative effects of clutter and occlusions,

and thus improve the re-ID accuracy.

Visual attention has shown its success in re-ID tasks

[42, 22, 29, 19], as the mechanism conforms to the human

visual system that a whole image is not likely to be pro-

cessed in its entirety at once, but only the salient parts of the

whole visual space are focused when and where needed. Vi-

sual attention module can help to extract dynamic features

from salient parts mostly like human body parts in a image

by guiding the learning towards informative image regions

[29]. Given the human body information, attention maps



where regions of interest are presented have much stronger

responses on body region compared with background re-

gions [22, 42]. Inspired by this, whole human body mask

has been used to guide the attention model training [29].

The whole human body is segmented from the background

region and then attention network is guided by this binary

mask. However, learning global attention through the whole

human body mask may suppress local informative body part

regions that have stronger responses.

To relieve this dilemma, we introduce a multi-scale

body-part mask guided attention network. We split body

masks into upper-body masks and bottom-body masks and

use them to guide the training of upper-body attention

and bottom-body attention respectively. As shown in Fig-

ure 1, our proposed network can learn whole-body at-

tention, upper-body attention and bottom-body attention.

Moreover, comparing to [29] , which needs mask in both

training and inference phase, our proposed method needs

mask only in training phase, and thus saves significant time

in inference phase.

Our experiments indicate that multi-scale body-part

mask guided attention network can significantly improve

the accuracy of person re-identification and it still has space

for improvement. We conclude our paper with qualitative

results and demonstrate the potential of the method.

The contributions of our work can be summarized as fol-

lows:

• We propose a mask guided attention method to ad-

dress person re-identification problem. In our pro-

posed method, mask is used to guide attention train-

ing only in the training phase. We don’t need mask in

inference phase which makes our method particularly

efficient.

• We creatively use the masks of different parts of body

to guide attention learning in training phase. In this pa-

per, we separate person body into upper part and bot-

tom part and use them to guide the training of upper

and bottom attention respectively.

2. Related Work

This section provides an overview of closely related

work in deep person re-identification. Deep learning has

been successfully used to improve the performance of

person re-identification. Both verification and identifica-

tion models are applied in deep person re-identification

[5, 20, 33, 1].

Part-Based Model: Recently, a number of new methods

have been designed to capture richer and finer visual cues by

jointly learning from not only whole-body images but also

body-part images, which pushed the re-ID performances to

a new level. According to different partition strategies, the

part-body based methods can be classified into three cate-

gories: 1) Human body parts are generated through prede-

fined fixed-height horizontal stripes. In work [45, 31, 9, 38],

they both equally slice the feature maps of input image in

vertical orientation. 2) The human body-part regions are

detected and the local features are generated jointly. [43]

proposed a method that can estimate body parts in a fea-

ture space through ROI pooling, while the local features

can be generated at the same time. 3) Human body can

be divided into different parts according to the keypoints

detected by off-the-shelf pose estimation model. In work

[42], 18 human body joints are obtained through pose esti-

mation model and 5 body regions are defined according to

the body joints. These methods all focus on the part parti-

tion scheme for the local feature extraction network. In our

proposed method, we generate the body-part mask and use

the local mask to guide our attention model, as human vi-

sion may not focus on the whole human body but only on

some body parts in a image.

Attention mechanism in Re-ID: One difficulty person re-

identification suffering is misalignment, as the bounding-

boxes detected by the detection algorithm may not be ac-

curate enough, for example only partial profile of pedes-

trian may appear at the corner of the image. To overcome

this issue, attention mechanism is proposed to aid the net-

work to learn where to ’look’ at. Attention mechanism plays

a more and more important role in computer vision field

[22, 35, 25, 39, 44, 19, 42, 36, 4]. In [22], a harmonious

attention model is introduced to combine both soft and hard

attention mechanism. A multi-directional attention model

is proposed in [25], which can extracts attentive features

through masking different levels of features with attention

map. Given that most of the attention based methods gen-

erate global attention through whole-body images, the local

attention learning from each body part is ignored, which

may lead to suboptimal performance when person images

suffer from large pose variations, misalignment, local oc-

clusion, etc. To address this issue, [19] proposes a spa-

tiotemporal attention model which can automatically dis-

cover a diverse set of distinctive body parts. In our pro-

posed model, the local attention can be learned through lo-

cal mask, thus the re-ID performance can be further im-

proved.

