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Abstract

Autonomous UAV racing has recently emerged as an in-

teresting research problem. The dream is to beat humans in

this new fast-paced sport. A common approach is to learn

an end-to-end policy that directly predicts controls from raw

images by imitating an expert. However, such a policy is

limited by the expert it imitates and scaling to other envi-

ronments and vehicle dynamics is difficult. One approach to

overcome the drawbacks of an end-to-end policy is to train a

network only on the perception task and handle control with

a PID or MPC controller. However, a single controller must

be extensively tuned and cannot usually cover the whole

state space. In this paper, we propose learning an optimized

controller using a DNN that fuses multiple controllers. The

network learns a robust controller with online trajectory fil-

tering, which suppresses noisy trajectories and imperfec-

tions of individual controllers. The result is a network that

is able to learn a good fusion of filtered trajectories from

different controllers leading to significant improvements in

overall performance. We compare our trained network to

controllers it has learned from, end-to-end baselines and

human pilots in a realistic simulation; our network beats

all baselines in extensive experiments and approaches the

performance of a professional human pilot.

1. Introduction

Recent advances in UAV technology by industry leaders

such as DJI, Amazon and Intel make UAV design and point-

to-point stabilized flight navigation appear to be a well-

solved problem. However, autonomous navigation of UAVs

in more complex and real-world scenarios, such as in un-

known congested environments, GPS-denied areas, and nar-

row spaces, is still far from being solved. This is a complex

problem, since it requires both the sensing of the environ-

ment and the execution of appropriate control policies for

interaction at low latencies, running on on-board hardware
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Figure 1: UAV flying in Sim4CV while being controlled by

our controller fusion network.

with typically very limited computational resources. The

emerging sport of UAV racing displays a lot of these real-

world navigation challenges, and is one of the areas where

the performance gap between human pilots and machine-

driven navigation approaches is most evident. UAV racing

requires human pilots or agents to sequentially control the

UAV to fly through a race track based on the feedback (vi-

sual information, physical measurements, or both) of pre-

vious actions. It requires control over six degrees of free-

dom (6-DoF) at high speeds while traversing tight spaces,

and passing consistently through racing gates. These com-

plex sense-and-understand tasks are conducted at extreme

speeds reaching over 100 km/h, and thus can serve as a con-

trolled and challenging benchmark for machine-driven agile

navigation approaches.

One of the more difficult tasks in UAV racing is the pre-

diction of the proper trajectory in order to traverse a course

while maintaining high speeds. In earlier work, either a PID

controller or model predictive controller with Kalman filters

has been used. However, in practice a single controller can-

not usually cover the whole state space. In certain states the

controller may not perform as expected or even fail. In this

paper, we propose the fusion of multiple controllers using a

DNN to cover a much larger state space and to outperform

any single controller.



Figure 2: Our complete system consists of a perception network φ and a controller fusion network (CFN). The perception

network predicts local trajectories from a monocular RGB image. The CFN ϕ takes the predicted trajectory and UAV state as

input and outputs the low-level controls: throttle (T), roll/aileron(A), pitch/elevator (E), yaw/rudder (R). The CFN is trained

by fusing filtered trajectories from multiple classical controllers.

However, fusing different controller’s trajectories

naively will result in incorporating both their good and bad

trajectories due to their high variability and limitations in

specific scenarios. We overcome this problem by storing

trajectories in an online buffer that can be accessed by our

deep neural network (DNN) during learning. By filling

this buffer with only good trajectories, we are able to trim

out failing trajectories. The network learns an optimized

controller by sampling from the buffer containing these

pre-filtered trajectories. The result is a network that is

able to learn a good fusion of filtered trajectories from

different controllers allowing a much larger coverage of the

whole state space. We show that this leads to significant

improvements in overall performance.

We use Sim4CV [16] to simulate UAV racing with accu-

rate physics using the Unreal Engine 4 (UE4). [17]. We also

develop a customizable racing area in the form of a stadium

based on a 3D scan of a real-world location. Race tracks

are generated within a GUI interface and can be loaded at

game-time to allow training on multiple tracks automati-

cally. Inspired by recent work on self-driving cars [4], we

are trying to imitate UAV racing at a professional level. The

key difference is that we train a perception network that pre-

dicts desired trajectories rather than controls. We then train

a separate neural network to produce the low-level controls.

