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Abstract

Multi-target Multi-camera Tracking (MTMCT) aims to

extract the trajectories from videos captured by a set of cam-

eras. Recently, the tracking performance of MTMCT is sig-

nificantly enhanced with the employment of re-identification

(Re-ID) model. However, the appearance feature usually

becomes unreliable due to the occlusion and orientation

variance of the targets. Directly applying Re-ID model in

MTMCT will encounter the problem of identity switches

(IDS) and tracklet fragment caused by occlusion. To solve

these problems, we propose a novel tracking framework in

this paper. In this framework, the occlusion status and ori-

entation information are utilized in Re-ID model with hu-

man pose information considered. In addition, the track-

let association using the proposed fused tracking feature

is adopted to handle the fragment problem. The proposed

tracker achieves 81.3% IDF1 on the multiple-camera hard

sequence, which outperforms all other reference methods by

a large margin.

1. Introduction

Multi-target Multi-camera Tracking (MTMCT) is a sig-

nificant problem in computer vision and is particularly use-

ful for public security. MTMCT aims to track multiple tar-

gets across multiple cameras, which is different from the

multi-object tracking (MOT) in single camera [47]. Cam-

era network has a broader view than a single camera and

has a broader foreground of applications. However, in addi-

tion to facing the same challenges of occlusion, pose vari-

ance and background clutter with MOT, MTMCT also faces

some specific challenges like the blind area among cameras,

change of viewpoint and illumination variance.

*The first three authors contributed equally to this work.

Feature representation, occlusion handling, and infer-

ence are critical components for both MOT and MTMCT.

In this paper, we concentrate on the first two components.

Appearance feature is significant to maintain the identity

of the tracked target, and many works [8, 61, 12] have ex-

ploited the reliable appearance model. In specific, color

histogram [31, 19] and HOG [25, 6] are well studied and

utilized in previous works. However, color histogram and

HOG are not robust to the occlusion, and they can not han-

dle the appearance variance well. Recently, re-identification

(Re-ID) model is widely adopted as a discriminative appear-

ance descriptor. Besides, person Re-ID is closely related to

MTMCT, so the high-quality Re-ID feature always leads to

a high tracking performance, which has been proved in [36].

However, Re-ID training data is usually labeled manually,

and highly occluded samples are always discarded from the

training data. Therefore, using the Re-ID feature directly

with the low-quality detector in a crowded scenario always

leads to inferior performance.

Occlusion is perhaps the most critical challenge in MOT.

It is a primary cause for ID switches or fragmentation of

trajectories [29]. Directly extracting the feature from the

detection region where the target is highly occluded is un-

reasonable. Therefore, occlusion awareness is crucial for

feature extraction. If occlusion status is obtained, only the

stable feature can be retained and the occluded feature can

be discarded. Besides, orientation has a significant influ-

ence on target appearance, which is neglected by most Re-

ID models. In [22], the orientation cue is fully exploited.

Specifically, the orientation aware loss is proposed to han-

dle the inconsistent problem by orientation variance. In this

work, an orientation-aware feature is used to deal with the

inconsistent problem.

In the training process of Re-ID task, one identity con-

tains a limited number of instances, but the length of a tra-

jectory in the tracking scene is not limited. Methods like

[12] and [51] adopt latest Re-ID feature to represent the ap-



pearance feature of trajectory. Besides, [57] utilizes the av-

eraged Re-ID feature as a stable representation, which is

a common way to use Re-ID feature. However, appearance

varies primarily due to the change of background, pose vari-

ance, orientation and viewpoints change. Most existing Re-

ID models can not handle these problems. Therefore, post-

processing on the Re-ID features is necessary for tracking.

Online trackers [2, 56, 8] build the trajectories with the

frame by frame association and they usually only con-

sider the relationship between the trajectories and detec-

tions. However, the detection result of the occluded tar-

get is always inaccurate, and online trackers may produce

many fragmented trajectories in this situation. Unlike on-

line trackers, offline trackers like [46] generate the short

tracklets at first and link tracklets to get the final trajecto-

ries. In addition, offline trackers usually achieve better per-

formance on account of that they can obtain the entire se-

quence beforehand, and tracklets contain more information

than detections when associating. In this work, the tracklet

association is adopted to handle the tracklet fragment.

