
UAV-Net: A Fast Aerial Vehicle Detector for Mobile Platforms

Tobias Ringwald† Lars Sommer‡∗ Arne Schumann∗ Jürgen Beyerer∗‡ Rainer Stiefelhagen†

†CV:HCI

Karlsruhe Institute of Technology

Karlsruhe, Germany

‡Vision and Fusion Lab

Karlsruhe Institute of Technology

Karlsruhe, Germany

∗Fraunhofer IOSB

Fraunhoferstraße 1

Karlsruhe, Germany

{firstname.lastname}@{kit.edu, iosb.fraunhofer.de}

Abstract

Vehicle detection in aerial imagery is a challenging task

due to small object sizes, high object density and partial

occlusions. While past research mostly focused on improv-

ing detection accuracy, inference speed is another impor-

tant factor when using CNN object detectors in a real life

scenario – especially when targeting mobile platforms like

unmanned aerial vehicles (UAVs). In this work, we com-

pare several established detection frameworks in terms of

their accuracy-speed trade-off and show that the Single

Shot MultiBox Detector (SSD) offers the best compromise.

We subsequently undertake a thorough evaluation of several

design choices to further increase detection speed while

sacrificing little to no accuracy. This includes the choice of

base network architecture, improved prediction layers and

an automatic model pruning approach. Given our evalua-

tion results, we finally construct UAV-Net – a novel aerial

vehicle detector that has a model size of less than 0.4 MiB

and is more than 16 times faster than current top perform-

ing approaches. UAV-Net is well suited for on-board pro-

cessing and operates in real time on a Jetson TX2 platform.

Nevertheless, its accuracy is on par with state-of-the-art

approaches on the DLR 3K, VEDAI and UAVDT datasets.

Code and models are available on the project website.1

1. Introduction

In recent years, vehicle detection in aerial images re-

ceived significant attention, as it is crucial for many appli-

cations in the civil and military domain, e.g. traffic monitor-

ing, surveillance, disaster relief, as well as search and rescue

tasks. However, the relatively small object sizes, varying

vehicle types, partial occlusions, and intricate backgrounds

impede the detection task (see Figure 1).

Recent approaches [1, 2, 3, 4, 5, 6, 7, 8] for vehicle detec-

1https://gitlab.com/tringwald/uav-net

Figure 1: Example image from the DLR 3K dataset [11].

Object size and density are vastly different from commonly

used detection datasets.

tion in aerial imagery are based on deep learning detection

frameworks such as Faster R-CNN [9] and SSD [10]. Al-

though inference time plays an important role when using

deep learning based object detectors in a real life scenario

on mobile platforms like UAVs, past research on vehicle

detection in aerial imagery mostly focused on improving

detection accuracy [4, 5, 6, 7, 8]. Thus, most existing ap-

proaches are limited to offline processing or deployment on

powerful hardware in a ground control station.

Our target scenario in this work is on-board processing

of imagery during the flight time of a UAV. In such an aerial

setting, increased inference speed does not only relate to the

frame rate at which a video can be processed but also to the

area of ground that can be analyzed in a fixed time frame.

This may allow aerial platforms to fly faster or at higher

altitudes.

In the wider image classification literature, novel

computation-efficient CNN architectures, such as Mo-

bileNet [12], ShuffleNet [13], or SqueezeNet [14], have re-

cently been proposed for use on mobile platforms with lim-

ited resources. Adopting these CNN architectures as base

networks for object detection frameworks leads to high de-

tection accuracy while inference time and memory footprint

are considerably reduced [12, 15].

In this work, we propose a computation-efficient and

lightweight vehicle detector called UAV-Net, which is based

on SSD and adapted to the unique characteristics of aerial

imagery. For this purpose, we systematically assess mod-

ifications to the key stages of the detector with regard to

their influence on inference time and detection accuracy.

The impact of multiple computation-efficient CNN archi-

tectures and their variants are analyzed as base networks for

the vehicle detection task. We further propose a novel filter

pruning approach that automatically condenses the trained

networks in an iterative manner. Furthermore, the impact

of employed feature maps, activation functions, and filters

used for regression and classification stages is evaluated.

Based on our findings, we finally construct UAV-Net, which

has a model size of less than 0.4 MiB and is more than 16

times faster than current top performing approaches. UAV-

Net is well suited for on-board processing and operates

in real time on a Jetson TX2 platform, while its accuracy

is on par with the state-of-the-art approaches on the DLR

3K [11], VEDAI [16] and UAVDT [17] datasets.

In summary, our contributions are threefold: i) We eval-

uate and compare several important design choices to op-

timize the accuracy-speed trade-off for aerial vehicle de-

tection, ii) we propose a novel filter pruning approach, and

iii) we compose a new, fast, yet accurate vehicle detector for

aerial imagery based on the most promising design choices

and provide it to the community to inspire further research.

2. Related Work

In literature, a large variety of deep learning based detec-

tion frameworks has been proposed, which can be catego-

rized into two-stage and one-stage approaches. Two-stage

approaches like Faster R-CNN [9] and R-FCN [18] typi-

cally comprise an initial stage to generate region proposals,

which are then classified in the subsequent stage. One-stage

approaches like SSD [10] and YOLOv2 [19] predict object

classes and locations in a single step, which generally re-

sults in improved inference speed compared to two-stage

approaches. While multiple modifications, e.g. multi-layer

exploitation [10, 20] and top-down-networks [21, 20, 22]

have been proposed to improve the detection accuracy, less

research focused on lightweight object detection methods

suited for mobile platforms.