We call this network Controller Fusion Network (CFN) and

train it by fusing filtered trajectories from multiple con-

trollers. Through extensive experiments in simulation we

demonstrate that CFN outperforms the controllers it learned

from, end-to-end baselines, and even human pilots flying

via a remote control used for real UAVs.

Contributions. (1) We propose to learn the fusion of tra-

jectories by a neural network. This allows for combining

trajectories from different controllers in a principled way,

and separates the control from the perception task. (2) By

implementing online trajectory filtering we are able to learn

from multiple noisy trajectories without incorporating their

imperfections. While the control task is learned online, a

buffer/memory also allows for semi-offline training. Our

approach leads to a robust network outperforming several

state-of-the-art approaches and human pilots.

2. Related Work

The use of deep neural networks (DNNs) to control

UAVs dates back to work on learning acrobatic helicopter

flight [1]. More recent work has studied training UAV con-

troller networks with SL, RL or combined methods but with

a focus on indoor flight, collision avoidance, and trajec-

tory optimization [9, 13, 20, 22, 2, 11, 21, 10, 17, 3, 23].

An important insight from [13, 9, 12, 20] is that a trajec-

tory optimizer such as a Model Predictive Controller (MPC)

can function similar to traditional SL to help regress an

agent’s sub-optimal policy towards the optimal one with

much fewer iterations. By jointly learning perception and

control with the self-supervision of MPC, full end-to-end

navigation and collision avoidance can be learned. Re-

cently, [10] implement such an approach where a DNN is

used to predict a trajectory and a MPC is used to properly

output the motor control of the UAV. Although not func-

tioning at racing speeds, initial experiments demonstrate the

advantages of such a setup. A major limitation of this ap-

proach is that the DNN is only used for perception, while

the MPC requires extensive setup, tuning, and a full knowl-

edge of the UAV dynamics. We propose in this paper that a

DNN can also be applied to control allowing the UAV dy-

namics to be inherently learned.

Our network is able to learn from imperfect proportional-

integral-derivative (PID) controllers allowing both self-

supervision and extensive exploration. The network train-

ing with extensive exploration is most similar to DAGGER

[19] and its variants [3, 24, 18, 5]. Our approach differs

in that our control network does not learn strictly from the

controller. Our network learns the appropriate actions of

the PID controllers at each time step and selects the best

predictions based on the filtered trajectories. The buffering

strategy is similar to DQN’s [15] ”experience replay mecha-



nism” in that it stores a limited set of experiences in a buffer

and then selects samples randomly. However, our buffer

is dynamic being updated during online training and con-

tinually filters the buffer with only good samples. By de-

sign, our RL motivated training process enables extensive

exploration by only observing the best behavior from var-

ious controllers. It differs from [12] in that the controllers

never have to deviate from their optimal control to induce

exploration. Also, unlike trajectory optimization [7], the

trajectory in our setup is without known global 3D posi-

tion. This enables the prediction of local waypoints without

needing precise knowledge of the UAV’s current state and

dynamics, which are rarely available in the real-world. Sim-

ilar to adaptive trajectory optimization, our predicted way-

points are updated every time step allowing for adaptation

to environment changes.

3. Methodology

In this section, we introduce the setup of the Controller

Fusion Network (CFN) which enables automatic removal of

bad trajectory segments from imperfect controllers by fil-

tering bad samples in an online manner before the CFN is

updated. We build a modular system for UAV racing (see

Figure 2) that separates the task into a high dimensional

perception module and a low dimensional control module

(CFN). The perception network predicts trajectories which

are used by the the CFN along with the UAV state to pro-

duce low-level controls.

3.1. Controller Fusion Network (CFN)

We learn a Controller Fusion Network agent by a learn-

ing strategy that integrates knowledge from multiple con-

trollers and the dynamic environment into the learning pro-

cess (refer to Algorithm 1 for a detailed description during

training). At each time step t, the agent receives a state (or

partial state) st from the environment and executes an action

at. Thus, the trajectory of the agent behaviors are denoted

as τ = (s1, a1, s2, a2, ..., sn). The CFN policy is a parame-

terized function π(s|θ) mapping the state to a deterministic

action that can be continuous or discrete. In our case, the

action is a 4D continuous control signal for a UAV. The PID

controllers’ policy µ(s) also maps the state to an action. In

practice, the controller can be either an automated controller

or a human, and demonstration can be performed online or

offline from a recording. In this paper, we use two PID

(Proportional-Integral-Derivative) controllers, thus, avoid-

ing the need for hours of human recorded control.