We focus on handling the above issues. The state-aware

Re-ID feature is proposed which focuses on appearance rep-

resentation with extra human pose information. Specifi-

cally, human pose information is utilized to estimate the

target state which includes the occlusion status and orien-

tation for making better use of the Re-ID feature. Fused

tracking feature is designed as the appearance representa-

tion of the tracklet for the stable and accurate association in

tracking. A distance matrix with the fused tracking feature

is proposed for data association. To handle the fragment

of trajectory, the tracklet association is proposed, which in-

cludes tracklet rectifying and tracklet clustering. At last, the

effectiveness of our framework is verified in the experiment.

The contributions of the paper are listed as follows:

First, human pose information is adopted to infer the tar-

get state including the occlusion status and orientation. The

novel fused tracking feature is proposed to make the track-

ing procedure more robust in the crowed scene.

Second, a redesigned distance matrix on data association

is proposed to effectively address the occlusion problem.

Besides, a novel tracklet association method is designed to

deal with the tracklet fragment problem.

Third, our MTMCT tracker with the state-aware Re-

ID feature achieves a new state-of-the-art result on Duke

MTMCT benchmark [35]. Specifically, the submitted re-

sult achieves 81.3 % IDF1 on the multiple-camera hard se-

quence.

2. Related Works

In this section, we introduce previous works on single

camera tracking, multiple camera tracking and appearance

feature.

2.1. Single camera tracking

With the development of object detection, data associ-

ation is widely adopted in a tracking-by-detection frame-

work. Many methods attempt to adopt global optimization

as offline methods like [49, 38, 37, 42, 43, 10, 41, 1, 46]. On

the other hand, some methods try to solve data association

in an online manner like [39, 56, 14, 53, 13, 40, 51, 8]. Of-

fline methods usually generate short but accurate tracklets

then construct a graph on them and search optimum solution

on the graph to get final trajectories. In [10], Dehghan et al.

consider all pairwise relationship between targets and mod-

els the data association as a Generalized Maximum Multi

Clique problem (GMMCP). In [41], Tang et al. formulate

the data association as a minimum cost subgraph multicut

problem. The graph can link the detections across space

and time to handle the long term occlusion.

On the other hand, online methods usually match the

maintained tracklets with the detections frame by frame.

In [53], Xiang et al. use the decision making in Markov

decision processes to formulate the online MOT, and rein-

forcement learning is adopted to learn the similarity func-

tion. In [56], Yu et al. propose a simple tracking pipeline

with high-quality detection and deep learning based ap-

pearance feature, which leads to an excellent tracking re-

sult. The tracking-by-detection framework heavily depends

on the detection quality. With the development of single

object tracking (SOT) [62, 64, 26, 63], some MOT meth-

ods [8, 61] with SOT are proposed to handle the problems

caused by the inaccurate detections. In [8], Chu et al. in-

troduce the SOT in MOT framework, and spatial-temporal

attention mechanism (STAM) is adopted to handle the drift

problems caused by SOT. In [61], Zhu et al. propose an

extended Efficient Convolution Operators (ECO) [9] with

cost-sensitive tracking loss and introduce Dual Matching

Attention Networks (DMAN) with both spatial and tempo-

ral attention mechanisms for data association.

2.2. Multiple cameras tracking

Multi-target Multi-camera Tracking is a challenging task

due to the illumination variance, change of viewpoints and

the blind area among cameras. Methods like [24, 32, 52,

15, 5, 30] aim to model the relationship among cameras

including illumination changes, travel time and entry/exit

rates across pairs of cameras. Illumination always varies

largely on different viewpoints, so the brightness transfer

function (BTF) from a given camera to another camera is

estimated to model the illumination changes. [21] finds that

all BTFs lie in a low dimensional subspace, and demon-

strates that subspace can be used to compute appearance

similarity. [34] employs a Cumulative Brightness Trans-

fer Function (CBTF) for mapping color among cameras lo-

cated at different physical sites. However, the above meth-

ods only address the appearance information but ignore the



spatial relationship among cameras. To solve this problem,

[20] uses kernel density estimation to infer the inter-camera

relationships in the form of the multivariate probability den-

sity of space-time variables, then integrates spatial cue and

appearance cue with the maximum likelihood estimation

framework.