Several authors proposed to employ lightweight ar-

chitectures as base networks for different object detec-

tion frameworks. Howard et al. [12] proposed Mo-

bileNet, which comprises depthwise separable convolu-

tions, as base network for SSD. MobileNet-SSD achieves

a comparable detection accuracy on the MS COCO dataset

with a significantly reduced parameter and FLOP count.

SqueezeDet [15], which is inspired by the YOLO detection

pipeline, employs SqueezeNet [14] as base network. State-

of-the-art detection accuracy is achieved on the KITTI ob-

ject detection dataset while the inference speed is clearly

reduced. Similar to SqueezeDet, Tiny SSD [23] comprises

a base network that leverages the fire modules introduced

in [14]. Wang et al. [24] outperform MobileNet-SSD on

PASCAL VOC and MS COCO by employing PeleeNet [24]

as base network for SSD. Recently, Li et al. [25] proposed

Tiny-DSOD, which is based on SSD [10] and DSOD [26].

The base network is replaced by a depthwise dense block

based architecture. In contrast to the other lightweight de-

tectors, a depthwise feature pyramid network is used to add

more semantic information. Instead of replacing the base

network, Li et al. [27] proposed a light-head R-CNN to

speed up two-stage approaches. For this, the number of fea-

ture map channels is reduced and the classification head is

replaced by a single fully-connected layer.

Deep learning based detection frameworks have been

applied to various domains, including vehicle detection in

aerial images. Several modifications have been proposed

to account for the characteristics of aerial imagery. For

instance, Sakla et al. [1] removed the last two sequences

of convolutional layers in order to increase the feature

map resolution for Faster R-CNN. In [2], the authors ad-

ditionally adapted the size of anchor boxes to the size of

present vehicles. In [3], the authors analyze adaptations

of Faster R-CNN, R-FCN and SSD. Following the gen-

eral literature, several modifications, such as top-down net-

works [4, 5, 6] and multi-layer exploitation [7, 8], have been

adopted for vehicle detection in aerial imagery. But very

few works focus on improving the inference speed or ap-

plying lightweight networks. The authors of [28] propose

ShuffleDet, which employs ShuffleNet as base network for

a modified variant of SSD and apply it for car detection in

parking lots. Experimental results show a good trade-off

between accuracy and speed on mobile platforms.

3. Fundamentals

3.1. Single Shot MultiBox Detector (SSD)

SSD is often used as base detection framework due to

its good trade-off between detection accuracy and inference

speed. SSD is a fully convolutional network that can use

any CNN base network as a feature extractor. The outputs of

multiple convolutional layers with different dimensions are

used as feature maps to predict detections at multiple scales.

For this purpose, a set of default boxes used for bounding

box regression is associated with each feature map loca-

tion. The positions of the default boxes are fixed relative

to the corresponding feature map location. (C+4)K con-

volutional filters with kernel size 3×3 are applied at each

feature map location to predict four bounding box offsets

Feature Map

...

...

conf

loc

A

B

(a) Normal SSD setup with separate convolu-

tion blocks A and B.

Feature Map

...

...

conf

loc

A
Bc

BL

(b) SSD setup with shared convolution block

A and separate blocks BC and BL.

conf

loc

c

BL

B

A

Feature Map

(c) For a single feature map, block A can also

be seen as an extension to the base network.

Figure 2: Different setups for the auxiliary classification and bounding box regression filters.

relative to the default boxes and C confidence scores, where

C is the number of object classes and K is the number of

default boxes. The predictions from all feature maps are

then combined. Finally, redundant predictions are filtered

out via non-maximum suppression (NMS).

3.2. Mobile Networks

With the upcoming need for inference on mobile plat-

forms, earlier network architectures like VGG-16 [29] are

not suitable anymore due to the lack of computational

power. Therefore, research extended to the area of mobile

networks, trying to find a good trade-off between compu-

tational requirements and accurate output. Most modern

CNNs for mobile platforms share common design guide-

lines like reducing the channel depth or avoiding larger con-

volution kernels wherever possible.

MobileNet [12] uses depthwise separable convolution

(DSC) as its main building block instead of 3×3 convolu-

tions. The DSC block is comprised of a 3×3 depthwise

convolution followed by a 1×1 pointwise convolution. For

non-trivial image dimensions and channel depths, a DSC

block is often an order of magnitude more efficient than

normal 3×3 convolutions while only requiring a fraction of

their parameters.

ShuffleNet [13] further refines this approach by also re-

placing the 1×1 convolutions with cheaper 1×1 group con-

volutions. Depending on the group count g, a group convo-

lution filter only considers the C
g

channels of its respective

group instead of the full channel depth C. This further low-

ers the parameter count and computational complexity of

the group convolution operation and makes ShuffleNet one

of the smallest networks evaluated in this paper.

While DSCs and group convolutions are more efficient in

theory, framework implementations are often unoptimized

or not even present. SqueezeNet [14] does not make use

of these special convolution types and instead leverages the

fire module building block that only consists of standard

convolutions. The “squeeze” part of a fire module reduces

the number of channels for the mixed 1×1 and 3×3 “ex-

pand” convolutions by compressing the channel depth with

cheaper 1×1 convolutions first.

ZynqNet [30] further improves the SqueezeNet architec-

ture by replacing pooling with strided convolution, different

downsampling steps and the alternating use of 3×3 and 1×1

kernels for the “squeeze” layer.

