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Abstract

The recent research for person re-identification has been

focused on two trends. One is learning the part-based lo-

cal features to form more informative feature descriptors.

The other is designing effective metric learning loss func-

tions such as the triplet loss family. We argue that learn-

ing global features with classification loss could achieve the

same goal, even with some simple and cost-effective archi-

tecture design. In this paper, we first explain why the per-

son re-id framework with standard classification loss usu-

ally has inferior performance compared to metric learning.

Based on that, we further propose a person re-id framework

featured by channel grouping and multi-branch strategy,

which divides global features into multiple channel group-

s and learns the discriminative channel group features by

multi-branch classification layers. The extensive experi-

ments show that our framework outperforms prior state-of-

the-arts in terms of both accuracy and inference speed.

1. Introduction

Person re-identification (re-id), targeting at probing per-

son from a large gallery set, is attracting more and more

attention for its importance in video surveillance applica-

tions. With the rapid advancement of deep learning, Con-

vNets [17, 29, 33, 12] well designed for image classification

tasks [28] have also realized impressive representations of

person image features in person re-id, outperforming tradi-

tional handcrafted low-level features by a large margin [49].

However, person re-id remains a very challenging task, es-

pecially in real deployment, due to the dramatic variation-

s in illumination, human body poses, camera viewpoints,

background clutter, and occlusions. Since there is no over-

lap between training and testing categories (i.e., person i-

dentities), the task requires more discriminative feature rep-

resentations to distinguish unseen similar images.

To form a better description of a person’s visual appear-
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ance, there has been a research trend that aims at develop-

ing more discriminative and robust feature representations.

These methods usually generate several human body parts

firstly, and then evolve these parts into feature learning to

obtain discriminative part feature representations. Recent-

ly, Zhang et al. [43] design a shortest path loss for aligned

local parts. By jointly learning global features and local

features, it achieves better person re-id performance. It is

worth mentioning that in the inference stage, only using the

global features is almost as good as the combined features.

This indicates that the potential of global feature has not

been fully exploited.

The effectiveness of dividing human body into parts has

been verified. The learned local features are associated with

parts of the body for visual appearance. Is it possible to par-

tition global feature into multiple channel groups and learn

channel group features? Global feature partition is more

robust than human body part partition, which suffers from

misalignments caused by inaccurate bounding box detec-

tion, human pose changes and various human spatial distri-

butions. At the same time, different channels of the global

features also have different recognition patterns. For ex-

ample, some channels may focus on color information and

some others may prefer texture information. Therefore, dif-

ferent channels of global features may also pay attention to

different parts of human body. Global feature also implicits

detailed part information of person bodies.

Aside from the research on learning part-based features,

many existing studies are working on designing better met-

ric learning loss functions [22, 5, 13, 3, 35, 42], including

triplet loss, triplet hard loss, quadruplet loss, HAP2S loss,

etc. These studies try to improve the training model’s gen-

eralization capability by reducing the intra-class variations

and enlarging the inter-class variations. It is worth mention-

ing that the performance of metric loss is significantly influ-

enced by the sampling method. The key of utilizing metric

loss is to design the hard sample mining techniques. How-

ever, it isn’t always robust especially when there are outliers

in the training set. Different from metric learning methods,

there are approaches which address the person re-id prob-



lem from the classification aspect. These works compute

the cross-entropy softmax classification loss for person i-

dentities or pair-wise images. During inference, the classi-

fication based techniques also need to compute the distance

matrix of features to distinguish unseen images.

In common sense, the metric learning loss performs bet-

ter than classification loss in person re-id tasks. We argue

that the inferior performance of classification loss is due to

the mismatch between training target and testing target. To

remove this mismatch, we design a simple yet effective ar-

chitecture: multi-branch fully-connected (fc) layers to learn

more robust person features.

We further propose a cost-effective person re-id frame-

work based on channel group learning. Our framework di-

vides global feature into multiple channel groups, and learn-

s transformed discriminative features of each group by a

convolutional layer and multiple classification layers. Dur-

ing inference, we can use one of the channel groups or con-

catenate all channel groups together to formulate the feature

descriptor for each person image.

