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Abstract

Flying a drone in unstructured environments with vary-

ing conditions is challenging. To help producing better al-

gorithms, we present Mid-Air, a multi-purpose synthetic

dataset for low altitude drone flights in unstructured envi-

ronments. It contains synchronized data of multiple sen-

sors for a total of 54 trajectories and more than 420k video

frames simulated in various climate conditions. In this

work, we motivate design choices, explain how the data was

simulated, and present the content of the dataset. Finally,

a benchmark for positioning and a benchmark for image

generation tasks show how Mid-Air can be used to set up

a standard evaluation method for assessing computer vi-

sion algorithms in terms of robustness and generalization.

We illustrate this by providing a baseline for depth estima-

tion and by comparing it with results obtained on an exist-

ing dataset. The Mid-Air dataset is publicly downloadable,

with additional details on the data format and organization,

at http://midair.ulg.ac.be.

1. Introduction

The last decade has seen a continuously growing inter-

est for autonomous vehicles of all types, including cars and

Unmanned Aerial Vehicles (UAVs), commonly known as

drones. The main challenge posed for methods trying to

achieve vehicle autonomy relies in their capacity to under-

stand their state and environment. This can only be done

by properly analyzing and combining information provided

by various sensors such as cameras, radars, or Inertial Mea-

surement Units (IMUs).

Currently, the best methods for flying drones automati-

cally rely on machine learning algorithms and, for vision-

related tasks, involve neural networks and deep learning.

This is due to their ability to learn complex patterns from

examples by bypassing the need of an explicit analytic

model. The common weakness of this approach lies in the

amount of data required for training such networks. Fur-

thermore, if the training data does not completely represent

the task, there is a risk of experiencing poor performance in

Figure 1: Extract from our Mid-Air dataset. Simulated data

when flying our drone in a scene includes, from left to right,

an RGB image under a foggy weather, the depth map, an

RGB image for a spring sunset, the normal map, an RGB

image of a clear sky weather during fall, the semantic seg-

mentation map, and an RGB image in a cloudy winter.

practice. Stated otherwise, an algorithm trained with insuf-

ficiently varied samples will not generalize properly.

Our main motivation for building a new dataset, named

Mid-Air, is to provide a large multi-modal dataset for ma-

chine learning tasks such as visual odometry, simultaneous

localization and mapping, depth estimation, semantic seg-

mentation, or stereo disparity estimation. These tasks can

be targeted individually or simultaneously in a multi-task

set up. With Mid-Air, we not only provide a basis for train-

ing and benchmarking algorithms, but also for innovation,

by providing a new type of data.

1.1. Existing datasets

Various datasets exist for developing computer vision

tasks [5, 6, 18, 22, 25, 26, 28], but only a few of them

are large enough for machine learning algorithms or pro-

vide data of several sensors for multi-task learning. The

Kitti dataset [9, 11, 12, 19] is probably the most com-

plete one and the current reference in the field. Due to a

lack of alternatives, most methods that jointly estimate two

types of information, such as image depth and camera ego-

motion [17, 31] for example, are cursed to be trained and/or



Datasets Mid-Air Kitti [9, 11, 12, 19] Virtual Kitti [10] Synthia [14, 24] RGB-D SLAM [29] EuRoC MAV [4]

Number of trajectories 54 71 50 7 19 11

Number of frames 119k* (@25Hz) 44k (@10Hz) 21k* (@10Hz) 7k* (@5Hz) 48k (@30Hz) 27k (@20Hz)

Total duration 79 min 73 min 35 min 23 min 27 min 22 min

Resolution 1024× 1024 1382× 512 1242× 375 960× 720 640x480 752× 480
Data type synthetic real synthetic synthetic real real

Camera motion drone flight car drive car drive car drive hand-held drone flight

Environment type unstructured city city city indoor indoor

Climate variations yes no yes yes no no

IMU data yes yes no no yes yes

GPS yes yes no no no no

Depth map dense sparse dense dense dense sparse

Stereo disparity map yes yes no no no no

Surface normals yes no no no no no

Semantic segmentation yes yes yes yes no no

Instances segmentation no yes yes yes no no

Optical flow no yes yes no no no

Table 1: Comparison between our Mid-Air dataset and similar datasets usable for multi-task learning. The symbol * denotes

that several additional RGB videos, for different conditions, are available for a same trajectory.

tested on this dataset alone.