4. Optimization Strategy

4.1. Adaptation to Aerial Imagery

The employed feature maps and default box settings are

essential design parameters for tuning the detection accu-

racy [1, 2]. High feature map resolutions are necessary to

precisely locate small object instances, especially for vehi-

cles in aerial imagery [3]. Thus, we only use the output of

the last layer with an approximate downsampling factor of

8 as feature map, e.g. conv4 3 in case of VGG-16. Deeper

layers are not considered due to the low spatial resolution of

feature maps. Note that renouncing multi-layer exploitation

is only suited in case of a constant ground sampling dis-

tance which results in negligible variation in object sizes. In

case of small object instances, the best detection accuracy is

achieved for default boxes in the range of the object sizes.

To provide suitable default box sizes, we apply the clus-

tering approach from [21] to the training data. Similarly,

max(H
W
, W
H
) is used as the clustering feature for the aspect

ratio and
√
W ×H for the default box size. This method

yields aspect ratios {1.3, 1.9} and box sizes {28, 35} px for

the DLR 3K dataset. As vehicles can be arbitrarily rotated,

the respective reciprocal ratios are also added.

4.2. Auxiliary SSD Layers

In the SSD framework, classification and bounding box

regression filters (auxiliary or prediction layers) are applied

to different layers of the base network to predict detections

(see Figure 2a). For this step, standard 3×3 convolutions

are usually used for blocks A and B. Motivated by the

modifications proposed in [24] and [31], different building

blocks are evaluated as replacements for the expensive 3×3

convolutions. Additionally, the setup in Figure 2b is used to

share an intermediate stage for both subsequent classifica-

tion and regression filters. This can then be used to split a

DSC into a pure depthwise part (block A) and a pure point-

wise part in block BC and BL. Note that for a SSD setup

with a single feature map, Figure 2b could also be seen as

an extension to the base network as shown by the dashed

line in Figure 2c, whereas the separate setup can be seen as

Figure 2c with an identity transformation as block A.

4.3. Filter Pruning

Nowadays, base networks like VGG or MobileNet are

commonly pretrained on ImageNet classification with 1000

classes. Thus, these networks often have a large number

of parameters which is unnecessary for detection tasks with

only a few classes. We therefore propose an automatic prun-

ing approach to iteratively prune an existing network by re-

moving filter kernels. Our approach is based on the one-shot

pruning method by Li et al. [32], which prunes a convolu-

tional layer by calculating the ℓ1 norm for every filter and

then removing the filters with the lowest value until only

a percentage δ of filters remain. However, this requires to

either use a fixed percentage δ for all layers or find an δn
for every layer ln ∈ L, where L is the set of all convolu-

tional layers in a network. Using a fixed δ leads to infe-

rior results, as certain layers are more sensitive to pruning

than others, e.g. convolutional layers close to the input as

shown in [32]. A layerwise δn involves the retraining of

many different network architectures in order to find an op-

timal combination. This requires an excessive amount of

resources and can take multiple GPU-months – especially

when training on large aerial images. We therefore propose

an automatic pruning algorithm that requires little to none

human intervention and few resources.

Our automatic pruning approach only requires the train-

ing of a fully-sized architecture followed by a single fine-

tuning step. The pruning process starts by considering every

convolutional layer ln ∈ L of the already trained network.

Similar to [32], the ℓ1 norm for every filter fi in layer ln is

calculated as
∑

w∈fi
|w| where w ∈ fi denotes all weights

in a filter fi. We then remove a fixed amount of k filters

with the lowest ℓ1 norm from ln and also the correspond-

ing k channels of the convolutional filters in the next layer.

The network is evaluated on a small validation set in order

to judge the impact of the removed filters. For our detec-

tion task, we monitor the sensitivity metric S = TP
P

, as

this best describes the network’s abilities to detect objects

while being more stable than average precision. This pro-

cess is repeated for every layer ln, yielding tuples of the

form (S, ln, k). The best tuple with regard to S is then cho-

sen (prefering later layers in case of a draw) and used to

create a new network with k fewer filters in layer ln for the

next pruning iteration. This process can be seen as a greedy

tree search and is visualized in Figure 3. The algorithm ter-

minates when only a predetermined percentage ϕ of filters

remains in the network. The final network is then finetuned

to recover the lost knowledge.

Figure 3: Visualization of the proposed autopruning ap-

proach. Dashed lines indicate considered pruning steps,

solid black lines indicate chosen pruning steps.

Compared to other approaches like [32] and [33], our

proposed algorithm only requires two hyperparameters ϕ

and k, where ϕ determines the accuracy-speed trade-off and

k defines the algorithm’s convergence speed at the cost of

a suboptimal pruning step. Furthermore, it does not require

retraining after every pruning iteration and can therefore be

completed in only a few hours on a single GPU. Unlike one-

shot approaches, our iterative pruning approach also consid-

ers prior pruning steps when calculating the ℓ1 norm and is

therefore able to react to these changes. Additionally, the

algorithm learns to avoid sensitive layers by monitoring the

chosen metric.