The effectiveness of our method is shown through ex-

periments on Market-1501 [48], DukeMTMC-reID [27, 52]

and CUHK03 [18] benchmarks. Our framework based on

global features and classification loss achieves a state-

of-the-art performance with a much smaller inference cost

compared to the prevalent part-based re-id frameworks. Our

contributions can be summarized into two folds:

• We propose a simple yet effective design with multi-

branch classification layers for re-identification tasks.

The multi-branch fc layers enable the classification

loss to learn more robust features and achieve better

performance compare to the standard one fc architec-

ture.

• Our framework learns global feature with channel

grouping, which further achieves better performance

than prevalent part-based models. At the same time,

our channel grouping design has a much smaller infer-

ence cost, which is very valuable for real-time applica-

tions.

2. Related Work

Hand-crafted Feature Partition. Before deep neural net-

works spring up, there are a great amount of research effort-

s [26, 50, 25, 21, 11, 6, 8] for designing robust handcraft-

ed features, such as color histograms, local binary patterns,

Gabor features, etc. These works are effective for mitigating

the variations in lighting, poses and viewpoints. The par-

tition schemes includes horizontal stripes, body parts and

patches, which are all performed in the spatial dimension.

Distance Metric and Classification Loss. Different from

hand-crafted feature design, deep neural networks attempt

to automatically learn features and metrics from large con-

structed datasets. A group of research view person re-id as a

ranking issue. Ding et al. [9] use a triplet loss to compute the

relative distance between images. Hermans et al. [13] im-

prove the performance of Triplet loss by designing hard ex-

ample mining strategies. Chen et al. [3] introduce a quadru-

plet loss which enlarges inter-class variations and reduces

intra-class variations. Yu et al. [42] propose a soft hard-

sample mining scheme by adaptively assigning weights to

hard samples.

Meanwhile, there are approaches which address the per-

son re-id problem from the classification aspect. Some of

them compute the cross-entropy loss for image pairs in their

networks [18, 1, 40]. Their networks take pair-wise images

as inputs, and output the verification probability. Some oth-

ers design a margin-based loss [37, 36] to keep the largest

separation between positive and negative pairs. Besides,

some methods [19, 41, 32, 20] adopt the simple classifica-

tion network performed on multiple local parts of a single

image. In this paper, we adopt multiple softmax losses ap-

plied on multiple channel groups on the same image, which

shows a supreme performance with much smaller training

and inference cost.

Deep Learning for Local Parts. Recently, many works

learn deep representation of local parts for a more discrim-

inative feature representation. Some works directly divide

images into local stripes, which suffer from inaccurate part

localization. Thus, several recent works [47, 30, 39, 45] try

to align local parts by pose estimation and region proposal

generation. Zhao et al. [46] design a part-aligned network

for better body parts partition. Zhang et al. [43] partition

the body parts into horizontal stripes and compute the local

path loss along with the global loss. Sun et al. [32] per-

form a uniform partition strategy and divide person image

into horizontal stripes. By multiple classification supervi-

sion on each horizontal stripe, they achieve state-of-the-art

performance. Wang et al. [38] design a multiple granular-

ity network, which combines global and part features and

jointly employs Triplet and softmax loss.

Unlike these works that exploit spatial information, we

firstly perform the partition strategy on the channel dimen-

sion of the global features. By learning multiple channel

group features, our network achieves state-of-the-art re-id

accuracy, which is comparable to the performance of part

partition solutions. Moreover, the channel partition strate-

gy has an additional gain in collaboration with part parti-

tion strategy, setting the new state of the art. Meanwhile,

the channel group learning framework leads to a much s-

maller inference cost, which is practical for real-time per-

son re-id applications. These results show the effectiveness

of channel-wise feature partition.
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Figure 1. Training and testing frameworks of image classification

and person re-identification driven by cross-entropy classification

loss. The most important classification (fc) layer for training is

useless during inference for person re-identification.

3. Problem Analysis

3.1. Problem Definition

Given a set of n training images {Ini
}ni=1,...,n which

contain the visual appearance of nid different people, with

the corresponding identity labels {yni
}ni=1,...,n, yni

∈
[1, ..., nid], our target is to identify a probe image from the

unseen test gallery set. Adopting cross-entropy classifica-

tion loss, the training process in person re-id is the same

as the general image classification task, which pays more

attention on learning better parameters for the last classi-

fication (fc) layer that serves to better predict the person

identity labels on the training set. During testing process,

person re-id task requires to compute distance matrix that is

totally depended on the global feature vector since there is

no overlap between training and testing sets.