Table 1 summarizes some common multi-modal datasets

and compares them to our Mid-Air dataset (see first col-

umn), according to the amount of data, the acquisition con-

ditions, and types of data. Table 1 also highlights that the

largest and most complete datasets were mainly designed

for autonomous car applications. In fact, they provide data

of sensors mounted on a car driving in urban environments.

This raises a concern about the generalization potential of

methods trained and tested on such datasets to other use

cases such as autonomous drones. Cars are indeed nonholo-

nomic vehicles which move in constrained environments,

i.e. roads. Therefore, sensors mounted on them only en-

counter a limited subset of motion types, and cameras do

not completely explore their 3D environment. As a result,

algorithms trained on these datasets may be strongly bi-

ased towards autonomous cars applications. This motivates

the need for the development of a dataset specific to flying

drones for unstructured environments.

1.2. MidAir: a new synthetic dataset

We present a synthetic dataset for unstructured envi-

ronments with navigation and vision sensors mounted on

board of a flying quadcopter; the main characteristics of this

dataset, named Mid-Air, are summarized in Table 1.

Using a drone instead of a car for recording allows to

have a variety of camera motions and poses which would

not be possible with a car. As shown in Table 1, our aim is

not only to offer an alternative to current datasets for flying

drones, but also to provide material to develop algorithms

for autonomous vehicles which could be generalizable to a

wider variety of motions.

With this purpose in mind, focus was put on providing

data to train algorithms for robustness to visual changes;

two new specific benchmarks are presented to explicitly test

the latter. For this purpose, we exploited the control offered

by the simulator to record the same flight trajectories several

times, with varying climate conditions (different seasons,

time of day, and weather conditions).

Generating data synthetically also helps to record

ground-truth data which is more reliable or even impossible

to capture with real sensors. In Mid-Air, we do not only pro-

vide common dense ground-truth visual maps such as depth

maps, but also introduce surface normal maps, a new type

of dense ground-truth data previously unseen in a dataset.

This innovates by paving the way for the development of

methods for surfaces normal estimation tasks.

To generate images, we used a real-time rendering soft-

ware. Despite being physically inaccurate, real-time render-

ing techniques have reached a level of visual likelihood and

realism which competes with simple ray-tracing algorithms

while offering the benefits of reduced render time compared

to their physically accurate alternatives. We detail the im-

plications of this choice in the next section. For the render-

ing pipeline, we used the Unreal Engine [8], a game engine,

in combination with Airsim, a plugin developed by Shah

et al. [27] for this engine. Airsim is a multirotor drones

simulation framework and provides an API to control the

simulation.

2. Sensors simulation

Building a synthetic dataset for flying drones in unstruc-

tured environments requires a precise model of the drone

and its sensors. For the physics of the drone, we rely on

the default quadcopter drone model provided by the Airsim

simulator. However, due to some shortcomings of the sim-

ulator, we had to re-implement some sensor models from

scratch or to tweak others to gain more control on the gener-



ated data and increase their accuracy. In this section, we de-

tail the modifications which were made to the default mod-

els provided by Airsim and elaborate on the reasons which

led us to make these modifications.

2.1. Accelerometer and gyroscope

The accelerometer and the gyroscope, two sensors con-

stituting the core of the inertial measurement unit (IMU),

are essential for stabilization and more generally for fly-

ing a drone. Unfortunately, both are not free of imperfec-

tions; they are prone to bias, bias drift, and measurement

noise. It is commonly assumed that the bias, bt, behaves

as a Gaussian random walk process, and that the measure-

ment noise follows a Gaussian (or normal) distribution with

a zero mean. Accordingly, for a sampling period dt, the re-

lationship between the ground-truth measurement mGT and

the sensor measurement msens for one axis is as follows:

msens = mGT + νn + bt where νn ∼ N (0, n) and

bt = bt−1 + νb where νb ∼ N

(

0, b0

√

dt

ta

)

,
(1)

where n, b0 and ta are parameters that can be determined

by carrying an Allan diagram analysis (see [30]) and which

differ for each individual sensor.