To clarify which demonstrations we should learn from,

we refer to the demonstrations that lead the CFN agent to

good behavior as desirable demonstrations, the ones that

lead to bad behavior as unwanted demonstrations, and the

uncertain ones as unforeseeable demonstrations. We intro-

duce a temporary buffer B to store the demonstrations of

Algorithm 1: Controller Fusion Network (CFN) dur-

ing training.

Initialize controllers {µi(s)}
n
i=1 and CFN π(s|θ) with

random weights θ;

Initialize CFN training database D ← ∅ and CFN temporary

buffers {Bi ← ∅}
n
i=1 corresponding to the controllers;

// for each controller µi

for episode← 1 to M do

Initial state s1 provided by the environment;

for t← 1 to T do

Controller µi demonstrates aµit = µi(st);
Execute controller action aµit; observe new state

st+1 and feedback;

Update Bi← Bi

⋃
{(st, aµit)};

Discard unwanted demonstrations from Bi

(according to buffering strategy);

Add desirable demonstrations from Bi to D;

Sample mini-batch (s, a) from D and perform SGD

to minimize L(π(s|θ), a);
Break if st+1 is terminal state;

end

end

the active controller. At each time step t, by observing the

feedback of the interactions between controller and envi-

ronment, the CFN agent can determine whether to discard

some unwanted demonstrations from B, retain unforesee-

able demonstrations in B, or augment its training data D

by adding desirable demonstrations from B. We call this

operation buffer strategy. Note that the CFN agent main-

tains a temporary buffer for each controller. See Figure 4

for details.

Figure 3: Visualization of the CFN buffer strategy.

CFN buffer strategy. We use two simple PID controllers.

The CFN agent maintains two temporary buffers B corre-

sponding to each controller. At each time step, the state

action pair (st, at) of each controller will be buffered into

B. Then the CFN agent will decide which state action pairs

to add to the training database, and discard others based on

the buffer strategy. Finally, the CFN agent will perform an

SGD update on the training database. A schematic diagram



of the buffer used during training is shown in Figure 3.

The training database D can be viewed as a distilled set

of demonstrations collected by applying the buffering strat-

egy on B at each time step. Our goal is to train a CFN policy

π∗ to minimize the loss function L(π(s|θ), a∗):

π∗(s|θ) = argmin
π

E(s,a)∼D[L(π(s|θ), a∗)] (1)

The total loss consists of the perception loss Lp and a con-

trol loss Lc:

L = Lp(φ(sI |θp), z
∗) + λLc(π(s|θ), a

∗) (2)

Lc(π(s|θ), a
∗) = Lc(ϕ(φ(sI |θp), sM |θc), a

∗) (3)

Here, θp and θc are the learnable parameters of the percep-

tion and controller fusion network, respectively; λ scales

the control loss Lc; z∗ represents the groundtruth way-

points; sI and sM are the input image state and UAV state.

4. Network Architecture and Training Details

Our overall network architecture is depicted in Figure 2.

It consists of two networks, one for perception and one for

control. The perception network outputs a local trajectory

and the control network produces low-level controls given

this trajectory and the UAV state as input.

4.1. Perception

Network Architecture. For our perception network, we

use a network architecture that is inspired by the one used

by Bojarski et al. [4] for autonomous driving. However,

we make changes to accommodate the complexity of the

task at hand and to improve robustness in training. Our net-

work architecture is shown in Figure 2 as the perception

module. It consists of eight layers: five convolutional with

{20, 24, 28, 30, 32} filters and three fully-connected layers

with {1800, 800, 100} hidden units, respectively. Instead

of pooling operations, we introduce convolutional strides

of two to downsample the input consecutively, inspired by

more recent architecture designs such as MobileNet [8].

Training Details. In contrast to the network by Bojarski et

al. [4], our network regresses local trajectories rather than

raw controls. Predicting raw controls has several shortcom-

ings; raw controls are specific to a vehicle and controller.

In addition, different sequences of controls can lead to the

same trajectory which makes data augmentation very diffi-

cult. As a result, we are able to train a very robust percep-

tion network and can validate it with ground-truth trajecto-

ries which are well defined. Our perception network takes

images from a monocular RGB camera as input and ouputs

a trajectory relative to the current position of the UAV. We

represent the trajectory with five uniformly sampled points.