Mask mechanism in Re-ID: Human body mask obtained

from image segmentation models can be used to handle the

background clutter problem. With deep learning based im-

age segmentation algorithms including Mask RCNN [13],

JPPNet [23], Dense Pose [11], etc., human body mask can

be extracted well and the background region can be almost

removed. However, there are only a few works [29, 3, 17]

introducing semantic segmentation into re-ID task. This

scarcity is due to large computational complexity involved

in semantic segmentation for human mask. In our work, we



Figure 2. Split mask from the middle-line may suffer misalignment

problem. The first row shows the original images, the second row

shows whole-body masks. The left pair of the third row is the

result of divide whole-body mask into upper-half part and bottom-

half part according to the middle line. The right pair is upper-body

mask and bottom-body mask.

just utilize the mask to guide the training of our attention

model so that the mask is only needed in training phase. Af-

ter we get the learning metric, mask is no longer needed to

extract features which is time-saving compared with other

mask based re-ID algorithms.

3. Our Proposed Method

In this paper, we propose a multi-scale body-part mask

guided attention network. The overview of our proposed

network is shown in Figure 3. The detail structure of our

body-part guided attention modules is shown in Figure 4.

Our attention modules are guided not only by whole-body

masks but also by different body-part masks. In this pa-

per, body masks are separated into upper-body masks and

bottom-body masks.

There are two attention modules in our proposed net-

work. The first attention module is guided only by whole-

body masks. The second attention module has three

branches. The first branch is guided by whole-body mask,

the second branch is guided by upper-body mask, and the

third branch is guided by bottom-body mask.

3.1. Overall Architecture

Variety of network structures are used in person re-

identification [14, 32, 36]. In our work, we employ resnet50

[14] as backbone network with some modifications follow-

ing the recent works [31, 38, 9]. The last spatial down-

sampling operation is removed from resnet50. In this way,

we can get a larger feature map. We also remove origi-

nal global average pooling (GAP) layer and fully connected

layer from resnet50. At the end of our backbone network,

global average pooling layer and linear layer are employed

to reduce the dimension of the output feature. The size of

whole-body features is reduced to 1024, while the size of

the upper-body features and the bottom-body features is re-

duced to 512.

3.2. Attention Module

Inspired by [4, 22], our attention module is composed of

spatial attention and channel attention. The spatial atten-

tion aims to define the importance of pixels. The channel

attention is used to set weights to different channels. Body

masks are used to guide the training of spatial attention as

shown in Figure 4.

The input to our attention module is a 3-D tensor XXX ∈
Rhin×win×cin . The output of our attention module AAA ∈
Rhout×wout×cout .

Spatial Attention: Our Spatial attention consists of three

convolutional layers. The input channel size of the first

convolutional layer is cin. The output channel size of it

is cin/s where s is the spatial attention reduction hyperpa-

rameter. The kernel size of the first convolutional layer is 1.

For the second convolutional layer, the input channel size is

cin/s, the output channel size is cin/s
2, and the kernel size

is 1. The input channel size of the last convolutional layer is

cin/s
2, the output channel size is 1, while the kernel size is

1. After three convolutional layers, a Sigmoid function is

applied to the spatial attention output. Inspired by [14, 36],

we add 1.0 to Sigmoid function. The output of the spatial

attention module is SSS ∈ Rhout×wout×1.