3.2. The drawbacks of Metric Loss

Deep metric learning(e.g. Triplet Loss) provides an ef-

fective methodology for person re-identification task. The

training target of metric loss is to force the distance between

intra-class triplets less than the distance between inter-class

ones by at least a margin. In practice, most of the triplet-

s already satisfy the optimization goal, thus are useless for

training. Therefore, hard-sample mining is crucial in met-

ric loss design. Generally, the hard-sample mining based

metric learning methods have several drawbacks:

Data utilization. Metric loss does not fully utilize the train-

ing set. It only verifies the labels of two samples, but ig-

nores the specific class ID. Metric loss requires the training

mini-batches to be constructed by positive samples and neg-

ative samples. Since there are much more negative samples,

most of them are ignored during training. For hard sample

mining based methods, most of the triplets are abandoned,

which can also contribute to the network optimization.

Model robustness. Metric loss is easily influenced by a few

error-labeled samples. Since the metric loss highly relies on

hard sample mining and the error-labeled samples usually

act as the hardest samples, the model is probably optimized

to the direction of overfitting the outliers. The robustness

of models trained by metric loss will be worse if there are

more bad annotations in the training set.

3.3. In Defense of Classification Loss

The classification loss for re-id is designed for image

classification task and directly uses the multi-class labels

as the supervision information. The target of softmax loss

is classifying the features into predefined categories, which

is totally different from that of the metric loss. The trans-

formations contained in the classification (fc) layer play the

key role to convert the decision boundary from the proba-

bility space to the feature space. We argue that the inferior

performance of classification loss for person re-id task is

due to the mismatch between training and testing process.

Figure 1 shows the training and testing frameworks

of image classification and person re-identification driv-

en by the standard cross-entropy classification loss. The

key difference between image classification and person re-

identification is the inference process. The training target

of the classification loss is to perform better prediction on

the person identity labels, which depends more on the clas-

sification (fc) layer that is abandoned during inference for

person re-id. The testing target is to compute robust dis-

tance matrix between unseen person images, which totally

depends on the feature representation. To obtain a more

robust person re-id model driven by classification loss, we

need to increase the impact of feature learning and reduce

the overfitting risk from the classification layer during train-

ing process.

3.4. Multi­branch classification layers

To solve this problem, we propose a simple yet effective

design: multi-branch classification layers. During back-

propagation, the gradients from multiple fc layers gather in-

to previous convolutional layers and make the learned clas-

sification model emphasize more on the global feature vec-

tor for computing distance matrix.

To verify this idea, we design experiments on Market-

1501 dataset. We change the original one fc classifier to

multi-branch fc layers (architecture (d) in Figure 4) and test

the classification accuracy on validation set and the re-id ac-

curacy on test set. As shown in Figure 2, the multi-branch

classification layers cannot improve the classification ac-

curacy on known categories, but greatly improve the re-id



Figure 2. Image classification and person re-id accuracy vs. classi-

fication branch number. We evaluate the model performance with

ResNet-50 as backbone and multiple fc layers as classifiers on

Market-1501 dataset.

performance on unseen testing images. The use of multi-

branch classification layers alone can bring a 3% increase

of re-id accuracy, compared to the standard one-fc classifi-

cation architecture (architecture (b) in Figure 4).

4. Our Approach

Equipped with the multi-branch classification layers, we

formulate a channel group learning CNN model. In contrast

to most existing re-id methods that typically depend on ex-

ploiting part-based local features, our channel group learn-

ing framework aims to discover and capture concurrently

discriminative information about a person image from dif-

ferent channel groups of the global feature. For each chan-

nel group, we add the same classification supervision.

4.1. General Architecture

The general architecture is depicted in Figure 3. Our net-

work firstly forwards an input image through ConvNet and

produces its convolutional feature maps. Then we apply a

global average pooling (GAP) layer after the last convolu-

tional layer of feature maps and get the global feature vector

F .

After that, we perform a series of slice operations to

separate the global feature into Nc channel groups. Each

channel group represents for partial global characteristics of

the input person image. Nc 1 × 1 convolutional layers are

applied to the channel groups, outputting the transformed

group features. The parameters of Nc convolutional layer-

s are shared between channel groups. Finally, we generate

the identity predictions for each person image by Nc cor-

responding fully-connected layers. The identity predictions

are fed into following cross-entropy softmax loss layers to

compute the classification loss for each channel group.