In addition, numerous graph-based models [18, 4, 44,

28, 50, 54, 45] are proposed to deal with MTMCT. [18]

constructs a mini-cost flow graph to complete data associ-

ation among cameras in 3D world space. In [4], the data

association is formulated as a constrained flow optimiza-

tion of a convex problem, and the problem is solved by

the k-shortest paths algorithm. In [54], Yoon et al. exploit

the multiple hypothesis tracking (MHT) algorithm and ap-

ply it on MTMCT with some modifications. Branches in

track-hypothesis trees represent the trajectory across multi-

ple cameras. Maximum Weight Independent Set (MWIS)

in [33] is adopted for computing the best hypothesis set.

With the development of Re-ID, a number of methods

[54, 28, 28, 57, 36] adopt Re-ID technology to represent

the appearance of the target. In [36], Ristani et al. learn a

good feature for both MTMCT and Re-ID with a convolu-

tional neural network. In [57], Zhang et al. obtain a good

result with simple hierarchical clustering and well-trained

Re-ID feature.

2.3. Appearance feature

In the context of appearance feature, many works [36, 7,

12, 61, 3, 55] recently adopt deep learning to represent ap-

pearance of the target. In [12], Feng et al. design a quality-

aware mechanism to select the K images from the histori-

cal samples of the target, and ResNet-18 [16] is adopted to

measure the quality of the detection. Then the Re-ID fea-

tures of the selected detections are input into a classifier to

get the similarity score between tracklets and detections. In

[61], spatial and temporal attention mechanism are adopted

in feature extraction, which make the network focus on the

matching patterns of the input image pair. In [8], Chu et

al. use spatial and temporal attention mechanism on feature

extraction to handle the drift problem caused by single ob-

ject tracker. In [55], Yoon et al. apply historical appearance

matching to overcome the temporal error. The above meth-

ods attempt to solve the problems caused by occlusion and

background clutter, and they maintain a stable appearance

feature in a complex environment. In this paper, we employ

the human pose information to estimate the target state in-

cluding the occlusion status and orientation. In this way, we

can make better use of Re-ID feature.

3. Proposed Method

The overall design for MTMCT is introduced in this sec-

tion. The proposed tracking framework consists of two

parts: single camera tracking (SCT) and multiple camera

tracking (MCT). In our work, the SCT tracker is utilized

to generate trajectories in a single camera. Then a similar

strategy as [57] is adopted to cluster in-camera trajectories,

and the final trajectories are obtained across multiple cam-

eras.

The estimation of occlusion status and orientation are in-

troduced in Sec 3.1, and the fused tracking feature is de-

scribed in Sec 3.2. The overall SCT framework is presented

in Sec 3.3. Finally, MCT tracker is presented in Sec 3.4.

3.1. State estimation

Occlusion status and orientation are estimated with the

human pose information. Inference of the occlusion status

and orientation is detailed as follows.

Occlusion status estimation Human keypoints can be

utilized to infer the occlusion status by the number of key-

points (Nvalid) which are not occluded. And Nvalid is com-

puted as:

Nvalid =
∑Nk

i=1
1{ci > γvalid} (1)

where γvalid is the threshold for the confidence of keypoint

ki to judge if ki is visible, 1 equals 1 if the condition is true

otherwise 0.

Re-ID feature is regarded as valid when Nvalid is greater

than the number threshold (θvalid), which means that most

of keypoints are visible and the target is not occluded, oth-

erwise Re-ID feature is regarded as invalid.

Figure 1. 4 orientations: (1) front, (2) back, (3) left and (4) right.

The blue, green, red and yellow points represent the left shoulder,

right shoulder, left hip and right hip keypoints respectively.

Orientation estimation Orientation is an important

cause for the appearance inconsistency of the same target.