There is a down-sampling operation in stage3 of the

backbone resnet50. An average pooling layer is applied

in the first attention module between the first convolutional

layer and the second convolutional layer so that the output

of the first attention module has the same dimension as the

output of stage3 of the backbone network. Average pooling

is not applied in the second attention module.

Channel Attention: Our channel attention module is com-

posed of one average pooling layer over spatial features and

two linear layers.

We first apply an average pooling over spatial pixels in

each channel as below:

CCC1 =
1

hin × win

hin
∑

i=1

win
∑

j=1

XXXi,j,1:cin (1)

Then two linear layers are applied to perform squeeze-

expansion. The input size of the first linear layer is cin
and the output size is cin/r where r is the channel atten-

tion reduction hyperparameter. The input size of the second

linear layer is cin/r, while the output size of it is cout. Af-

ter these two linear layers, a Sigmoid function is applied to

map the channel attention to range 0 - 1. The channel atten-

tion is further unsqueezed to 3-dimension attention features,

CCC ∈ R1×1×cout .

Combine Spatial-Channel Attention: Spatial attention

and channel attention are combined by element-wise multi-

plication:
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Figure 3. Structure of our proposed network. Backbone is resnet50. There are two attention modules in the network. The first attention

module is guided by whole-body mask. The second attention module has three branches which are guided by whole-body mask, upper-body

mask and bottom-body mask respectively.
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Figure 4. Structure of our mask guided attention branch. (a) is the

channel attention. (b) is the spatial attention. Channel attention

consists of one average pooling layer and two linear layers. Spa-

tial attention is composed of three convolutional layers. Spatial

attention is guided by body masks.

AAA = SSS ×CCC (2)

where AAA ∈ Rhout×wout×cout is the output of our attention

module.

3.3. Multi­scale Body­part Mask Guided Attention

In this paper, we propose a multi-scale body-part mask

guided attention network. Our proposed network can not

only extract global informative features but also pay at-

tention to local discriminative features. In our proposed

network, whole-body attention, upper-body attention and

bottom-body attention are guided by whole-body masks,

upper-body masks and bottom-body masks respectively as

shown in Figure 3.

Recently, a number of re-ID methods combine global

features and local features to improve the accuracy of per-

son re-identification. In order to extract local features, im-

ages or feature maps are divided into fix-height strips. But it

is difficult to handle misalignment problem when inaccurate

bounding-box occurs as shown in Figure 2. In our proposed

network, images and feature maps are not divided into fix-

height strips. Instead, local attention is directly guided by

local masks so that our network can accurately locate infor-

mative local part. This mechanism can significantly reduce

the influence of background clutter, occlusion, inaccurate

detection, etc. Our attention module can accurately locate

the informative part and thus help the network to extract

whole-body features, upper-body features and bottom-body

features separately.

We design two attention modules in our proposed

method. The first attention module is used to filter back-

ground influence. The second attention module help the net-



work extract whole-body features, upper-body features and

bottom-body features accurately. The first attention module

takes the output from stage 2 of the backbone resnet50. The

output of the attention module is performed element-wise

multiplication with the output features from stage 3 of the

backbone resent50. The result of the element-wise multi-

plication is the input of the second attention module. There

are 3 branches in the second attention module. The first

branch is guided by whole-body masks. It acts as whole-

body attention and help extract whole-body features. The

second attention is upper-body attention. Its training is

guided by upper-body masks to help extract upper body fea-

tures. The third attention is bottom-body attention. Its train-

ing is guided by bottom-body mask to help extract bottom

body features. The output of these three attention branches

are performed element-wise product multiplication with the

output features from stage 4 of backbone resnet50

3.4. Loss Function

To learn the attention map, mask guided attention loss is

introduced. We also employ softmax loss for classification

and hard triplet loss for metric learning. The total loss is the

sum of mask guided attention loss, softmax loss and batch-

hard triplet loss.