4.4. Batch Normalization

Another important part of modern CNN architectures is

the batch normalization layer proposed in [34]. During

training, batch normalization computes mean µ and vari-

ance σ2 values with which the input is normalized. A small

value ǫ is used to prevent a division by zero. Scale γ and

shift β are also added to enable the network to learn an

identity transformation. Batch normalization is then given

by Equation 1.

y = γ
(Wx+ b)− µ√

σ2 + ǫ
+ β. (1)

As µ, σ, γ and β are constant during inference, they can be

merged into the weights and biases of the previous convo-

lutional layer:

ŷ = Ŵx+ b̂ (2)

Ŵ = γ(
W√
σ2 + ǫ

) (3)

b̂ = γ(
b− µ√
σ2 + ǫ

) + β (4)

where Ŵ and b̂ are the rescaled weights and biases. This

procedure was also used in [21] and can help to achieve a

Value Titan X GTX 1060 Jetson TX2

CPU
48× Intel Xeon

E5-2650 v4

12× Intel Xeon

E649

4× ARM Cortex-A57 +

2× NVIDIA Denver2

RAM 256 GB 128 GB 8 GB (shared with GPU)

GPU
TITAN X (Pascal),

12 GB

GTX 1060 (Pascal),

6 GB

Tegra X2 (Pascal),

8 GB (shared with RAM)

Table 1: Platforms used for benchmarking.

large speedup without losing accuracy.

5. Experimental Results

The DLR 3K Munich Vehicle Aerial Image Dataset [11]

was used for the initial experiments. The dataset contains

20 aerial images with a resolution of 5616×3744 px and a

ground sampling distance (GSD) of 13 cm. The images are

split into 10 training and 10 test samples. Due to the large

extents, every image was cut into tiles of size 936×624 px.

Only tiles containing at least one object were considered for

our experiments. The annotations contain seven different

vehicle types given as oriented bounding boxes. Due to the

lack of annotations for most vehicle types, only the car

and van labels were considered and merged into a single

vehicle class. Furthermore, all oriented bounding boxes

were converted to axis-aligned bounding boxes according

to [1, 2, 7].

All SSD experiments were trained and evaluated with the

original Caffe SSD implementation [10]. For training, ran-

dom crops and rotations were introduced in addition to the

photometric data augmentations of the SSD framework, as

the dataset contains only 10 full size training images. For

training, we use the Adam optimizer [35], an initial learning

rate of 10−3 and a mini-batch size of 16.

In terms of detection accuracy, the models were evalu-

ated by plotting the precision-recall curves and calculating

the area under the curve, which is known as the average

precision (AP) metric. Every model was then benchmarked

on three different platforms, representing a server and desk-

top GPU, corresponding to ground-control-station or offline

processing, and the NVIDIA Jetson TX2, which can be in-

tegrated into UAVs for on-board processing (see Table 1).

The MAX-N power preset was used, allowing for the high-

est inference performance at the cost of a higher power

consumption (up to 15 W). Inference speed is reported in

frames per second (FPS) averaged over 500 forward passes.

The employed image input sizes are 936×624 px for DLR

3K. Note that the benchmarks do not include the NMS stage

(unless otherwise noted) to better judge the architectural

changes. Please refer to the supplementary material for

benchmarks including the NMS stage.

5.1. Baseline Experiments

Initially, different detection meta-architectures are com-

pared in Table 2. For SSD and Faster R-CNN, we use VGG-

Detection Framework AP (%)
Inference Speed (FPS)

Titan X GTX 1060 Jetson TX2

Faster R-CNN 97.2 6.0 3.0 0.5

SSD 97.3 24.7 10.1 1.2

YOLOv2 95.7 10.9 5.9 2.7

Table 2: Comparison of different detection meta-

architectures (including NMS stage). Note that YOLOv2

benchmarks are conducted with the Darknet framework.

B
o

x
es

co
n
v

4
3

fc
7

co
n
v

6
2

co
n
v

7
2

co
n
v

8
2

co
n
v

9
2

AP (%)

Inference Speed (FPS)

Titan X GTX 1060 Jetson TX2

2 ✓ ✗ ✗ ✗ ✗ ✗ 97.3 26.7 10.7 1.2

1 ✓ ✗ ✗ ✗ ✗ ✗ 97.2 27.9 11.7 1.3

1 ✓ ✓ ✗ ✗ ✗ ✗ 96.6 22.1 9.0 1.1

1 ✓ ✓ ✓ ✗ ✗ ✗ 96.1 21.6 8.8 1.1

1 ✓ ✓ ✓ ✓ ✗ ✗ 96.1 21.3 8.7 1.1

1 ✓ ✓ ✓ ✓ ✓ ✗ 96.0 21.1 8.6 1.1

1 ✓ ✓ ✓ ✓ ✓ ✓ 96.1 20.8 8.5 1.1

Table 3: Baseline results for VGG-SSD (including NMS

stage): Different feature maps and number of default box

sizes in comparison.

16 as base network and employ conv4 3 as feature map.

The default box settings described in Section 4.1 are used

for SSD. For Faster R-CNN, we adopt the anchor settings

from [3]. In case of YOLOv2, we employ the 10th convo-

lutional layer of Darknet-19 [19] as feature map in order

to provide equal feature map resolutions. SSD and Faster

R-CNN reach a similar AP of over 97% while YOLOv2

only achieves 95.7%. In terms of inference speed, Faster R-

CNN was the slowest meta-architecture due to the overhead

of its two-stage design. When running on the Jetson setup,

Faster R-CNN could only process a frame every two sec-

onds. Note that for YOLOv2, the original Darknet frame-

work was used for benchmarking. This could achieve 2.7

frames per second on the on-board platform. However, SSD

was faster for the desktop and server setup while also being

more accurate.