As illustrated in Fig. 1, orientation can be easily estimated

with body keypoint set Kbody = {kls, krs, klh, krh} cor-

responding to left shoulder, right shoulder, left hip, right

hip and ear keypoint set {kle, kre} corresponding to left

ear, right ear. In this work, the orientation is split into four

states O = {oleft, oright, ofront, oback}, and orientation is
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Figure 2. The fused tracking feature consists of current valid feature, temporal invalid feature, orientation-aware feature and averaged

feature. Saved historical Re-ID features of the tracklet is shown as f1, f2, ..., ft−1, ft, where fi is the Re-ID feature from the matched

detection di in frame i. Four types of orientations including front (F), back (B), left (L) and right (R) are illustrated in fi. Cluster-based

feature is shown with Nc = 4. Detailed definition is presented in Sec 3.2.

Table 1. Architecture of the orientation classification network. A

simple deep neural network is adopted to divide the input into four

orientations. Five fully connected (FC) layers are utilized.

Name Input size Output size

FC1 4 × 3 + 2 128

FC2 128 64

FC3 64 128

FC4 128 64

FC5 64 4

inferred with Deep Neural Networks (DNNs) whose archi-

tecture is shown in Table 1. Specifically, position and con-

fidence of Kbody , confidence of ears cle, cre are input into

DNN for classification task, so the input dimension is 14.

3.2. Fused tracking feature

Due to the occlusion and variance of orientation, it is

hard to model the appearance of the target with the growth

of the tracklet. On the other hand, Re-ID model is widely

adopted as an advanced appearance descriptor. However,

most methods usually use Re-ID feature in a simple way

like averaging these features. As shown in Fig. 2, we adopt

the well-designed fused tracking feature Ftrack with many

different combinations on saved historical Re-ID features

of the tracklet, which can represent the appearance of the

target more reliably.

The fused tracking feature Ftrack of the tracklet

is composed of five types of features as Ftrack =
{fcurrent, forientation, fcluster, finvalid, favg}, which is il-

lustrated in the following.

Current valid feature In some scenarios, the target

moves fast so that their scale and pose change rapidly. We

use the latest valid feature in historical appearances of the

target as fcurrent to make the appearance model contain the

latest information.

Orientation-aware feature Orientation-aware feature

consists of four types of averaged features with different

orientations forientation = {fleft, fright, ffront, fback}.
Specifically, the feature of forientation is the mean of all

historical valid features which have the same orientation.

In data association, one element in forientation which

shares the same orientation with the detection is chosen to

compute the appearance distance. Besides, The distance of

forientation between two tracklets is defined as the min-

imum among the Euclidean distances between the corre-

sponding feature in the same orientation

Cluster-based feature Feature clustering is widely used

in non-supervised and semi-supervised Re-ID. In this work,

an online cluster algorithm is employed on the cluster-based

feature fcluster which has a similar initialization and updat-

ing strategy with the Gaussian mixture model. We set Nc

as the upper limit of the number of clusters in fcluster and

fcluster = ∅ as initialization. Algorithm 1 details the up-

dating strategy of fcluster when the tracklet matches a de-

tection.

A Nc ×Nc distance matrix Mcluster is computed to ob-

tain the distance dcluster between fcluster from two track-

lets. Specifically, the value in i-th row and j-th column is

the Euclidean distance between the i-th cluster center and

j-th cluster center from two tracklets. The minimum value

in Mcluster is selected as dcluster.

Temporal invalid feature When the tracklet matches the

detection with invalid feature, the above three types of fea-

tures do not update due to the unreliability of invalid fea-



Algorithm 1 Updating fcluster

Input: Cluster-based feature is composed of N clusters

fcluster = {C1, C2, ..., CN} and detections d with Re-

ID feature fd
Output: updated fcluster
1: if fd is invalid then

2: return

3: else

4: if N < Nc then

5: new cluster CN+1 is initialized with fd, CN+1 =
{fd}

6: CN+1 is added to fcluster
7: else

8: Get all cluster centers fcenter of fcluster,

fcenter = {f1, f2, ..., fN}
9: for fi of fcenter do

10: dci = dist(fi, fd)
11: end for

12: k = argmin{dc1, dc2, ..., dcN}
13: The k-th cluster Ck is updated with fd
14: end if

15: end if

ture. However, IDS occurs if the appearance feature is not

updated timely. Therefore, temporal invalid feature finvalid
is adopted to update the invalid feature and make the trajec-

tory more smooth. It is worth noting that that finvalid only

keeps the invalid feature from the last frame, and will be

removed from Ftrack if expired.