Mask Guided Attention Loss: Mask is used to guide the

training of spatial attention. To compute the attention loss,

the output of spatial attention is normalized as below:

SSSnorm =
SSS −min(SSS)

max(SSS)−min(SSS)
(3)

where SSS represents the spatial attention and SSSnorm is the

normalized spatial attention. Then attention loss can be cal-

culated through Root Mean Squared Error (RMSE):

L =

√

∑h

i=1

∑w

j=1‖MMM i,j −SSSnorm
i,j ‖2

nbatch

(4)

whereMMM is the resized human body mask, and nbatch is the

batch size at training stage.

The total Mask-guided attention loss is the sum of four

parts.

Latt = L1,w
att + L2,w

att + λ0L
2,u
att + λ0L

2,b
att (5)

where L1,w
att is the attention loss of the first attention mod-

ule. L2,w
att is the attention loss of the first branch in the sec-

ond attention module. L2,u
att is the upper-body mask guided

attention loss in the second attention module. L2,b
att is the

bottom-body mask guided attention loss in the second at-

tention module. λ0 is used to balance the whole-body mask

guided attention loss and part-body mask guided attention

loss.

Softmax Loss: At the end of our proposed network, global

average pooling and linear layer are performed to reduce

the dimensions of whole body features, upper-body features

and bottom-body features to 1024, 512, 512 respectively.

Upper-body features and bottom-body features are concate-

nated together to form a 1024-dimension local body-part

features. Then softmax loss can be used to compute the

whole body loss as well as the body-part loss through these

whole-body features and local body-part features. The loss

functions are expressed as below:

Lw
softmax = −

1

nbatch

nbatch
∑

i=1

log
exp(WWWw

yi

Tfffw
i )

∑N

j=1 exp(WWW
w
j fff

w
i )

(6)

Ll
softmax = −

1

nbatch

nbatch
∑

i=1

log
exp(WWW l

yi

T
fff l
i)

∑N

j=1 exp(WWW
l
jfff

l
i)

(7)

Equation (6) illustrates the whole-body softmax loss

where fffw represents 1024 dimension whole-body features

and WWWw
k is the whole-body weight vector for identity k.

Equation (7) illustrates the local-body softmax loss with

fff l representing the local-body features which is a concate-

nation of 512 dimensions of upper-body features and 512

dimensions of bottom-body features. WWW l
k representing the

part-body weight vector for identity k. N is the number of

identities in the training dataset.

Triplet Loss: Triplet loss and its variation [28, 15, 27] is

widely used in person re-identification. Batch-hard triplet

loss is also applied in our proposed method to improve the

accuracy.

Whole-body features, upper-body features and bottom-

body features are concatenated together and normalized.

Dimension of the new features is 2048. The new features

fffall are also used at inference stage.

The triplet loss can be formulated as below:

Ltriplet =
1

nbatch

P
∑

i=1

K
∑

a=1

[m+ max
p=1...K

‖fffall
a

(i)
− fffall

p

(i)
‖2

− min
n=1...K
j=1...P

j 6=i

‖fffall
a

(i)
− fffall

n

(j)
‖2]+

(8)

where fffall
a

(i)
, fffall

p

(i)
, and fffall

n

(i)
are the concatenated and

normalized features of anchor, positive and negative sam-

ples respectively. P is the number of identities in each mini-

batch and K is the number of images for each identity.

By combining all the above loss, our final loss function

for the end to end multi-scale body-part mask guided atten-

tion network is as below:

Loss = Lw
softmax +Ll

softmax + λ1Ltriplet + λ2Latt (9)

where λ1 and λ2 are used to balance different loss.



4. Experiments

4.1. Dataset and Evaluation Protocol

We choose two person re-ID benchmarks for evaluation,

that is, Market-1501 [47] and DukeMTMC-reID [48]. It is

necessary to introduce these datasets and protocol we use.