These parameters can however not be modified by the

API of Airsim. Since we wanted to generate trajecto-

ries with different IMU settings, we reimplemented this

model. Prior to each flight, a new set is drawn randomly

within bounds that are representative of the variations typi-

cal for different IMU models. The choice of the order of

magnitudes to use was guided by experimental measure-

ments given in different studies of various sensor mod-

els [15, 20, 21, 23].

It is important to note that both the accelerometer and

the gyroscope are also prone to axis misalignment and scal-

ing factor issues. Unfortunately, these two imperfections

appear to be far less studied experimentally. For this rea-

son, we preferred to rely on a model commonly adopted for

control applications despite the fact that it neglects these

parameters.

2.2. GPS receiver

GPS receivers are heavily used for positioning in the

context of autonomous driving and driving assistance. They

are indeed able to regress their absolute position based on

the satellites that are in line of sight. The regression pro-

cess has three steps. First, the sensor computes the delay

between the time of emission of GPS signals by each satel-

lite and their time of arrival to the sensor. This delay is

derived from the data encoded in the signals. After that,

the sensor uses these delays to estimate the distance sep-

arating it from each satellite. These distances are called

pseudoranges. Eventually, the sensor can triangulate its po-

sition with an optimization method based on the positioning

knowledge it has about GPS satellite positions and the pseu-

doranges estimated during the previous step.

A GPS model. GPS positioning would be perfect if pseu-

doranges could be computed precisely. Perfect distances

would be obtained if all clocks were perfectly synchronized

and if the speed of light was known all along the path be-

tween a satellite and the receiver. However, this is not the

case in practice. Clocks have indeed small, but measur-

able offsets. Furthermore, the atmosphere is composed of

several layers which interact differently with the light and

therefore modify its speed and path. Without loss of gener-

ality, the relationship between the estimated and real pseu-

dorange for a given satellite and a given carrier frequency,

ρe and ρr respectively, can be expressed as follows (see [1]):

ρe = ρr + c (δi − δR) + ∆I +∆T + ν , (2)

where c is the speed of light, δi and δR are the satellite

signal inaccuracy and the receiver clock offset respectively,

∆I and ∆T are the delays induced by the ionosphere and

the troposphere respectively, and ν is the receiver measure-

ment noise. Since the ionosphere induces a delay which is

inversely proportional to the frequency [1], ∆I can be esti-

mated only by using several carrier frequencies. Other inac-

curacies and delays cannot be estimated by the receiver. For

those reasons, a good GPS receiver simulation can only be

obtained when these imperfections are accurately modeled.

Shah et al. [27] do not provide any detail on the model

built in Airsim, which makes it hardly reliable when try-

ing to simulate real world conditions. For this reason, we

developed our own model and had to choose between a

model for a single-frequency or a dual-frequency receiver.

As the latter are currently not widespread, we built a cus-

tom single-frequency receiver model derived from the dual-

frequency model and implementation given by Agarwal and

Hablani [1]. The adaptation is straightforward and consists

in simply removing all the corrections enabled by the use of

several carrier frequencies. More precisely, we removed the

ionosphere delay correction term from the estimated pseu-

doranges used for the optimization process.

Satellites visibility. To assess the satellites which are in

line of sight, the authors of [1] make the assumption that the

Earth is a perfect, smooth ellipsoid and that there are no ob-

stacles. This is hardly acceptable for drones that fly at low

altitudes. Hence, we decided to refine the model by con-

sidering the shape of the 3D environment generated by the

simulator. Our idea consists in adding a wide-angle depth

camera pointing upwards the drone. This creates a map of

areas of the sky which are occluded by obstacles. Assuming

that the starting position of the drone was mapped to an ar-

bitrary location on the Earth surface, and since we perfectly

know the position and the attitude of the drone, it is then



Figure 2: Illustration of the method used to determine which

GPS satellites are in line of sight. The left picture shows a

3D perspective of the scene. The right picture shows what

is seen by the receiver. Green and red dots correspond to

projected satellites positions which are respectively in line

of sight or not according to our method. Areas overlaid with

red do not contain any pixel belonging to the sky.