We regress these points to the groundtruth (waypoints along

the center line of the track) applying a L2-loss and dropout

of 0.5 in the fully-connected layers. We implement our

model in TensorFlow and train it with a learning rate of

5e−4 using the Adam optimizer. Given the dynamic na-

ture of the racing task we use the maximum frame rate of

60 fps unlike other works that downsample [6, 4, 22]. Note

that when predicting controls directly from the input image,

a high frame rate can be problematic, since fast transitions

in control can lead to similar images with different labels,

causing a regression towards averages. Since the image to

trajectory correspondence is well defined and more stable,

our approach is not affected by sampling rate variations.

4.2. Control

Here, we present the details of our controller fusion net-

work, including network architecture and training strategy.

The network takes the predicted trajectory from the percep-

tion network and the UAV state (orientation and velocity)

as input and predicts the four UAV controls: throttle (T),

roll/aileron (A), pitch/elevator (E), yaw/rudder (R).

Learning the Controller Fusion Network. In our exper-

iments, we use two naive PID controllers and denote them

as µ1 and µ2. We briefly tune two PID controllers on the

training tracks. It is not necessary to tune controllers to

be optimal on all the training tracks since CFN is robust

to learn from sub-optimal controllers. The first PID con-

troller µ1 is conservative, as it accurately follows the center

of the track and flies through gates precisely but at rela-

tively low speeds. Its output control values are a function of

the first predicted waypoint wp1 and UAV state. The sec-

ond PID controller µ2 is more dynamic, as it flies at max-

imum speed but can often overshoot gates on sharp turns

due to inertia and limitations of the UAV. Its output con-

trol values are a function of the fourth predicted waypoint

wp4 and the UAV state. We use a three-layer fully con-

nected network to approximate the policy ϕ of the CFN

agent. The state of the CFN agent is a vector concatena-

tion of the predicted waypoints and the UAV state (physical

measurements): s = [swp1−n
, sM ] = [φ(sI |θp), sM ].

As such, the states of the CFN agent ϕ, the con-

servative PID µ1, and the aggressive PID µ2, are

[swp1−n
, sM ], [swp1

, sM ] and [swp4
, sM ] respectively. At

each time step, the state-action pairs (s, a) in the tempo-

rary buffers B1 and B2 are ([swp1−n
, sM ], µ1(swp1

)) and

([swp1−n
, sM ], µ2(swp4

)).

An illustration of the buffering strategy is shown in Fig-

ure 4 with buffer size k = 3. At time step t, there are k

unforeseeable samples {(st, at)}
t−1
t−k in B. The next sample

is (st, at). The samples ahead of (st−k, at−k) are stored in

the ground truth training database D. Figure 4 illustrates

two cases of buffering operations.

Network Architecture and Training Details. The goal of

the control network is to find a control policy ϕ that mini-
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Figure 4: Illustration of the Buffering Strategy. In Trajectory 1 the PID controller remains on track: the sample (st−k, at−k)
will become a desirable sample and will be added to the ground truth database D. In Trajectory 2 the PID controller leaves

the track: the samples {(st, at)}
t
t−k will be discarded.

mizes the control loss Lc:

ϕ∗(s|θc) = argmin
ϕ

E(s,a)∼D[Lc(ϕ(s|θc), a
∗)] (4)

Here, θc represents the learnable parameters of the con-

troller fusion network ϕ. We use Tensorflow to imple-

ment our CFN. A three-layer fully-connected network with

{64, 32, 16} hidden units is used to represent CFN. To reg-

ularize the network, we apply dropout to the second layer

with a 0.5 ratio. A weighted L1-loss is used for our loss

function Lc. We use an Adam Optimizer with a learning

rate of 1e−3 to train CFN in an online fashion, while the

UAV flies through a training track. A temporary buffer with

size k is used to temporally store the last k state-action pairs

from each controller (k1 = 1 for B1 and k2 = 50 for B2).