Overall, SSD yielded the best trade-off between detec-

tion accuracy and speed and was therefore chosen as the

meta-architecture for further experiments. Table 3 depicts

the impact of the number of default box sizes on the detec-

tion performance. For this purpose, the number of default

box sizes was reduced to one by simply using the mean of

the box size distribution (31px). Using only one default box

size yielded a comparable detection accuracy, while being

slightly faster on all benchmarking platforms.

Table 3 also depicts the effect on AP when using multi-

ple feature maps with different resolutions. All experiments

clearly show that no layer after conv4 3 could help to im-

prove the detection accuracy. This is mostly caused by the

constant ground sampling distance and vehicle size of the

dataset as discussed in Chapter 4.1. For the benchmarks,

adding fc7 causes a noticeable drop in inference speed due

Network Architecture AP (%)
Inference Speed (FPS)

Titan X GTX 1060 Jetson TX2

MobileNetBN
α=1.00 97.2 70.9 35.3 6.8

MobileNetα=1.00 97.2 124.9 67.1 11.7

MobileNetα=0.75 96.8 150.4 78.9 14.3

MobileNetα=0.50 94.1 199.9 102.7 19.6

ShuffleNetBN 96.4 55.2 35.7 10.8

ShuffleNet 96.4 91.0 59.7 14.8

SqueezeNet v1.0 97.2 135.9 60.9 10.2

SqueezeNet v1.1 97.2 183.7 81.2 14.6

ZynqNet 97.2 184.9 81.9 14.7

Table 4: Results for the MobileNet, Shufflenet, SqueezeNet

and ZynqNet architectures. Models marked with BN also

include the batch normalization layers during the bench-

mark.

to its large dimensions. Later feature maps like conv7 2

have already been pooled to a spatial size of 15×10 or less

and do therefore not contribute to the inference time in a

relevant way. Overall, using the VGG model with a sin-

gle feature map and one default box size yielded the best

trade-off and is therefore used as baseline for experiments

involving mobile networks.

5.2. Base Network Architectures

Furthermore, evaluation results for all mobile network

architectures introduced in Chapter 3.2 are given in Table 4.

Only one default box size was used for all network archi-

tectures. For ShuffleNet, the ShuffleNet 1×, g=3 model

was used, as it provides the best trade-off between accu-

racy and inference speed according to its authors [13]. For

each network architecture, we employ the output of the last

layer with an approximate downsampling factor of 8 as fea-

ture map. Thus, the feature maps exhibit similar resolutions

compared to conv4 3 of VGG-16. MobileNet and Shuf-

fleNet are commonly trained with batch normalization lay-

ers. Hence, benchmarks are reported for both architectures

with and without these layers, using the merging process

described in Chapter 4.4. In both cases, merging the batch

normalization led to a vast gain in inference speed, with an

improvement of up to 54 frames per second on the server

setup. The merging process does not affect AP as it is an

identity transformation.

For MobileNet, the impact of the channel depth multi-

plier α is evaluated. For a given layer, the channel depth

multiplier α ∈ (0, 1] reduces the number of input channels

M to αM and the number of output channels N to αN [12].

This is done before training and leads to a fixed, smaller ar-

chitecture. In comparison, MobileNet retained a high AP

even for the smallest model with α = 0.5. Unfortunately,

MobileNet is currently thwarted by the depthwise convo-

lution implementation, often leading to inferior throughput

when compared to models that only rely on standard convo-

lutions.

All fully-sized networks of the SqueezeNet family could

Network Architecture AP (%)
Inference Speed (FPS)

Titan X GTX 1060 Jetson TX2

ReLU 97.2 184.9 81.9 14.7

no squeeze ReLU 97.3 185.5 82.5 14.7

PReLU 97.1 157.8 70.2 12.6

leaky ReLU 97.1 185.6 82.4 14.9

ELU 97.3 186.4 82.7 14.7

Table 5: Comparison of Zynqnet with different activations.

Network Architecture AP (%)
Inference Speed (FPS)

Titan X GTX 1060 Jetson TX2

Normal 3×3 convolutions 97.2 184.9 81.9 14.7

Separate 1×1 convolutions 97.2 188.4 83.3 15.5

Separate 1×1 group convolutions 97.2 188.7 83.5 15.5

Separate DSC block 97.3 162.0 76.3 13.8

Separate squeeze/expand block 97.2 182.7 80.9 15.0

Shared DSC block 97.2 174.7 79.8 14.6

Shared squeeze/expand block 97.1 184.8 82.1 15.2

Table 6: Building blocks for auxiliary regression and clas-

sification layers.

reach VGG-level AP while running up to 11 times faster.

Expectedly, ShuffleNet could not reach the 97.2% AP mark,

due to its fast downsampling approach. Overall, ZynqNet

delivers the highest inference speed while also providing

detection results close to the VGG baseline. Additionally,

it only consists of standard convolutional and concatenation

layers and does not require special layers (e.g. a channel

shuffle layer). Therefore, ZynqNet is chosen as the base

network architecture for further refinement experiments.