possible to project the satellite positions on this map and

determine if some satellites are occluded by the presence of

obstacles. A simple rule would be to discard a satellite as

soon as it is occluded by an obstacle along the path. This

rule therefore assumes that all obstacles are perfectly stop-

ping the signals. However, several studies [3, 16] contradict

this assumption for trees. Since the environments used for

our database contain a lot of them, another rule was devel-

oped. Because sky occlusion maps are missing information

about the amount of GPS signal absorption and availability,

we defined an empirical rule illustrated in Figure 2. It basi-

cally consists in dividing the sky in several areas. A satellite

is then considered as occluded if no sky portion is visible in

the whole area on which it is projected.

2.3. RGB camera image rendering

As mentioned previously, we used the Unreal engine for

rendering the images of our dataset, because it offers a good

trade-off between rendering time and visual accuracy. Here-

after, we discuss the consequences on the visual accuracy in

terms of shading, geometrical limitations, and level of de-

tails. It is important to elaborate on the consequences of

our choices as they might have an impact on the generaliza-

tion of learning algorithms to real-life scenarios. We also

explain why we believe they are acceptable.

Shading. The Unreal engine uses an enhanced version of

the deferred shading algorithm. This shading method was

designed for real-time rendering. For this reason, shadings

are not rendered with physically accurate equations, but

rather with simplified models which were targeting a good

visual likelihood. Such models are well suited for diffuse

surfaces but have difficulties to deal with surfaces which in-

teract with light rays in other fashions. This is especially

true for reflective and refractive materials. Nowadays, the

preferred method for faking reflections consists in project-

ing and capturing the surrounding of an arbitrary area on a

cubemap and to project this cubemap on the surface of all

objects present within this area. With this method, reflec-

tions are skewed and light rays do not bounce on reflective

objects. Refractions on the other side are often approxi-

mated by simple transparent materials and will not deflect

light rays as in the real world. In our dataset, those reflec-

tions and refractions concerns arise only for water planes

and are almost nonexistent for other features of our envi-

ronments. The risk of bad generalization due to this factor

is therefore limited.

Geometrical limitations. In addition to shading limita-

tions, there are some geometrical limitations. Since com-

puters have a finite amount of memory, it is unrealistic to

populate a virtual world with an infinite amount of different

objects. What is done in practice is to use a limited subset of

assets and to replicate it with basic modifications (scale and

orientation) over the environment where needed. This has

obvious implications for semantic segmentation algorithms

and must therefore be kept in mind when using synthetic

datasets in general.

Eventually, game engines come with a further memory

and computation cost saving feature that is called the “Level

of Details” (LoD). This feature reduces the amount of faces

to be displayed by simplifying the geometry of objects more

and more aggressively as the distance to the camera in-

creases. This simplification is dynamic and leads to ob-

ject reinstantiations during runtime. It could therefore be

harmful for computer vision learning algorithms relying on

video streams. As this feature is mandatory for large en-

vironments, we took special care in tuning it such that the

reinstantiation only occurs past a distance at which the vi-

sual impact on the RGB capture becomes minimal.

2.4. Synthetic sensors / 3D and semantic sensors

Working with a simulator enables to gather information

about the environment and the 3D world scene which is not

possible to capture with real sensors. For example, we can

think about perfect dense depth maps, perfect and automat-

ically annotated segmentation maps or even normal maps.

They can be created by exploiting features implemented

for deferred shading and gathered by means of the Airsim

API. The only major difficulty is that objects using trans-

parency do not appear on normal maps. This is due to the

intrinsic design of the deferred rendering pipeline. Since

the only transparent objects present in our datasets are

water planes, we decided to solve this issue by assigning a

perfectly vertical normal to all pixels of the map belonging

to a water plane.

Stereo ground truths. Since we perfectly know the virtual

environment, it is also possible to generate ground truths



Algorithm 1 Occlusion mask generation.