The buffer size mainly depends on the controller’s trajectory

quality. For example, if an aggressive PID controller over-

shoots or crashes after 100 steps at a straight and 50 steps

at a bend with a high probability, 40–60 would be consid-

ered a good buffer size; a buffer size of 0–20 would lead the

CFN agent to learn dangerous behaviours, while a buffer

size of over 100 would make the CFN agent unable to ben-

efit from the speed advantages of the aggressive PID con-

troller on straightaways. In our case, we chose k1 = 1 for

the conservative PID controller to benefit from its accuracy

and k2 = 50 for the aggressive PID controller to filter out its

dangerous behaviors in curves. To improve learning, we add

an Ornstein Uhlenbeck process [14] noise to the output of

the controller fusion network to allow for exploration at the

beginning and move the UAV by the agent’s control predic-

tions, but the action is labeled by the conservative PID. Af-

ter the initial exploration, the controllers take over control.

At each time step, if a controller leaves the track, its tempo-

rary buffer is flushed and no state-action pairs are added to

D for training. If the controller keeps the UAV within the

track boundaries, the oldest state-action pair in its tempo-

rary buffer is added to D, as shown in Figure 4. At each time

step, the network parameters θc are updated by back prop-

agation to minimize the difference between the controller’s

UAV policy ϕ and the demonstrations (state-action pairs) in

D, which are considered to be believable after discarding

unwanted behaviors.

5. Experiments

Creation of the UAV Racing Simulation. Many profes-

sional pilots compete in time trials on well-known tracks

such as those posted by the MultiGP Drone Racing League.

Following this paradigm, our simulator race course is mod-

eled after a football stadium, where local professional pilots

regularly setup MultiGP tracks. Using a combination of Li-

DAR scanning and aerial photogrammetry, we captured the

stadium with an accuracy of 0.5 cm (see Figure 5). A team

of architects used the dense point cloud and textured mesh

to create an accurate solid model with physics based render-

ing (PBR) textures in 3DS Max for export to Unreal. This

resulted in a geometrically accurate and photo-realistic race

course that remains low in poly count, so as to run within

Sim4CV in real-time, in which all training and testing ex-

periments are conducted. We refer to Figure 6 for a side-

by-side comparison of the real and virtual stadiums.

Experimental Setup. We use our UAV racing environ-

ment in Sim4CV [16] (see Figure 1); we design seven rac-

ing tracks for training and seven tracks for testing. To avoid

user bias, we collect online images and trace their contours

to create uniquely stylized tracks. We select the tracks with

two aspects in mind. (1) The tracks should be similar to

what racing professionals are accustomed to, and (2) they

should offer enough diversity for network generalization on

unseen tracks (see Figure 7). For all of the following evalua-

tions, both the trained networks and human pilots are tasked

Figure 5: The point cloud from the LiDAR scan of the sta-

dium collected from six different locations.



Figure 6: Left: Aerial image captured from an UAV hovering above the stadium racing track. Right: Rendering of the

reconstructed stadium generated at a similar altitude and viewing angle within the simulator.

Figure 7: The seven training tracks (left) and the seven testing tracks (right). Gates are marked in red.

with flying two laps on each of the test tracks. The score

comprises three components: the percentage of successfully

passed gates, the time to complete both laps, and the num-

ber of required resets. The UAV is reset at the next gate, if

it does not reach it within 10 seconds after passing through

the previous gate. This occurs if the UAV crashes beyond

recovery or drifts off the track. Visualizations of the UAV’s

trajectory for all models on each track are provided in the

supplementary material.

Comparison to State-of-the-Art Baselines. We compare

our system for UAV racing to the two most related and re-

cent network architectures, the first denoted as Nvidia (for

self-driving cars [4]) and the second as MAV (for forest path

navigating UAVs [22]). Both the Nvidia and MAV networks

use data augmentation from an additional left and right cam-

era. For the Nvidia network, the exact offset choices for

training are not publicly known, so we use a rotational off-

set of {−30◦, 30◦}. For the MAV network, we use the same

augmentation parameters in the paper, i.e. a rotational off-

set of {−30◦, 30◦}. We modify the MAV network to al-

low for a regression output instead of its original classifica-

tion (left, center and right controls). This is necessary, since

our task requires fine-grained control, and discrete controls

would be insufficient. We assign corrective controls to the

augmentation views using a fairly simple but effective strat-

egy. Depending on the camera view, we apply the following

offset parameters: one that acts as a horizontal offset (roll-

offset) and one that acts as a rotational offset (yaw-offset).

For rotational offsets, we couple the yaw correction with a

proportional roll correction because the UAV is in motion

while rotating, causing it to drift outwards due to its inertia.