DukeMTMC-reID: DukeMTMC-reID is a subset of the

DukeMTMC dataset for image-based re-identification. It

consists of 36411 images of 1812 identities from 8 differ-

ent cameras. There are 1404 identities appearing in more

than two cameras and 408 identities (distractor ID) appear-

ing in only one camera. 16522 images of 702 persons are

divided into training set. 19889 images of the remaining

identities are divided into testing set, with 2228 in query set

and 17661 in gallery set.

Market-1501: Market-1501 contains 32668 images of

1501 identities. A total of six cameras were used, including

5 high-resolution cameras and one low-resolution camera.

12936 images of 751 identities are divided into training set.

19732 images of the remaining 750 identities are divided

into testing set. 3368 images are in query set. The maxi-

mum number of query images is 6 for an identity.

Protocols: We adopt Cumulative Matching Characteristic

(CMC) and mean average precision (mAP) to evaluate our

method. Rank-1, rank-5, rank-10 and mAP results are re-

ported. All results reported in this paper are under single-

query setting. During evaluation, following the evaluation

method in MGN [38], we extract the features of the original

images and the horizontally flipped images. The average of

these features are used as the final features. Re-ranking is

not used in this paper.

4.2. Implementation Details

Body Mask: 20 different body parts (like head, hand, arm,

leg, etc) can be segmented with JPPNet [23, 10]. Accord-

ing to these body part masks, whole human body is divided

into upper body-part group and bottom body-part group.

The reason why we only classify body parts into these two

groups is that body limb masks cannot be generated so ac-

curately with JPPNet model. Many wrong masks appear

or some body-part masks are missing when upper/bottom

body is further subdivided. However, if the body-part mask

can be labeled by hand or generated by a more accurate

model, we believe that a better performance can be achieved

as attention model can focus on more local details of human

body parts .

We resize the masks to 24× 8, the same size as the out-

put of attention modules and use them to guide attention

training.

Data pre-processing: We follow commonly used data aug-

mentation methods in person re-identification. All images

are resized to 384 × 128. Horizontal random flipping and

random erasing [50] is used in the training phase.

Table 1. Ablation study on Market-1501 and DukeMTMC-reID.

WMGA refers to the method that attention is guided only by

whole-body masks. DMGA refers to the method that divides

whole-body masks from middle into upper part and bottom part

and these masks are used to guide attention training. MMGA

refers to our multi-scale body-part mask guided attention method.

Model Market-1501 DukeMTMC-reID

Rank 1 mAP Rank 1 mAP

Baseline(%) 92.7 83.5 86.9 73.9

Baseline+Att(%) 93.4 85.0 87.5 75.9

WMGA(%) 94.3 86.4 88.3 77.3

DMGA(%) 94.4 86.9 88.6 77.8

MMGA(%) 95.0 87.2 89.5 78.1

Network settings: Resnet50 with pretrained parameters on

ImageNet [7] is adopted as the backbone network. In our

attention module, we set the spatial attention reduction hy-

perparameter s equals 8 and the channel attention reduction

hyperparameter r equals 8.

Loss: The margin of batch hard triplet loss is 0.3. 24 iden-

tities are sampled in each mini-batch and 4 images are sam-

pled for each identities. The number of images in each

mini-batch is 96. The loss hyperparameters are λ0 = 0.5,

λ1 = 2.0 and λ2 = 0.1.

Optimization: We adopt SGD optimizer with a weight de-

cay of 5 × 10−4. The initial learning rate for the backbone

network is 0.05, and the initial learning rate of other pa-

rameters is 0.1. The learning rate is decayed by a factor of

0.5 for every 90 epochs. Our model is totally trained on 900

epochs. Our model is implemented on Pytorch platform and

trained with two NVIDIA 1080Ti GPUs.

4.3. Ablation Study

We perform comprehensive ablation studies on Market-

1501 and DukeMTMC-reID.