For each pixel pi,j of depthcamera1:

Compute 3D position of pi,j relatively to camera 1;

Express 3D position of pi,j relatively to camera 2;

Project pi,j on camera 2 sensor plane;

Get coordinates [k, l] of corresponding projection

if depthcamera1 [i, j] > depthcamera2 [k, l]:
Surface corresponding to pi,j is hidden to camera 2;

for stereo disparity maps and occlusion masks. The dis-

parity d expressed in pixels can indeed be inferred from a

single planar depth map1 Z expressed in meters by using

the following equation:

d =
fb

Z
, (3)

where f is the focal length of the corresponding camera in

pixels, and b is the baseline between the two cameras ex-

pressed in meters.

To calculate the occlusion mask, we have to determine

the areas of a picture taken by one of the two cameras which

are not visible by the second camera. This mask can be

inferred using the planar depth maps corresponding to the

scene seen by each camera and is detailed in Algorithm 1.

It is important to note that the disparity map and occlusion

mask are always specific to one of the two cameras.

3. Dataset presentation

After the details related to the simulation environment,

we now present the design and content of our Mid-Air

dataset. In particular, this section explains the different de-

sign rules. We first introduce the drone setup that has been

used to record the trajectories. Then, we give some de-

tails about the environments used for the flights. Finally,

we present an overall view of the dataset content.

3.1. Drone setup

The physical drone model used for the flights is the de-

fault quadcopter model of Airsim with customized sensors

types and placements. We used three different cameras: a

front-looking camera placed on the X-axis of the drone, an-

other front-looking camera with a 1-meter baseline com-

pared to the first for stereo applications and a last camera

looking downward. The latter can be especially useful for

visual odometry and SLAM algorithms [2] and was there-

fore added to the common front-looking cameras. The left-

stereo camera, the IMU, the GPS receiver and the down-

looking camera are placed exactly at the same location (see

1Contrary to a true depth map which gives the Euclidean distance be-

tween an object and the focal point of the camera, a planar depth map gives

the distance of an object to the plane which passes through the camera focal

point and whose normal corresponds to the Z camera axis.

Figure 3: Sensor locations on the drone used to generate our

dataset. Cameras are represented by the pyramids; the blue

cube shows the IMU and the GPS receiver locations.

Figure 3 for a schematic view of the drone setup). This

choice, even if unrealistic, should not have any impact on

the learning algorithms and greatly eases the use of the

dataset since no additional translations are required when

working with several sensors at the same time.

The cameras use the pinhole camera model to capture

images. They are therefore perfectly calibrated by default.

This is once again an advantage since it enables to remove

the camera calibration method out of the equation when

comparing different algorithms. Due to render engine lim-

itations, cameras act as global shutter cameras and do not

present any motion blur issues. They are all set to capture

images at a rate of 25 Hz with a field of view of 90 degrees.

In addition to RGB data, the left stereo camera captures

a semantic segmentation map, the depth map, the normal

map, the stereo disparity map, and the occlusion mask. All

images have a size of 1024×1024 pixels, except the normal

maps which have a size of 512× 512 pixels.

The IMU measurements refresh rate is set to 100 Hz and

the GPS receiver updates its position every second. The pa-

rameters of the IMU are randomly drawn before each flight

and the initial bias is logged for each trajectory. The same

yields for the initial GPS position. The latitude, longitude

and altitude are drawn uniformly in the ranges of [0, 60] de-

grees, [−180, 180] degrees and [−500, 500] meters respec-

tively. The GPS satellites having an orbital period of 12

hours, we also randomized the initial trajectory time to get

different satellite positions.

3.2. Environments setup

As stated earlier, our dataset aims to provide data to

train and test algorithms for robustness in unstructured en-

vironments. This goal can only be achieved if the data is

varied. To guarantee enough variety, we used two differ-

ent large-scale environments displaying varied features (see

Figure 4) and different weather setups. The following sub-

sections present the features of the setups in which we flew

our drone.



Figure 4: Samples of our dataset illustrating the variety of

environments used to generate the visual information.