4.2. Design Details

Shared Convolutional layers. The added 1 × 1 convolu-

tional layers are responsible for learning the most discrimi-

native global level features from the entire person image. To

concurrently optimize the feature representations for each

channel group and discover the correlated information be-

tween all channel groups, the added convolutional layers

are designed with parameter sharing. Sharing parameters

can give each channel group more constraints during train-

ing process. Since the original channel groups sliced from

global features have different recognition patterns, utilizing

convolutional layers of the same parameters can make each

transformed channel group keep different recognition pat-

terns from the others.

Channel Group Division. We perform uniform partition

on the global feature to obtain different channel groups.

Given that the global feature has total C channels, we sep-

arate it into Nc channel groups and each channel group has

Cg = C/Nc channels. The feature value of c-th channel for

the i-th channel group is obtained by,

fi(c) = F (c+ (i− 1)Cg) (1)

where i = 1, ..., Nc and c = 1, ..., Cg . Thus, there is no

channel overlap between any two channel groups. We have

also tried different division options of overlapped channel

groups. The performance of overlapped division is inferior

to the non-overlapped one.

Loss Function. We utilize the cross-entropy classification

loss function to optimize each channel group branch given

training labels of multiple person classes. For fi, the i-th
channel group, the classification loss Li is computed by,

Li = −

nid∑

k=1

1{yni
= k} log

eŷ
i

ni

∑nid

l=1
eŷ

i

l

i = 1, ..., Nc (2)

where ŷini
is the predicted person classification score of the

ni-th training sample. nid is the total category number of

person identities. The total loss is obtained by,

L =

Nc∑

i=1

Li (3)

The classification loss function differs significantly from

triplet loss and contrastive loss functions, which are de-

signed to exploit pairwise re-id labels and highly rely on

hard example mining. Equipped with channel grouping and

multi-branch design, the relative accuracy gain of cross-

entropy classification loss is much larger than the triplet loss

families. The triplet hard loss with multiple channel group

learning only achieves 0.5% improvement compared to its

original version, while the classification loss gets more than

6% boost.
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Figure 3. General architecture of our method. (1) Generate the convolutional feature maps of the input person image by ConvNet; (2)

perform global average pooling on the feature maps after the last convolutional layer and output the global feature F ; (3) divide the

global feature into Nc channel groups f ; (4) for each channel group, generate the transformed channel group features by a shared 1 × 1

convolutional layer; and (5) for each channel group, predict the identity by its own fc layer driven by the cross entropy classification loss.

Inference Setting. Once the network is learned, we use L2

distance metric to compute the distance matrix between the

feature descriptors of the query image and gallery images.

Our method is flexible to offer several options for inference:

Standard. The standard setting is concatenating all channel

groups, which is actually the global feature F of the input

image.

Fast. The fast setting is using one channel group as the

feature descriptor, because each channel group is the global

representation of person image. This setting has a much

smaller inference cost than the standard setting with a

marginal accuracy drop.

Voting. After computing the distance matrices of each

channel group, we get the different re-id results. We can

count the re-id results and vote for the final re-id result. The

voting setting gives a continual performance gain with little

additional inference cost compared with the standard set-

ting.

4.3. Architecture Variants

Our channel group learning framework has two key de-

signs: channel grouping and multiple classification layers.

Figure 4 shows some possible architecture variants all driv-

en by the classification loss. Architecture (a) is our method,

which divides global features into multiple channel group

and then perform multi-branch strategy. (b) - (e) are the

variants of our method.

Channel grouping design. (b) is the original standard clas-

sification architecture. (c) applies the channel grouping de-

sign, but abandons the multi-branch classification layers.

This architecture is equivalent to (b) with a grouped con-

volutional layer.

Multi-branch fc design. (d) and (e) adopt multi-branch

classification layers and compute multiple cross entropy

Market-1501 DukeMTMC

Design CG MB Rank-1 mAP Rank-1 mAP

(a) X X 92.6 78.3 82.8 66.7

(b) 85.9 63.9 73.5 53.1

(c) X 86.6 64.5 73.7 53.3

(d) X 89.2 76.5 79.7 59.5

(e) X 89.6 76.8 79.9 60.1

Table 1. Experiment results on Market-1501 of different architec-

ture designs in Figure 4. CG represents for channel group strategy,

MB represents for multi-branch strategy.

losses. (e) uses multiple different convolutional layers for

each branch. (d) and (e) don’t employ the channel group de-

sign, which divides the global feature into multiple groups

and then performs multi-branch operations.