While the domains of these methods are similar, it should

be noted that flying a high-speed racing UAV is a partic-

ularly challenging task, since the effect of inertia is more

significant and there are more degrees of freedom than for

ground vehicles. To ensure a strong end-to-end baseline, we

build an end-to-end network that takes the state of the UAV

(exactly like our control module) as input along with the

image. We also augment the data with 18 additional camera

views (exactly like our perception module) and assign the

best corrective controls after cross-validation search [17].

Table 1 compares the performance of these baselines

against our method. The MAV reference network needs

more than 7 resets and only completes about 60% of gates

on average, while taking more than twice the time. The

Nvidia-inspired architecture performs slightly better, but

still needs about 4 resets and only completes 80% of gates

on average. While the end-to-end trained version of our net-

work achieves better performance than MAV and Nvidia,

our modular network with CFN clearly outperforms it with-

out the need for supervision or approximate corrective con-

trols. In fact, CFN outperforms all baselines by a consider-

able margin in all three evaluation metrics; it completes all

seven race tracks with 100% accuracy compared to 62.69%,

79.85% and 95.52% in about half the time on average.

Comparison to PID Controllers and Human Perfor-

mance. We compare our CFN trained control network to

the PID controllers it learned from. The perception network

stays the same. The summary of this experiment is given

in Table 2, where we find that our learned policy is able

to outperform both PID controllers (PID1 and PID2). Fur-

ther, as Figure 8 shows, both PID controllers are imperfect.

PID1 completes most gates while flying very slowly and

PID2 misses many gates while flying at very high speeds.



(a) PID1 (Conservative) (b) PID2 (Aggressive) (c) Ours

(d) Novice (e) Intermediate (f) Professional

Figure 8: Comparison between our learned CFN policy and PID controllers (row1) and human pilots (row2), on a test track.

Color encodes speed as a heatmap, where blue is the minimum speed and red is the maximum speed.

Table 1: Comparison of CFN to baselines

End2End (MAV) End2End (Nvidia) End2End (Ours) Ours (WP + CFN)

Score Time Resets Score Time Resets Score Time Resets Score Time Resets

Track1 6/12 98.60 6 7/12 101.15 5 12/12 80.11 0 12/12 52.20 0

Track2 16/20 113.55 4 15/20 140.92 5 20/20 91.88 0 20/20 64.75 0

Track3 11/22 161.85 11 19/22 110.94 3 22/22 81.26 0 22/22 62.00 0

Track4 10/18 152.27 8 15/18 121.07 3 18/18 97.10 0 18/18 71.93 0

Track5 18/30 207.07 12 21/30 197.11 9 30/30 100.47 0 30/30 71.16 0

Track6 15/20 136.69 5 20/20 108.42 0 16/20 137.14 4 20/20 81.66 0

Track7 8/12 115.05 4 10/12 105.37 2 10/12 104.97 2 12/12 64.86 0

Avg. 62.69% 140.72 7.14 79.85% 126.43 3.86 95.52% 98.99 0.86 100% 66.94 0

Table 2: Ablation study

PID1 (Conservative) PID2 (Aggressive) Ours (No Buffer) Ours (WP + CFN)

Score Time Resets Score Time Resets Score Time Resets Score Time Resets

Track1 12/12 130.76 0 12/12 40.04 0 10/12 70.35 2 12/12 52.20 0

Track2 20/20 136.19 0 17/20 77.41 3 18/20 75.58 2 20/20 64.75 0

Track3 22/22 121.54 0 11/22 149.45 11 17/22 102.72 5 22/22 62.00 0

Track4 18/18 139.09 0 15/18 81.08 3 14/18 102.27 4 18/18 71.93 0

Track5 30/30 144.49 0 12/30 212.79 18 28/30 89.93 2 30/30 71.16 0

Track6 20/20 151.95 0 12/20 118.69 8 13/20 126.77 7 20/20 81.66 0

Track7 10/12 139.28 2 9/12 72.90 3 7/12 86.53 5 12/12 64.86 0

Avg. 98.51% 137.61 0.29 65.67% 107.48 6.57 79.85% 93.45 3.86 100% 66.94 0

Table 3: Comparison of CFN to humans

Human (Novice) Human (Intermediate) Human (Professional) Ours (WP + CFN)