Figure 5: Samples of our dataset showing the different cli-

mate setups. The top row shows the four simulated weath-

ers. The bottom row illustrates the seasons.

3.2.1 Landscapes

The first used environment is the map given in the Kite

demo of the Unreal engine. It features a mountain land-

scape with several lakes and forests (see the first row of Fig-

ure 4). Its size, which reaches almost 100 km2, guarantees

to find places with varied characteristics and features. Its

topography makes it perfect for training algorithms to deal

with uneven grounds and height variations.

The second environment is made up of the two demo

maps provided by the PLE plugin for the Unreal engine.

Together they cover an area of roughly 10 km2 and feature

an hilly landscape with forests and some lakes, as for the

first environment. In addition, both maps are crossed by

a road (with signs, barriers, ...) and a railway track. The

specificity of these maps lies in the possibility to change the

season and therefore to change the visuals of the environ-

ment. Samples of these maps are shown in the second row

of Figure 4.

3.3. Climate conditions

For the climate settings, we have two tunable modalities:

the weather and the season. The weather parameter mainly

affects the sky color as well as the illumination of the scene.

The season parameter, on the other hand, mostly affects the

colors present in the environment. Since nature variety is

extremely large, possibilities of configurations are endless.

In order to keep a tractable size for the dataset, we restricted

ourselves to a carefully chosen subset of scenarios.

We chose to simulate four distinct weathers and three

seasons. To generate the different weathers, we use the

TrueSky plugin for the Unreal engine. It allows to create

volumetric and dynamic clouds able to cast shadows on the

map. They therefore have a realistic behavior, which is im-

portant for video applications. For the seasons setups, we

relied on the presets of the PLE plugin, given hereafter:

Clear sky at midday. The illumination is typical for a nor-

mal use case in sunny weather. Shadows are harsh and sky

color is mainly blue.

Overcast sky. The illumination is dim and the shadows are

almost absent. This and the gray sky color provide a realis-

tic representation for cloudy weathers.

Sunset. This weather was chosen for its challenging illu-

mination conditions. The shadows are indeed heavily elon-

gated. This creates areas which are completely shadowed

and therefore require good illumination robustness to be

parsed correctly. In addition, the sun is low and can enter

the field of view, which creates simulated sunglares.

Fog. This weather is challenging for algorithms targeting

visual odometry. Since visual features fade with distance,

algorithms have less visual cues to rely on to correct the

state estimation, leading to less accurate state corrections.

This weather is also valuable for testing the robustness of

image generation tasks since it tends to desaturate colors.

Seasons. We found out that all seasons do not contribute

equally to the diversity of the dataset. Summer was dis-

carded due to its resemblance with spring and fall. Includ-

ing it would not have added any significant variety to the

dataset, while discarding it allows to reduce the dataset size.

We kept the spring, fall, and winter seasons. Spring fea-

tures trees with green leaves and luxuriant ground vegeta-

tion. Fall differentiates itself from spring with trees with

yellow leaves and dried ground vegetation. Finally, winter

is interesting for its trees without leaves and an environment

covered with snow.

3.4. Scenarios and format

After having properly defined the environments and se-

tups, we manually flew the drone in the simulator using an

RC controller connected to the computer through USB and

recorded 5 hours of flight. We then extracted 79 minutes

out of it. These 79 minutes correspond to 54 trajectories of

equal length, i.e. 1.47 minute each. The first 30 are cap-

tured in the Kite demo environment and the remaining ones

in the PLE environment. Figure 6 displays the distribution

of some characteristics of the camera motions which have



−10 −5 0 5 10

0

2

4

·104

N
u
m
b
er

of
sa
m
p
le
s

(a) Vertical velocity
[

ms
−1

]

−0.6 −0.4 −0.2 0 0.2 0.4

0

2

4

6

·104

N
u
m
b
er

of
sa
m
p
le
s

(b) Pitch angle [rad]

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

0

5

·104

N
u
m
b
er

of
sa
m
p
le
s

(c) Roll angle [rad]

Figure 6: Histograms displaying the distribution of some features of the camera motions present in our dataset.

more variety in our dataset than in datasets captured with a

car. For these datasets, the corresponding histograms would

all have a shape similar to a normal distribution with a mean

of zero and a variance extremely close to zero.