Averaged feature Averaged feature favg is the feature av-

eraged over all valid Re-ID feature of the tracklet.

Tentative 

Disappeared Invisible

Confirmed

Figure 3. Tracking phase and transformation of the tracklet. Tenta-

tive, Confirmed, Invisible and Disappeared are four phases of the

tracklet lifetime.

3.3. Single camera tracking

3.3.1 Tracking phase

For modeling the lifetime of tracklet in the SCT tracker, we

define four phases, Tentative, Confirmed, Invisible and Dis-

appeared as shown in Fig. 3. New tracklet is generated

with unmatched detection and initialized to different phase

according to the occlusion status. If the detection is highly

occluded, the tracking phase will be initialized as Tenta-

tive. Otherwise, it will be initialized as Confirmed. If track-

let in Confirmed phase has been missed for µm times, it

will enter Invisible phase. And if tracklet in Invisible phase

has been missed for µd times, it will switch to Disappeared

phase. Tracklet in Invisible phase will go back Confirmed

phase if the tracklet is matched in data association. Besides,

tracklet in Tentative phase will turn to Disappeared phase

if phase misses for one frame, and it will switch to Con-

firmed phase if matches a detection with valid feature. In

this way, false positive detections can be removed. On the

other hand, tracklet in Disappeared phase means that the

target is disappeared or has already left the scene, so the

tracklet is removed from the tracklet set.

3.3.2 Overall SCT framework

In our SCT framework, tracking-by-detection strategy is

adopted thanks to the development of object detection. Pro-

posed tracking method follows the nearly online fashion to

generate trajectory. Specifically, we maintain a tracklet set

from the beginning to the end, and the tracking result is gen-

erated after tracklet clustering over every K frames. The

SCT framework in this paper can be divided into two parts:

tracklets linking and tracklet association, which are shown

in Fig. 4 (1) and (2). (1) shows the pipeline which gener-

ates and updates tracklets in an online manner. (2) presents

the post-processing on tracklets including tracklet rectify-

ing and tracklet clustering. In this way, the tracklet frag-

ment can be handled. Our online SCT framework is shown

in detail as follows.

• Step1. At current frame t, detections Dt = {dti} are

obtained from the high-quality detector, Re-ID feature

f t
i is extracted and keypoints Kt

i of dti are estimated

from the corresponding area.

• Step2. Estimate the occlusion status and orientation

with the keypoints.

• Step3. Compute the Distance matrix Mdis = {dij}
between detections and maintained tracklet set.

• Step4. Adopt Hungarian algorithm [23] on Mdis to

abtain the matching results including matched track-

lets Tmatched, unmatched tracklets Tunmatched and un-

matched detections Dunmatched.

• Step5. Update Tmatched with corresponding matched

detections.

• Step6. Terminate the tracklets in Tunmatched if dis-

appear for a long time. Initialize new tracklets from

Dunmatched according to the occlusion status.

• Step7. Adopt the tracklet rectifying between tracklets

in Confirmed phase and tracklets in Invisible phase,

which are associated if satisfying the designed rule.
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Figure 4. Proposed SCT framework. Overall tracking pipeline is shown in (1) and (2). Specifically, the pipeline of online tracklet generation

is presented in (1), and the post-processing on existing tracklets is shown in (2). (3) details the computation of the distance matrix between

existing tracklets and detections. (a), (b), (c), (d) are the temporal invalid feature, current valid feature, orientation-aware feature and

cluster-based feature respectively. Distance is computed between Re-ID feature from detection and one of the fused tracking feature from

tracklet. After that, the final distance between tracklet and detection is combined with the distances of four types of features.

• Step8. Process the tracklet clustering for every K

frames in the current tracklet set, and generate the

tracking result from the recent K frames after cluster-

ing.