Score Time Resets Score Time Resets Score Time Resets Score Time Resets

Track1 12/12 87.44 0 12/12 62.80 0 12/12 40.50 0 12/12 52.20 0

Track2 20/20 166.11 0 20/20 88.21 0 20/20 49.23 0 20/20 64.75 0

Track3 21/22 118.41 1 22/22 82.17 0 22/22 47.67 0 22/22 62.00 0

Track4 17/18 126.47 1 18/18 91.53 0 18/18 50.10 0 18/18 71.93 0

Track5 30/30 129.49 0 30/30 87.62 0 30/30 55.72 0 30/30 71.16 0

Track6 20/20 196.16 0 20/20 95.99 0 20/20 57.90 0 20/20 81.66 0

Track7 12/12 113.14 0 12/12 74.91 0 12/12 46.98 0 12/12 64.86 0

Avg. 98.51% 133.89 0.29 100% 83.32 0 100% 49.73 0 100% 66.94 0



(a) Grass (b) HD Grass

(c) Mud (d) Snow

(e) Fog (f) Rain

(g) Sunrise (h) Night

Figure 9: Simulated UAV racing stadium with low and high

quality grass textures (a,b), different ground materials (c,d),

different weather conditions (e,f ) and different lighting con-

ditions (g,h).

Table 4: Adaptation through modularity. The reported re-

sults reflect average performance across all seven testing

tracks. Please refer to the supplementary material for de-

tailed results per track.

Baseline Weather Lighting Texture

Grass GrassHD Fog Rain Sunrise Night Snow Mud

Score 100% 100% 95.5% 100% 99.2% 96.2% 100% 100%

Time 66.94 69.75 85.48 68.68 73.77 86.01 68.26 67.54

Reset 0 0 0.86 0 0.14 0.71 0 0

However, since our control module is designed to learn only

from the best behaviour of both PID controllers, it com-

pletes all gates at a high speed. We also want to highlight

the importance of the temporary buffer. Removing it results

in a significant drop in performance (score: 79.85%, time:

93.45, resets: 3.86) since the CFN agent is forced to learn

from all the controller demonstrations including the unde-

sirable ones.

We also compare our system to three pilots with differ-

ent skill levels: novice (has never flown before), interme-

diate (a moderately experienced pilot), and a professional

(a competitive racing pilot with many years of experience).

The pilots are given the opportunity to fly the seven train-

ing tracks as many times as needed until they successfully

complete the tracks at their best time while passing through

all gates. The pilots are then scored on the test tracks in

the same fashion as the trained networks. The results are

summarized in Table 3. CFN achieves at least the same ac-

curacy as human pilots but is about two times faster than

a novice, 20% faster than an intermediate pilot, and within

25% of a professional pilot. Although slower, our network

flies more consistently than even the professional racing pi-

lot while remaining reliably on the track (see Figure 8).

Adaptation through Modularity. We replace the low-

quality grass textures with high-quality grass and show that

our perception network generalizes without any modifica-

tion (see Figure 9 and Table 4). When changing the weather

and lighting conditions, the performance of the perception

network starts degrading. The network is not affected by

rain, slightly degrades with sunrise lighting and degrades

noticeably with fog and night-time lighting. If our percep-

tion network was trained on diverse environments/textures,

it would learn even more invariance to the background, as

demonstrated in [20]. However, generalization only works

up to some extent and usually requires heavy data augmen-

tation. In some applications, it might not even be desirable

to generalize too broadly as the performance in the target

domain often suffers as a result. For such cases, our modu-

lar approach allows to simply swap out the perception mod-

ule to adapt to any environment. To demonstrate this, we

train the perception network on different textured environ-

ments while keeping the controller fusion network fixed and

show successful transfer of the control policy.

6. Conclusions and Future Work

In this work, we present a controller fusion network

(CFN) that allows fusing multiple classical controllers. Ex-

tensive experiments demonstrate that a CFN based network

outperforms state-of-the-art methods and flies more consis-

tently than human pilots. This a product of both the ability

for the network to fuse multiple controller’s trajectories and

at the same time filter out controller actions leading to poor

performance. We expect the framework can be adapted for

other robotic and controller based dynamic tasks such as vi-

sual grasping tasks or visual placing tasks by making minor

changes in buffer strategy. Instead of relying on extensive

fine-tuning of a controller or defining an explicit model of

a system, a CFN is able to produce an optimized predictive

control of dynamic systems.
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