Baseline: In Table 1, Baseline is trained only on back-

bone resnet50 without attention module. After the back-

bone resnet50, a global average pooling layer and a linear

layer is applied. A 1024-dimension global features are ex-

tracted. Classification loss and triplet loss are combined

to train the model. The hyperparameter for balancing the

weight of triplet loss and classification loss is the same as

mentioned in implementation details section. Rank-1/mAP

of baseline is 92.7%/83.5% on Market-1501 dataset and

86.9%/73.9% on DukeMTMC-reID dataset.

Baseline+Att: In Table 1, Baseline+Att denotes the model

that two attention modules are applied to the baseline.

The attention modules are not guided by body masks

in training stage and there is only whole-body atten-

tion branch in the second attention module. Results are

listed in Table 1. On Market-1501 dataset, rank-1/mAP

is 93.4%/85.0% and on DukeMTMC-reID dataset, rank-

1/mAP is 87.5%/75.9%. Attention mechanism can im-



query galleryattention map

Figure 5. The top-5 ranking list for the query images on Market-1501 and DukeMTMC-reID by MMGA. The retrieved images are from the

gallery set and not from the same camera as the query images. The first column is query images. Whole-body attention maps on original

images, whole-body attention maps, upper-body attention maps, bottom-body attention maps from our MMGA are in the second to fifth

columns. The right side shows the retrieved top-5 ranking images with our proposed MMGA method. All top-5 are correct.

Table 2. Comparison of results on Market-1501 and DukeMTMC-reID.

Model Market-1501 DukeMTMC-reID

Rank 1 Rank 5 Rank 10 mAP Rank 1 mAP

BoW+kissme [47] 44.4 63.9 72.2 20.8 25.1 12.2

WARCA [16] 45.2 68.1 76.0 – – –

SVDNet [30] 82.3 92.3 95.2 62.1 76.7 56.8

PAN [49] 82.8 – – 63.4 71.6 51.5

PAR [46] 81.0 92.0 94.7 63.4 – –

MultiLoss [21] 83.9 – – 64.4 – –

TripletLoss [15] 84.9 94.2 – 69.1 – –

MultiScale [5] 88.9 – – 73.1 79.2 60.6

MLFN [2] 90.0 – – 74.3 81.0 62.8

HA-CNN [22] 91.2 – – 75.7 80.5 63.8

AACN [41] 85.9 – – 66.9 76.8 59.3

MSCAN [29] 83.8 – – 74.3 – –

AlignedReID [45] 91.0 96.3 – 79.4 – –

Deep-Person [1] 92.3 – – 79.5 80.9 64.8

PCB+RPP [31] 93.8 97.5 98.5 81.6 83.3 69.2

HPM [9] 94.2 97.5 98.5 82.7 86.6 74.3

Attention-Driven [42] 95.0 98.398.398.3 99.199.199.1 86.5 86.4 74.6

MGN [38] 95.795.795.7 – – 86.9 88.7 78.478.478.4

MMGA (Ours) 95.0 98.2 98.9 87.287.287.2 89.589.589.5 78.1



prove the accuracy by +0.7%/+1.5% for rank1/mAP on

Market-1501 dataset and +0.6%/+2.0% on DukeMTMC-

reID dataset.

Whole-body Mask-guided attention (WMGA): We

evaluate the effect of mask-guided attention mecha-

nism. WMGA refers to the method that attention

modules are guided by whole-body masks. Part-

body masks are not used in WMGA. WMGA achieves

rank-1/mAP=94.3%/86.4% on Market-1501 and rank-

1/mAP=88.3%/77.3% on DukeMTMC-reID. WMGA im-

proves the accuracy of Baseline+Att by a large margin. The

experiments illustrate that using masks to guide the train-

ing of attention can significantly improve the accuracy of

person re-identification.