5.3. Activations

Motivated by the results of Dong et al. [36] and Treml

et al. [37], we first evaluate the effect of the applied ac-

tivations. ZynqNet usually uses the ReLU activation after

every convolution block. Table 5 shows both AP and infer-

ence speed when replacing ReLU with the related activa-

tion functions PReLU, leaky ReLU and ELU. Additionally,

the currently unpublished SqueezeNet v1.2 idea is trans-

fered to ZynqNet by removing the ReLU activations after

the squeeze blocks. All experiments arrived at a similar AP

close to the baseline ReLU model with ZynqNet v1.2 and

ELU slightly improving the AP by 0.1%. In terms of run-

time, removing ReLU activations led to a measurable im-

provement for the server setup while results on the on-board

setup stayed the same. For leaky ReLU and ELU, runtime

improved due to implementation details of the Caffe frame-

work. Using PReLU degraded performance due to the over-

head associated with parameter loading and the more com-

plex computation.

5.4. Auxiliary SSD Layers

We further evaluate the effect of replacing the normal

3×3 convolutions in the auxiliary SSD layers with more ef-

ficient building blocks in Table 6. For the separate setup

(see Figure 2a), blocks A and B are set to either simple 1×1

convolutions, 1×1 group convolutions, a full DSC block for

both A and B or a “squeeze” block, using 1×1 convolutions

for channel depth reduction followed by 3×3 “expand” con-

volutions. The number of groups was set to 2 for the ex-

periment involving group convolutions, as this is the only

choice that evenly divides the number of input and output

channels. For the shared setup (see Figure 2b), the DSC was

split into a depthwise block A and pointwise blocks BC and

BL. The squeeze/expand block was divided similarly, with

a shared “squeeze” block A.

The results indicate that every building block could re-

place the normal 3×3 kernels without loss of accuracy. In

terms of inference speed, only a slight speedup could be

achieved for 1×1 (group) convolutions, as the number of

default box sizes and feature maps was already optimized

beforehand (see Table 3). Models involving depthwise sep-

arable convolutions experienced a small drop in throughput

due to the currently inefficient implementation. Even 1×1

(group) convolutions could reach the 97.2% AP of the origi-

nal model. As the receptive field is already noticeable larger

than the size of present vehicles, the additional spatial con-

text due to an auxiliary 3×3 filter is not required. Thus, we

propose that simple 1×1 (group) convolutions are sufficient

as auxiliary heads.

5.5. UAV­Net Architecture

For the UAV-Net architecture, all the improvements of

the previous sections are now combined. The main speedup

is achieved by replacing the initial VGG-16 base network

with our modified ZynqNet. The regression and classifi-

cation filters are replaced by simple 1×1 convolutions and

the ReLU activations after the squeeze layers are removed.

The remaining activations are replaced by ELU. Retraining

this modified network yields the same test performance as

the original network, as shown in Table 7. However, in-

ference speed improves, resulting in a gain of 1.2 FPS for

the on-board and 9.2 FPS for the server setup. Although

1×1 group convolutions also lead to a similar result in Ta-

ble 6, normal 1×1 convolutions were chosen for UAV-Net,

as group convolutions would impose an additional symme-

try constraint for the proposed pruning approach discussed

in Chapter 5.6. Please refer to the supplementary material

for a full network description.

5.6. Filter Pruning

In this section, we evaluate our proposed automatic prun-

ing approach. The pruning algorithm described in Chap-

ter 4.3 is applied to the fully-sized UAV-Netϕ = 1.00. Em-

pirically, we found that setting k = 4 provides a large

speedup while not impairing the pruning process in a no-

ticeable way. In total, the pruning UAV-Net took less than

a day on a single GPU. Note that the pruning process can-

not remove whole convolutional layers by pruning all fil-

Network AP (%)
Inference Speed (FPS)

Titan X GTX 1060 Jetson TX2

VGG 97.2 27.9 11.7 1.3

ZynqNet 97.2 184.9 81.9 14.7

UAV-Netϕ = 1.000 97.2 194.1 83.8 15.9

UAV-Netϕ = 0.750 97.2 225.8 98.8 18.8

UAV-Netϕ = 0.500 97.1 265.2 116.2 22.7

UAV-Netϕ = 0.250 95.4 342.6 153.3 31.3

UAV-Netϕ = 0.150 91.3 410.0 181.2 38.2

UAV-Netϕ = 0.075 11.1 426.8 203.5 43.1

Table 7: UAV-Net on DLR 3K with different ϕ values in

comparison to selected baseline models.

Network architecture
Model Parameter Relative

Size Count Size

VGG, 2 box sizes 30.19 MiB 7,912,316 100.0%

ZynqNet 0.89 MiB 230,782 2.9%

UAV-Netϕ = 0.50 0.39 MiB 101,934 1.3%

UAV-Netϕ = 0.15 0.07 MiB 17,146 0.2%

Table 8: Model size (on disk) and parameter counts for se-

lected network architectures.

ters. Therefore, at least k filters will remain in every layer.

Results for characteristic ϕ values are provided in Table 7.

Even when setting ϕ = 0.5, UAV-Net can reach an AP

value close to the VGG reference, while being more than

21 FPS faster on the Jetson TX2. Pruning more than 50%

of the filters in UAV-Net leads to a larger degradation in

AP with up to 38 FPS on the mobile platform. However,

setting ϕ = 0.075 results in a huge drop in terms of AP.

The reason for this is the squeeze/expand structure of UAV-

Net. For ϕ = 0.075, almost all expand layers have already

been pruned until only k filters remain, therefore leaving

our algorithm no choice but to prune the squeeze layers.

As even the fully-sized UAV-Net has only 16 filters in the

upper squeeze layers, pruning additional filters leads to the

observed collapse. However, our algorithm learned to defer

this suboptimal pruning step until no other choice remained.