3.3.3 Distance matrix in data association

Fig. 4 (3) illustrates the distance between tracklet and detec-

tion and Algorithm 2 describes the computation process. At

first, elements in Mdis are initialized to infinity value. Then

we calculate distance between every pair (tit−1, d
i
t). Line

6 uses position information as the spatial constraint to pre-

vent abnormal movement. Line 7 calculates the Euclidean

distance between fcurrent and fdet. Then the Euclidean

distance dorien is calculated by the feature of forientation
which has the same orientation with dit. In line 9, dclu is the

minimum Euclidean distance between fdet and every clus-

ter center of fcluster. In Line 10, dinvalid will be computed

if finvalid exists of Ftrack and the occlusion status of the

detection is invalid. Finally the distance m
j
i between tit−1

and d
j
t is set as the minimum value of dcurr, dorien, dclu

and dinvalid.

3.3.4 Tracklet association

Tracklet association is crucial to linking the fragmented

tracklets. The proposed tracker can re-track target after oc-

clusion in two ways: tracklet rectifying and tracklet clus-

tering. Before illustrating these two methods, we will in-

troduce the physical constraints to prevent the impossible

association and save the computation on constructing the

distance matrix.

Physical constraints Three physical constraints are set to

prevent the impossible association.

Algorithm 2 Computing distance matrix for data associa-

tion

Input: tracklets Tt−1 in frame t − 1 and detections Dt in

frame t

Output: distance matrix Mdis = {m
j
i}

initialization: Mdis ← inf

2: for each tit−1 ∈ Tt−1 do

for each d
j
t ∈ Dt do

4: dcurr, dorien, dclu, dinvalid ←− inf

get Re-ID feature fdet, human pose, orientation,

occlusion status from d
j
t

6: check rationality using position information

dcurr = dist(fcurrent, fdet)
8: dorien = dist(forientation, fdet)

dclu = dist(fcluster, fdet)
10: if finvalid exists and fdet is invalid then

dinvalid = dist(finvalid, fdet)
12: m

j
i = min(dcurr, dorien, dclu, dinvalid)

else

14: m
j
i = min(dcurr, dorien, dclu)

end if

16: end for

end for

• Tracklets can not be associated if they appear at the

same time.

• Target can not move faster than a threshold. We ana-

lyze the position of ground truth and obtain the max-

imum possible velocity. Given two tracklets, we first

sort them by time. The distance between the last detec-

tion of the former tracklet and the first detection from

the latter one should be less than a maximum distance

due to the constraint of velocity.



• Target can not disappear for a long time, so two track-

lets can not be associated if the interval between two

tracklets is larger than a threshold.

Tracklet rectifying Tracklet rectifying is conducted on

the Invisible tracklets Tinvisible and Confirmed tracklets

Tconfirmed, whose length has reached Lrectify . Tracklet

rectifying aims to re-track the target after occlusion. When

the target reappears after occlusion, it may not be matched

by the previous tracklet at once, in which case a new tracklet

is generated consequently. With the growth of new tracklet,

Ftrack becomes more stable, so we can use it to link the

fragmented tracklets when the length of the newly gener-

ated tracklet reaches Lrectify . fcluster is adopted to mea-

sure the distance between Tinvisible and Tconfirmed in the

distance matrix Mrectify . The greedy algorithm is utilized

on Mrectify to obtain the matched pairs until the minimum

distance over θrectify . At last, the Invisible tracklets is as-

sociated with corresponding Confirmed tracklets according

to the matching result.

Tracklet clustering Tracklet clustering aims to associate

all the tracklets except the Disappeared ones. We follow

the same strategy as tracklet rectifying. At first, distance

matrix MT−cluster is constructed, then a greedy algorithm

is adopted to associate the tracklets with the distance thresh-

old θcluster. While computing the distance matrix and asso-

ciating the tracklets, same constraints are adopted. favg and

forientation are utilized to compute the distance between

two tracklets when constructing MT−cluster. Specifically,

distance between favg and distance between forientation
are computed as davg and dori, and the minor one between

davg and dori is the final distance between two tracklets.