Each trajectory record is then rendered several times,

once for every climate scenario. In practice, this translates

into rendering trajectories belonging to the Kite demo en-

vironment once for each weather setup and once for each

season for those belonging to the PLE environment. Since

there can be some differences due to objects animation be-

tween each render, all data streams are recorded simultane-

ously at each run.

The data includes the ground-truth positioning informa-

tion, i.e. the position, velocity, acceleration, attitude and an-

gular velocity, the IMU sensor measurements, the estimated

GPS position along with complementary information on the

GPS signal such as its dilution of precision and the num-

ber of visible satellites, and finally the camera data, i.e. the

left, right and down-looking RGB images and the segmen-

tation, depth, normals, disparity and occlusion maps cor-

responding to the left camera. Our semantic segmentation

dataset contains a total of 12 different classes (animal, tree,

dirt ground, rocky ground, ground vegetation, boulder, wa-

ter plane, man-made construction, road, train track, road

sign, other man-made objects).

Sensors data is stored in a common hdf5 dataset file

while the pictures are saved independently in several sub-

directories. This enables a good dataset handling and eases

data accesses. RGB pictures are stored in JPEG files and

maps are stored as 16-bit float matrices encoded with a loss-

less PNG format. On average, the set of 8 images recorded

at each frame weights less then 2.5 MB. This is roughly 6

times less than the space required for the same data stored in

uncompressed raw format. All additional information about

data layout and organization are given on the website of our

dataset. To ease the data layout understanding and parsing

process, we also provide several example scripts with the

dataset.

4. New benchmarks

Since efficient communication on results obtained on

a dataset can only be achieved if all the community uses

the same separation between data used for developing new

methods and the data used to test their performance, we pro-

pose two additional sets to be used only for comparing re-

sults. Both sets use the same sensor models and provide

the same data as the one defined for the training dataset. It

should be said that other splits between training, validation

and test data are possible, but this requires a consensus of

the scientific community. Our intention is, later, to detail

evaluation methodologies that are discussed and accepted

by the community based on Mid-Air.

4.1. Benchmark for positioning tasks

To test the performance on positioning tasks such as

visual-inertial odometry or SLAM algorithms, we provide

three additional trajectories recorded in an unseen environ-

ment. To assess the robustness of tested algorithms, all tra-

jectories were recorded for three weather conditions, i.e.

clear sky, fog, and sunset. As explained in the next para-

graphs, each trajectory has its own specificity so that per-

formance scores should be reported independently for all

nine possible scenarios.

Ideally, generic positioning algorithms have to be robust

to visual novelties. That is why we recorded our trajectories

in an environment with strong visual differences compared

to the training data. For this, we used a modified version of

the Landscapes Mountain demo map for the Unreal engine.

The first trajectory has a length of 5 minutes and was

generated by manually flying the drone, as for the training

data. The two other trajectories have a length of 10 min-

utes and were generated synthetically. They follow both the

same path except that, for one of them, the drone is look-

ing towards where it is going and, on the other, the yaw of

the drone is shifted by 90 degrees. This allows to have a

scenario where the visual features are moving towards the

camera, and another where they are scrolling from left to

right in the frame.

The synthetic path was chosen to be challenging and

consists in a circular trajectory with a varying height, ra-

dius and angular velocity with no periodicity. This is an

extreme case because the IMU measurements constantly

change, and no loop closure is possible to periodically cor-

rect the state estimation. Therefore, failing to properly use

visual cues to correct the state estimate will lead to signifi-

cant drift.



4.2. Benchmark for visual maps generation tasks

For image generation tasks, such as semantic segmen-

tation or depth estimation, we provide eleven additional

13s long trajectories, excluded from the training dataset.

Five of them belong to the Kite map and are rendered four

times, one for each weather setup. The six remaining were

recorded in the PLE maps and are rendered once for each

of the chosen seasons. This choice preserves a data distri-

bution which is close to the one of the training set.