In addition to a speedup, filter pruning also leads to

smaller model sizes. Table 8 shows the model size of se-

lected networks in comparison. For ϕ = 0.50, UAV-Net

reaches VGG-level AP with only 1.3% of its model size.

UAV-Netϕ = 0.15 still reaches 91.3% AP at 0.2% of VGG-

SSD’s model size.

Qualitative detection results for UAV-Netϕ=0.50 are pro-

vided in Figure 4. As usual in aerial vehicle detection, false

positives are mostly caused by roof structures. Please refer

to the supplementary material for further visualizations.

5.7. Transfer to other Datasets

To identify an optimized model for on-board deployment

under various conditions, we conduct experiments on the

VEDAI and UAVDT datasets. VEDAI is comprised of 1268

images of size 1024×1024 px and a GSD of 12.5 cm, which

is similar to DLR 3K. According to [1], only small vehicles,

Figure 4: Qualitative results for UAV-Netϕ=0.50 on DLR 3K. A confidence threshold of 50% was used to generate the

detections (green boxes = true positives, yellow boxes = false negatives, red boxes = false positives).

Dataset Model AP (%)
Inference Speed (FPS)

Titan X GTX 1060 Jetson TX2

VEDAI VGG 96.4 16.7 5.8 0.7

VEDAI UAV-Netϕ=1.00 95.7 123.5 50.2 9.9

VEDAI UAV-Netϕ=0.50 95.2 168.0 73.8 13.9

VEDAI UAV-Netϕ=0.15 93.5 256.4 125.9 22.9

UAVDT R-FCN [17] 34.35 4.7 – –

UAVDT SSD [17] 33.62 41.6 – –

UAVDT Faster R-CNN [17] 22.32 2.8 – –

UAVDT RON [17] 21.59 11.1 – –

UAVDT UAV-Net
1×1,c=1

ϕ=1.00 26.21 214.0 98.8 18.3

UAVDT UAV-Net
5×5,c=5

ϕ=1.00 34.52 80.1 34.7 6.6

UAVDT UAV-Net
3×3,c=4

ϕ=1.00 32.76 112.2 51.5 9.0

UAVDT UAV-Net
3×3,c=4

ϕ=0.50 31.82 132.5 69.2 11.4

Table 9: UAV-Net results on VEDAI-1024 and UAVDT.

Models from [17] were benchmarked differently. c is the

number of clustered box sizes.

namely the classes car, pickup, and van, are considered

for evaluation. UAVDT comprises roughly 80k images of

size 1024×540 px. In contrast to DLR 3k and VEDAI, im-

ages are recorded at different flying altitudes with different

camera angles. In order to show the general applicability of

our UAV-Net detector, we finetune the DLR 3K pretrained

models with a 10 times lower learning rate and report the

results in Table 9. Please note that the reference UAVDT

benchmarks reported in [17] were conducted on a work-

station with an Intel i9-7900X CPU and a NVIDIA GTX

1080 Ti GPU with a different benchmarking protocol. AP

for UAVDT is calculated with the official MATLAB eval-

uation script. To measure the inference time, image input

sizes are 1024×1024 px for VEDAI and 1024×540 px for

UAVDT.

On VEDAI, even UAV-Netϕ = 0.15 could reach an AP

close to the VGG baseline while being more than 22 FPS

faster on the Jetson TX2. For UAVDT, our assumption from

Chapter 5.4 does not hold anymore, as UAVDT exhibits

large variations in vehicle scales due to different camera

angles and various GSDs. Furthermore, the fixed box size

from Chapter 4.1 does not fit the various object sizes any-

more. We therefore also provide results for UAV-Net with

modified prediction layers for a larger receptive field and

more default box sizes found by clustering the training set

boxes (denoted as c). Using 3×3 convolutions and four de-

fault box sizes shows a good trade-off between detection

accuracy and inference speed. UAV-Net
5×5,c=5

ϕ=1.00 even sur-

passes the best result reported in [17]. Please refer to the

supplementary material for a detailed ablation study.

6. Conclusion

In this paper, multiple state-of-the-art deep learning ob-

ject detectors were adjusted for the task of vehicle detec-

tion in aerial UAV imagery with on-board deployment in

mind. The most promising architectures were further exam-

ined and improved by changes to the activations, auxiliary

prediction layers and an automatic pruning approach. With

these changes in mind, we propose UAV-Net, a novel vehi-

cle detector for on-board inference that can run in real time

on a Jetson TX2 while retaining an AP close to the reference

baselines on the DLR 3K, VEDAI and UAVDT datasets.

Although a multitude of different approaches and as-

pects were evaluated, room for further optimization re-

mains. The recently proposed ShuffleNet v2 [38] and Mo-

bileNet v2 [31] architectures could be investigated as alter-

native base networks and might yield an additional speedup.

Finally, model quantization like FP16 or INT8 inference

could be used to further lower the model’s memory foot-

print and achieve a higher inference speed.

References

[1] W. Sakla, G. Konjevod, and T. N. Mundhenk. Deep multi-

modal vehicle detection in aerial ISR imagery. In WACV.