Multi-scale Body-part Mask guided Attention (MMGA)

versus WMGA: In our proposed method (MMGA), not

only whole-body masks are used but also part-body masks

are used to guide the training of attention modules. Thanks

to MMGA method, our network can predict in detail where

the person is and locate upper-body and bottom-body ac-

curately. This mechanism can significantly reduce the im-

pact of background clutter, varient of pose and misalign-

ment. The results of MMGA are listed in Table 1. MMGA

achieves 95.0%/87.2% in rank-1/mAP on Market-1501 out-

performing WMGA by +0.7%/+0.8%. On DukeMTMC-

reID, MMGA achieves 89.5%/78.1% in rank-1/mAP im-

proving the accuracy of WMGA by +1.2%/+0.8%.

Ours (MMGA) versus Divided-Mask guided attention

(DMGA): We also divided whole-body masks into upper-

half parts and bottom-half parts according to the mid-

dle line and use this kind of masks to guide the training

of our attention module (DMGA). The upper-half masks

and bottom-half masks can somewhat act as upper-body

masks and bottom-body masks. However, dividing masks

from the middle can not locate the upper-body part and

bottom-body part accurately, especially for misalignment

images. DMGA achieves 94.4%/86.9% in rank-1/mAP on

Market-1501 and 88.6%/77.8% on DukeMTMC-reID. Ex-

periments show that the results of DMGA are less than

MMGA by -0.6%/-0.3% on Market-1501 and -0.9%/-0.3%

on DukeMTMC-reID.

The above ablation study illustrates that attention mech-

anism can help feature extraction of person re-identification

and thus using multi-scale body-part mask to guide atten-

tion training can significantly improve the accuracy of per-

son re-identification.

In Figure 5, we list four inaccurate person detection

images from query set on Market-1501 and DukeMTMC-

reID. Our proposed method (MMGA) can locate where the

informative regions are and learn upper-body attention as

well as bottom-body attention correctly. Attention maps of

MMGA network are shown in Figure 5. The top-5 retrieve

results for these four inaccurate detection images are all cor-

rect.

4.4. Comparison with State­of­the­Art

We compare our proposed multi-scale body-part mask

guided attention method with current state-of-the-art meth-

ods on Market-1501 and DukeMTMC-reID.

Strip-based methods [38, 31, 9] divide features into sev-

eral horizontal stripes to extract local features but it is diffi-

cult to handle misalignment problem. [42] uses key-points

to divide original images into several parts so that they

can exploit global features and local features. Attention-

based methods [22, 42] use attention mechanism to handle

background clutter and extract important features. [29] add

masks into input to form four-channeled inputs which is in-

compatible with the pre-trained resnet models. Our pro-

posed multi-scale part-body mask guided attention method

uses multi-scale masks to guide the training of different at-

tention modules. Our mothod can locate the important lo-

cation and extract global features and local features accu-

rately. Our methods achieves the state-of-art performance.

Results are shown in Table 2.

Market-1501: On Market-1501 dataset, our proposed

MMGA method outperforms all the state-of-the-art algo-

rithms and exceeds the current best model MGN by +0.3%

in mAP. Our method achieves the second best result in rank-

1.

DukeMTMC-reID: Our proposed MMGA achieves

89.5%/78.1% in rank-1/mAP on DukeMTMC-reID.

Though we achieve the second best result in mAP, 0.3%

lower than MGN, in rank-1, our method outperforms all

other models and exceeds the state-of-the-art method MGN

by +0.8%. We should pay attention that our model is

smaller than MGN. In MGN, backbone resnet50 is divided

into three branches at stage 3 and these three branches do

not share weights with each other.

5. Conclusion and Discussion

In this paper, we propose a multi-scale body-part mask

guided attention network. The training of attention mod-

ules is guided by whole-body masks, upper-body masks and

bottom-body masks. Our method can accurately locate the

important parts of human body. Experiments show that our

proposed method can significantly improve the accuracy of

person re-identification and our method achieves the state-

of-the-art result. What’s more, in this paper, we only di-

vided body masks into upper-body masks and bottom-body

masks. We believe if we can divide masks into finer de-

tails, we can further improve the accuracy of person re-

identification. We leave this experiment as future work.
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