To analyze the robustness of methods to visual changes,

we recommend to report results on this benchmark sepa-

rately for each weather and season setup. If the scores are

similar for all scenarios, the method will be assumed to be

robust to visual changes. On the other hand, a difference in

performance will highlight some robustness deficiencies.

Baseline example. To illustrate our approach, we applied

this benchmark to the challenging task of monocular depth

estimation. For this, we decided to train a method whose

results are close to the state-of-the-art on the Kitti dataset

and for which the code for training is publicly available. We

chose the deep neural network given by Godard et al. [13].

We trained it for 15 epochs on our complete dataset, i.e.

approximately 420k samples. Results including the post-

processing method of [13] are reported in Table 2.

We can see that even the performance on the training

dataset is poor when compared to the scores obtained on the

Kitti benchmark. Training it for 5 additional epochs did not

bring any significant performance improvement. We there-

fore conclude that our dataset has a higher complexity than

that of the Kitti dataset, leaving room for further improving

methods. Additionally, the results can be grouped in clus-

ters corresponding to the environments with one perform-

ing significantly better than the other. Since there are more

samples for the Kite environment than for the PLE one, this

observation indicates that this method tends to learn fea-

tures specific to an environment rather than general patterns

and may therefore have poor generalization capabilities. It

is however worth mentioning that the network did not over-

fit since scores on the training and the test data are close.

Moreover, performance is similar for proposed robustness

scenarios, which tends to indicate that the method is rela-

tively robust to visual changes.

4.3. Overall limitations

Despite all our efforts, we did not address two specific

situations which might be important for generalization.

The first one is that our dataset contains only few mov-

ing objects. Motion is present only through the agitation

of the vegetation due to the wind and through the few ani-

mals present in the environments. It means that a learning

algorithm working on video sequences will be poorly pre-

pared for image changes which are not due to perspective

and camera motion.

Test data Abs Rel Sq Rel RMSE RMSE log

Kitti 0.114 0.898 4.935 0.206

Training set 0.335 8.892 11.444 0.343

Kite sunny 0.250 3.743 10.281 0.317

Kite cloudy 0.225 3.183 8.922 0.280

Kite sunset 0.328 6.570 11.484 0.350

Kite foggy 0.255 3.586 9.495 0.305

PLE fall 0.887 22.801 17.022 0.620

PLE spring 0.792 20.864 17.285 0.613

PLE winter 0.764 20.745 17.771 0.614

Table 2: Results of the network of [13], trained and tested

according to our benchmark proposal, on standard metrics

to be minimized. The first line gives results reported in [13]

for the same network trained on the Kitti and Cityscapes

datasets, and tested on the Kitti dataset with the split given

by Eigen et al. [7]. Performance scores for the training set

are computed only for frame numbers multiple of 100.

A second limitation is that the used simulator does not

model wind nor drone vibrations. These two parameters

however have a significant impact on the IMU. The former

creates accelerations which are not induced by the drone

propellers while the latter adds additional noise terms to

the measurements made by the sensors. Both can have an

impact on the generalization of algorithms relying on IMU

data. Our dataset should nonetheless be useful to get a re-

liable performance score for simple scenarios and therefore

to get a first overview on the potential of any tested method.

5. Conclusion

We introduce a new synthetic dataset, named Mid-Air,

featuring 79 minutes of drone flight recorded several times

with different climate conditions. The content of our dataset

consists in multiple synchronized modalities providing data

for positioning tasks such as SLAM or visual odometry as

well as for pure computer vision tasks such as depth esti-

mation or semantic segmentation. While being specifically

designed for flying drones in unstructured environments, its

size (more than 420k individual frames) and content makes

it also useful for training and testing generic machine learn-

ing algorithms.

Large datasets such as ours pave the way for building

new benchmarks to evaluate algorithms achieving single or

multiple application tasks, which should be addressed si-

multaneously to cope with the environmental complexity.

Hence, after discussing the sensor models and elaborating

on the simulated scenarios, we propose two possible bench-

marking approaches and illustrate one of them by giving the

performance of a known algorithm that serves as a baseline.

This proposal is opened to discussion and modification in

order to adjust it to the needs of the scientific community.
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