3.4. Multi­camera tracking

Multi-camera tracking in this work is implemented with

a distance matrix Mmct and greedy algorithm, which is in-

spired by [57].

At first, we collect trajectories from all cameras and

compute Mmct. We follow the same strategy to construct

the distance matrix with 3.3.4.

After constructing Mmct, the greedy algorithm is

adopted to associate trajectories until the minimum distance

of the matrix exceeds θmct. Besides, the same constraints

are adopted as [57] when associating trajectories. Differ-

ent from [57], the distance is updated during associating.

Specifically, when a trajectory is associated with others, the

corresponding row and column are updated in Mmct. In ad-

dition, the SCT tracker in this paper is assumed to be good

enough, and we only associate the trajectories across differ-

ent cameras, so the in-camera trajectories stay unchanged.

3.5. Implementation details

Re-ID model We adopt ResNet-34 [17] to extract Re-ID

feature. The size of input is 128 × 256 and 128-d Re-

ID feature is extracted from the last fully connected layer.

In training process, public Re-ID datasets are used includ-

ing Market-1501 [58], CUHK03 [27], MSMT17 [48], PRW

[59], DukeMTMC-ReID [60] and extra private dataset. The

Re-ID model achieves 78.5 Top1 accuracy and 62.4 mAP on

DukeMTMC-ReID, whose performance is slightly worse

than [52].

Pose estimator In this paper, Alpha pose [11] is adopted

to estimate the human pose. Besides, the pose estimator is

not fine-tuned on the Duke MTMCT dataset.

Parameter setting For modeling the lifetime of the tar-

get, µm is set as 10, and µd is set as 300. In state estima-

tion, γvalid is set as 0.3, and θvalid is set as 7. In the tracklet

association, θrectify , and θcluster are set as 20 and 30. In

the multi-camera tracking, θmct is set as 40.

4. Experiments

In this section, experiments of the proposed state-

aware MTMCT framework are conducted. First, the Duke

MTMCT dataset and evaluation metric are introduced.

Then the effectiveness of our work is proved, and we inves-

tigate the contribution of different components. Finally, the

result on the test set is submitted, and the proposed tracking

framework is compared with other state-of-the-art methods

on this benchmark.

4.1. Duke MTMCT dataset

The DukeMTMCT dataset is a large and detailed anno-

tated dataset mainly for MTMCT task, which is recorded in

Duke university with 8 cameras. There are 6,791 trajecto-

ries for 2,834 different identities overall and 25 minutes for

each camera. The dataset is recorded at 60 FPS, and the res-

olution is 1080p. The dataset is split into three types of parts

consisting of trainval, test-easy, test-hard, and trainval-mini

is the subset of the trainval, which contains 59281 frames.

4.2. Evaluation metric

In this work, ID Measure [35] is used as the criterion

for both SCT and MTMCT tasks, which can measure the

tracker performance globally. The performance evaluation

is based on the truth-to-result match. Specifically, it con-

structs the matching matrix between ground truth and pre-

diction trajectories and uses the Hungarian algorithm to get

the final matching result. IDP, IDR and IDF1 are three main

metrics for ID Measure. IDP (IDR) is the fraction of predic-

tion (ground truth) detection are correctly identified. IDF1

is the correctly identified detections over the average value

of ground truth and prediction.



Table 2. The result of our tracker and several state-of-the-art trackers on test sequence of Duke MTMCT. The value in bold highlight is the

best. Tracker with † is recently submitted on Duke MTMCT benchmark.