Here we perform the experiments and evaluate the re-id

performance of different architectures shown in Figure 4.

The channel group number Nc is set to 8. Table 1 shows

that, compared to the standard classification architecture de-

sign (b), only using channel group strategy without multi-

branch classification layers improves the baseline by 0.7%.

Grouped convolutions without multi-branch strategy could

hardly achieve a large performance gain. Once equipped

with multiple classification layers, the network gets 89.6%

rank-1 accuracy. With channel grouping help, we further

achieve 92.6% rank-1 accuracy on Market-1501 dataset,

which is a 6.7% gain compared to the standard classifica-

tion baseline. The multi-branch fc and channel grouping s-

trategy are both necessary for achieving state-of-the-art per-

formance.
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5. Experiments

In the next, we perform several experiments to evaluate

the effectiveness of the proposed method under different pa-

rameter settings.

Datasets. We evaluate the proposed method on three

widely used person re-id datasets: Market-1501 [48],

DukeMTMC-reID [27, 52] and CUHK03 [18].

Market-1501 is composed of 19,732 gallery images,

3,368 query images and 1,501 identities automatically de-

tected from six cameras. The training set contains 12,936

images of 751 identities. The testing set has 19,732 images

of 750 identities.

DukeMTMC-reID dataset contains 36,411 images of

1,812 identities shot by eight high-resolution cameras.

There are 16,522 images of 702 identities in the training

set and 2,228 query images of the other 702 identities and

17,661 gallery images. It is one of the largest challenging

pedestrian image datasets.

CUHK03 contains 17,097 images of 1,467 identities

captured from two cameras. Each identity contains 9.6 im-

ages on average. It provide both detected images by pedes-

trian detector and human labeled bounding boxes. It pro-

vides 20 split sets, each randomly selects 1,367 identities

for training and the rest for testing. We follow the new train-

ing/testing protocol proposed in [53].

Experimental Settings. We choose ResNet-50 as our net-

work backbone. Following the modification in R-FCN [7]

and PCB [32], we change the stride of the last downsam-

pling block from 2 to 1, which makes the spatial size of con-

volutional feature maps larger before global average pool-

ing. After uniform splitting the global features into Nc

channel groups, we adopt 1×1 convolutional layers to trans-

form the channel groups into 256-d feature vectors. Each

added convolutional layer is followed by a Batch Normal-

ization layer [14] and an ReLU layer. The mini-batch size is

set to 128, in which each identity has 4 images. The training

images are resized to 256×128 pixels. The data augmenta-

tion includes horizontal flipping and random cropping. We

take the standard inference setting if not mentioning. We

mainly report the performance of single query mode with-

out using any re-ranking algorithm which considerably im-

proves the performance especially mAP.

5.1. Channel Group Learning

Market-1501 DukeMTMC

Nc Rank-1 mAP Rank-1 mAP

1(TripHard Loss) 88.1 70.5 76.6 57.7

8(TripHard Loss) 88.6 70.9 76.8 58.2

1 85.9 63.9 73.5 53.1

2 90.1 71.7 80.0 61.4

4 92.0 77.5 83.0 66.5

8 92.6 78.3 82.8 66.7

16 91.9 77.4 83.6 67.4

32 90.4 74.2 79.0 59.9

Table 2. Experiment results of different channel group number Nc.

First of all, we investigate the performance of channel

group learning under different settings of channel group

number Nc. We change the channel group number from

1 to 32 and evaluate the performance on Market-1501 and

DukeMTMC-reID. Table 2 shows the effectiveness of chan-



nel group learning. The performance of standard classifica-

tion loss is inferior to the TripHard loss [13]. After par-

titioning the global feature into two channel groups, we

receive a 4.2% gain of rank-1 accuracy and a 7.8% gain

of mAP on Market-1501. When Nc is set to 8 or 16, we

get the best performances on two datasets, which are more

than 6% rank-1 accuracy improvement and 14% mAP im-

provement. The TripHard loss with channel group learning

achieves much smaller improvement compared to classifi-

cation loss. These results verify the effectiveness of channel

group learning driven by classification loss.