IEEE, 2017. 1, 2, 3, 5, 7

[2] L. W. Sommer, T. Schuchert, and J. Beyerer. Fast deep vehi-

cle detection in aerial images. In WACV. IEEE, 2017. 1, 2,

3, 5

[3] L. Sommer, L. Steinmann, A. Schumann, and J. Bey-

erer. Systematic evaluation of deep learning based detection

frameworks for aerial imagery. In Automatic Target Recog-

nition XXVIII, volume 10648. SPIE, 2018. 1, 2, 3, 5

[4] Q. Li, L. Mou, Q. Xu, and Y. Zhang. R3-Net: A Deep Net-

work for Multi-oriented Vehicle Detection in Aerial Images

and Videos. arXiv preprint arXiv:1808.05560, 2018. 1, 2

[5] M. Y. Yang, W. Liao, X. Li, and B. Rosenhahn. Deep Learn-

ing for Vehicle Detection in Aerial Images. In ICIP. IEEE,

2018. 1, 2

[6] L. Sommer, A. Schumann, T. Schuchert, and J. Beyerer.

Multi Feature Deconvolutional Faster R-CNN for Precise

Vehicle Detection in Aerial Imagery. In WACV. IEEE, 2018.

1, 2

[7] T. Tang, S. Zhou, Z. Deng, H. Zou, and L. Lei. Vehicle de-

tection in aerial images based on region convolutional neu-

ral networks and hard negative example mining. Sensors,

17(2):336, 2017. 1, 2, 5

[8] Z. Deng, H. Sun, S. Zhou, J. Zhao, and H. Zou. Toward fast

and accurate vehicle detection in aerial images using coupled

region-based convolutional neural networks. IEEE Journal

of Selected Topics in Applied Earth Observations and Re-

mote Sensing, 10(8):3652–3664, 2017. 1, 2

[9] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, 2015. 1, 2

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot multibox detector. In

ECCV, 2016. 1, 2, 5

[11] K. Liu and G. Mattyus. Fast Multiclass Vehicle Detec-

tion on Aerial Images. IEEE Geosci. Remote Sensing Lett.,

12(9):1938–1942, 2015. 1, 2, 5

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 1, 2, 3, 6

[13] X. Zhang, X. Zhou, M. Lin, and J. Sun. ShuffleNet: An Ex-

tremely Efficient Convolutional Neural Network for Mobile

Devices. In CVPR, 2018. 1, 3, 6

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and <0.5 MB model size. arXiv

preprint arXiv:1602.07360, 2016. 1, 2, 3

[15] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer. SqueezeDet:

Unified, Small, Low Power Fully Convolutional Neural

Networks for Real-Time Object Detection for Autonomous

Driving. In CVPR Workshops, 2017. 2

[16] S. Razakarivony and F. Jurie. Vehicle detection in aerial

imagery: a small target detection benchmark. Journal of

Visual Communication and Image Representation, 34:187–

203, 2016. 2

[17] D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, W. Zhang,

Q. Huang, and Q. Tian. The unmanned aerial vehicle bench-

mark: object detection and tracking. In ECCV, 2018. 2, 8

[18] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via

region-based fully convolutional networks. In NIPS, 2016. 2

[19] J. Redmon and A. Farhadi. YOLO9000: better, faster,

stronger. CVPR, 2017. 2, 5

[20] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan,

and S. J. Belongie. Feature Pyramid Networks for Object

Detection. In CVPR, 2017. 2

[21] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg.

DSSD: Deconvolutional single shot detector. arXiv preprint

arXiv:1701.06659, 2017. 2, 3, 4

[22] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li. Single-Shot

Refinement Neural Network for Object Detection. In CVPR,

2018. 2

[23] A. Wong, M. J. Shafiee, F. Li, and B. Chwyl. Tiny SSD: A

Tiny Single-shot Detection Deep Convolutional Neural Net-

work for Real-time Embedded Object Detection. In CRV,

2018. 2

[24] R. J. Wang, X. Li, S. Ao, and C. X. Ling. Pelee: A Real-Time

Object Detection System on Mobile Devices. In NeurIPS,

2018. 2, 3

[25] Y. Li, J. Li, W. Lin, and J. Li. Tiny-DSOD: Lightweight

Object Detection for Resource-Restricted Usages. In BMVC,

2018. 2

[26] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue.

DSOD: Learning deeply supervised object detectors from

scratch. In ICCV, 2017. 2

[27] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun. Light-

Head R-CNN: In defense of two-stage object detector. arXiv

preprint arXiv:1711.07264, 2017. 2

[28] S. M. Azimi. ShuffleDet: Real-Time Vehicle Detection Net-

work in On-board Embedded UAV Imagery. In ECCV, 2018.

2

[29] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition, 2014. 3

[30] D. Gschwend. ZynqNet: An FPGA-accelerated embedded

convolutional neural network. Master thesis, ETH-Zurich,

2016. 3

[31] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.

Chen. MobileNetV2: Inverted Residuals and Linear Bottle-

necks. In CVPR, 2018. 3, 8

[32] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf.

Pruning filters for efficient convnets. In ICLR, 2016. 4

[33] S. Han, J. Pool, and J. Tran. Learning both weights and con-

nections for efficient neural network. In NIPS, 2015. 4

[34] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 4

[35] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In ICLR, 2015. 5

[36] X. Dong, G. Kang, K. Zhan, and Y. Yang. EraseReLU: a

simple way to ease the training of deep convolution neural

networks. arXiv preprint arXiv:1709.07634, 2017. 6

[37] M. Treml, J. Arjona-Medina, T. Unterthiner, et al. Speed-

ing up semantic segmentation for autonomous driving. In

MLITS, NIPS Workshop, 2016. 6

[38] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. ShuffleNet V2:

Practical Guidelines for Efficient CNN Architecture Design.

ECCV, 2018. 8