Tracker
test-easy single test-easy multiple test-hard single test-hard multiple

IDF1 IDP IDR IDF1 IDP IDR IDF1 IDP IDR IDF1 IDP IDR

BIPCC[35] 70.1 83.6 60.4 56.2 67.0 48.4 64.5 81.2 53.5 47.3 59.6 39.2

MYTRACKER[54] 80.3 87.3 74.4 65.4 71.1 60.6 63.5 73.9 55.6 50.1 58.3 43.9

TAREIDMTMC[22] 83.8 87.6 80.4 68.8 71.8 66.0 77.9 86.6 70.7 61.2 68.0 55.5

DeepCC[36] 89.2 91.7 86.7 82.0 84.3 79.8 79.0 87.4 72.0 68.5 75.8 62.4

MTMC ReID[57] 89.8 92.0 87.7 83.2 85.2 81.2 81.2 89.4 74.5 74.0 81.4 67.8

MTMC basel† 91.3 91.8 90.9 87.4 87.8 87.0 83.7 88.8 79.1 75.4 80.0 71.3

Ours 91.8 93.3 90.3 86.8 88.2 85.4 85.8 93.6 79.2 81.3 88.7 75.1

Table 3. Ablation study demonstrates the steady improvements of

the state-aware Re-ID feature. IDF1, MOTA and IDS are shown

in this table, and the arrows indicate low or high optimal metric

values.
Method IDF1↑ MOTA↑ IDS↓
Baseline 77.1 82.8 6409

Baseline + fcluster 82.5 82.6 8170

Baseline + fcluster +

forientation
85.1 82.8 6564

Baseline + fcluster +

forientation + finvalid
85.2 82.8 5466

4.3. Ablation study

Ablation study is conducted on the SCT task of trainval-

mini sequences. The orientation-aware feature, cluster-

based feature and temporal valid feature are considered.

The baseline tracker only uses current valid feature fcurrent
for data association and the time interval K to generate

tracking result is set as 10 seconds, which means 600 frames

in Duke MTMCT dataset. The results of ablation study is

shown in Table 3.

Cluster-based feature Comparing the tracker in the sec-

ond row with baseline, the cluster-based feature is essen-

tial, and it can improve the performance on IDF1 by 5.4 %.

One can find that current valid feature can not model the

target appearance correctly and the cluster-based feature is

an effective way to represent the appearance of the target.

fcluster becomes more stable with the growth of the track-

let, but is not robust to the occlusion at the beginning, which

is the main cause for the increase of IDS.

Orientation-aware feature Comparing the tracker in the

third row with the tracker in the second row, the tracker with

orientation-aware feature performs better which gains 2.6

% improvement on IDF1. One can find that the orientation

feature is complementary with the cluster feature.

Temporal invalid Feature Comparing the tracker in the

fourth row with the tracker in the third row, IDF1 is im-

proved by 0.1 %, and IDS is reduced from 6564 to 5466,

which means the invalid temporal feature effectively re-

duces the IDS and makes the trajectory more smooth.

4.4. Compare with other state­of­the­art methods

We compare the proposed tracker with other tracking

methods [35, 54, 22, 36, 57] on DukeMTMCT dataset, and

results are shown in Table 2.

We utilize the private detection provided by [57], and

our tracker achieves a state-of-the-art performance on both

test-easy and test-hard sequences. Besides, we outper-

form all officially published methods on IDF1 and IDR. We

evaluate the proposed tracking method without any train-

ing or optimization on the train set, and the same parame-

ters are utilized on test-easy and test-hard sequences. For

the performance comparison, we collect some published

methods and recently submitted method (MTMCT basel)

on DukeMTMCT benchmark. For better performance, the

offline SCT tracker is adopted, which means the time in-

terval to cluster and output is set as the length of the cor-

responding sequence. Specifically, tracker first generates

short but accurate tracklets and tracklet clustering in Sec.

3.3.4 is adopted to associate these tracklets to obtain the fi-

nal trajectories.

As shown in Table 2, our tracker achieves a new state-

of-the-art performance on DukeMTMCT dataset. Due to

the well-designed state-aware Re-ID feature, we outperform

all other methods including an unpublished method on the

benchmark by a large margin on test-hard, which further

verifies the robustness of proposed tracker in such crowded

scene, as the motion cue becomes unstable when occluded.

5. Conclusion

In this paper, we propose the state-aware Re-ID fea-

ture for multiple cameras, multiple targets tracking task.

We adopt human pose information to infer the occlusion

status and orientation. Besides, the fused tracking fea-

ture is designed to make better use of Re-ID feature.

Our tracker achieves a new state-of-the-art performance on

DukeMTMCT benchmark, which verifies the effectiveness

of the proposed method.
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