5.2. Sharing Convolutional Layer

Market-1501 DukeMTMC

Nc shared Rank-1 mAP Rank-1 mAP

2 88.3 70.1 78.5 59.9

X 90.1 71.7 80.0 61.4

4 90.1 74.9 81.5 63.8

X 92.0 77.5 83.0 66.5

8 90.8 76.5 81.8 65.8

X 92.6 78.3 82.8 66.7

Table 3. Experiment results of sharing convolution parameters or

not.

In our network, the added 1 × 1 convolutional layers

are parameter sharing. Here we continue the experiments

and evaluate the necessity of sharing parameters between

the added convolutional layers. We choose three settings of

channel group number: Nc = 2, 4, 8, and test the perfor-

mance of sharing convolution parameters or not.

The results in Table 3 show that, sharing parameters be-

tween added convolutional layers generally brings a 2% ac-

curacy improvement. This indicates that sharing convolu-

tion parameters between multiple channel groups is neces-

sary and effective.

5.3. Inference Settings

Faster speed. Prevalent studies for person re-id task usually

focus on improving the re-id accuracy without considering

inference speed. However, person re-id is widely used in

real-time applications, such as tracking or searching people

from a large gallery set, where fast inference speed is a vital

component. The inference cost of person re-id mainly in-

cludes the time consumed by feature computation for each

image and the time consumed by distance computation be-

tween image pairs.

The forward time depends on the input image size and

network depth. The part-based models need a large input

size to keep a considerable granularity of spatial size for

feature maps, which introduces much forward time cost.

The input size of our network (256 × 128) is much small-

Market-1501 DukeMTMC

Nc Cg Dimf Rank-1 mAP Rank-1 mAP

2 1024 1024 89.6 71.1 80.0 61.0

2048 90.1 71.7 80.0 61.4

voting 90.0 71.4 80.1 61.5

4 512 512 91.8 76.4 82.8 65.5

1024 92.0 76.9 82.8 66.3

2048 92.0 77.5 83.0 66.5

voting 92.3 77.9 83.2 66.9

8 256 256 91.7 77.1 82.3 65.5

512 91.8 77.4 82.6 66.3

2048 92.6 78.3 82.8 66.7

voting 93.1 78.9 83.9 68.2

16 128 128 91.5 75.1 82.0 65.3

256 91.4 76.3 82.7 66.5

512 91.6 76.8 83.3 67.0

2048 91.9 77.4 83.6 67.4

voting 92.5 78.0 84.0 68.4

Table 4. Experiment results of inference setting. Nc is the channel

group number. Cg is the channel number of each channel group.

Dimf represents for the size of feature descriptor during inference

for computing distance.

er than counterparts deploying local part partitions, such as

PCB [32] (384×128), Aligned Re-ID [43] (224×224), etc.

The time cost of distance computation mainly relies on

the size of feature descriptor. The computation of L2 dis-

tance between Dimf -d feature descriptors of an image pair

costs Dimf multiply operations. Since each learned chan-

nel group is global for the whole image in our framework,

we can choose any one of the channel groups or the con-

catenation of them to be the feature descriptor. Table 4

shows the results of different feature descriptor settings in

our framework. Our network is able to output a small size

of feature descriptor for fast inference while keeping a high

accuracy.

Higher performance. Besides from saving inference cost,

our multi-branch design can easily bring a continual perfor-

mance gain by cost-free voting process. Once generated the

re-id results of different channel groups, we count the re-

id label results of all channel groups and get the final re-id

decision. The voting process is cost-free compared to the

distance computation process or any re-ranking algorithms.

The total inference time is nearly equivalent to the standard

inference setting (Dimf = 2048).

5.4. Integration with Part Partition

Sun et al. [32] propose part-based convolutional baseline

(PCB), which partitions images to horizontal stripes and

achieves state-of-the-art performance. Here we compare the

part partition with channel partition strategy by several ex-

periments. To achieve the best performance for body part



Market-1501 DukeMTMC

method C P Rank-1 mAP Rank-1 mAP

PCB X 92.4 77.3 81.8 66.1

PCB+RPP X 93.8 81.6 83.3 69.2

Ours X 93.1 78.9 83.9 68.2

Ours+Part X X 93.9 80.5 84.7 69.4

Table 5. Experiment results of channel partition in collaboration

with part partition. C represents for channel partition, P represents

for part partition.

partition, we change the input size to 384 × 128 pixels and

set the number of horizontal stripes to 6 following PCB. The

channel group number is set to 8. During inference, we con-

catenate the learned channel group features and horizontal

part features together into the feature descriptors.

Table 5 shows that, our method has better performance

than body part partition, thanks for the channel grouping

and cost-free voting strategy. The large proportion of the

performance gain achieved by PCB benefits from the mul-

tiple classification layers, not the superiority of body part

partition, which only has a comparable performance with

channel partition. After we concatenate the part features

with channel group features, the channel partition strategy

and part partition strategy collaborate each other and bring

an additional gain.

5.5. Compared with state­of­the­arts

Table 6 and Table 7 show the state-of-the-art results on

Market-1501, DukeMTMC-reID and CUHK-03. Our chan-

nel group learning network surpasses most of the part-based

models. With the help of local part partition, we further

achieve a better performance and set the new state-of-the-

art. We further did some experiments on the VehicleReID

dataset [23]. Table 8 shows that, our multi-branch design is

also effective when applied to other re-id tasks.

6. Conclusion

We have proposed a simple yet effective channel group

learning framework for person re-identification based on

global features and classification loss. Our framework di-

vides global feature into multiple channel groups. With a

shared convolutional layer and multiple classification layer-

s, our network learns multiple discriminative channel group

features. The simple but effective multi-branch design em-

power the classification loss to perform better on person re-

id. The channel group features form a more robust feature

representation of person images and achieve state-of-the-

art performance on different person re-id benchmarks while

keeping a fast inference speed. We demonstrate the chan-

nel grouping and multi-branch strategy for re-identification

task. We hope these strategies could inspire researches on

Methods Rank-1 Rank-5 mAP

BoW+kissme [48] 44.4 63.9 20.8

WARCA [15] 45.2 68.1 -

KLFDA [16] 46.5 71.1 -

SOMAnet [2] 73.9 - 47.9

SVDNet [31] 82.3 92.3 62.1

PAN [51] 82.8 - 63.4

Transfer [10] 83.7 - 65.5

TripletHardLoss [10] 84.9 94.2 69.1

DML [44] 87.7 - 68.8

MultiRegion [34] 66.4 85.0 41.2

HydraPlus [24] 76.9 91.3 -

SpindleNet [45] 76.9 91.5 -

PAR [46] 81.0 92.0 63.4

MultiLoss [19] 83.9 - 64.4

PDC [30] 84.4 92.7 63.4

PartLoss [41] 88.2 - 94.3

MultiScale [4] 88.9 - 73.1

GLAD [39] 89.9 - 73.9

AlignedReID [43] 91.8 97.1 79.3

PCB [32] 92.3 97.2 77.4

PCB+RPP [32] 93.8 97.5 81.6

Ours 92.6 97.4 78.3

Ours(with Part) 93.9 97.8 80.5

Table 6. Compared with state-of-the-art on Market-1501.

DukeMTMC CUHK-03

Methods Rank-1 mAP Rank-1 mAP

BoW+kissme [48] 25.1 12.2 6.4 6.4

LOMO+XQDA [21] 30.8 17.0 12.8 11.5

GAN [52] 67.7 47.1 - -

PAN [51] 71.6 51.5 36.3 34.0

SVDNet [31] 76.7 56.8 41.5 37.3

MultiScale [4] 79.2 60.6 40.7 37.0

TriNet+Era [54] 73.0 56.6 55.5 50.7

SVDNet+Era [54] 79.3 62.4 48.7 43.5

PCB [32] 81.8 66.1 61.3 54.2

PCB+RPP [32] 83.3 69.2 62.8 56.7

Ours 83.9 68.2 59.9 53.3

Ours(with part) 84.7 69.4 61.7 55.3

Table 7. Compared with state-of-the-art on DukeMTMC-reID and

CUHK-03.

method Rank-1 Rank-5 Rank-20

VAMI [55] 63.12 83.25 92.40

Ours (single-branch FC) 75.18 87.97 94.29

Ours 79.17 93.06 97.75

Table 8. Re-id results on VehicleReID [23].

re-identification or other vision tasks.
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