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Abstract

Deep neural network based techniques are state-of-the-

art for object detection and classification with the help of

the development in computational power and memory ef-

ficiency. Although these networks are adapted for mobile

platforms with sacrifice in accuracy; the resolution increase

in visual sources makes the problem even harder by raising

the expectations to leverage all the details in images. Real-

time small object detection in low power mobile devices has

been one of the fundamental problems of surveillance ap-

plications. In this study, we address the detection of pedes-

trians and vehicles onboard a micro aerial vehicle (MAV)

with high-resolution imagery. For this purpose, we exploit

PeleeNet, to our best knowledge the most efficient network

model on mobile GPUs, as the backbone of an SSD network

as well as 38x38 feature map in the earlier layer. After illus-

trating the low accuracy of state-of-the-art object detectors

under the MAV scenario, we introduce a tiling based ap-

proach that is applied in both training and inference phases.

The proposed technique limits the detail loss in object de-

tection while feeding the network with a fixed size input.

The improvements provided by the proposed approach are

shown by in-depth experiments performed along Nvidia Jet-

son TX1 and TX2 using the VisDrone2018 dataset.

1. Introduction

In recent years, object detection has been extensively

studied for different applications including face detec-

tion, video object co-segmentation, video surveillance, self-

driving cars and also for higher level reasoning in the con-

text of human-computer interaction [1]. Convolutional neu-

ral networks(CNNs) are the workhorse behind the state-of-

the-art object detection techniques. In this field, ground-

breaking and rapid adoption of deep learning architectures

have produced highly accurate object detection methods

such as R-CNN [2], Fast R-CNN [3], Faster R-CNN [4],

RetinaNet [5], that are later extended to faster and still accu-

rate versions such as SSD[6], YOLO[7], and variants. Gen-

erally trained and evaluated on well-known datasets such

as ImageNet[8], Pascal VOC12[9], COCO[10], comprehen-

Figure 1. The proposed approach improves small object detection

accuracy that is a common problem for recent object

detection frameworks

sive comparisons are provided by recent studies.

It is important to note that these common data sets mostly

involve low-resolution images (256x256) including consid-

erably large objects with large pixel coverage. Therefore,

the trained models provide very successful detection perfor-

mance for those types of input data. On the other hand, they

yield significantly lower accuracy on small object detec-

tion tasks in high-resolution images generated by the high-

end cameras. The recent advances in camera and robotics

technologies have pioneered surveillance applications in

many ways including drones, 4K cameras, and enabled

long-range object detection that is met under (D)etection,

(O)bservation, (R)ecognition and (I)dentification (DORI)

criteria [11]. DORI criteria define the minimum pixel height

of the objects for different tasks. According to [11], 10% the

image height is required to detect and observe the objects

(108 pixels in HD videos), while the percentage increases

to 20% f or recognition. Even though DORI criteria is met

under certain circumstances, relatively small pixel coverage

and down-sampling affect the capabilities of CNN based

object detection approaches. In addition, these techniques

cannot cope with high-resolution images due to memory re-

quirements and computational constraints.

The challenges met during real-time small object de-

tection problem mostly apply for micro aerial vehicle

(MAV) applications [12],[13], where size, weight and

power (SWaP) are the limiting factors for use of high per-

formance processors. The MAVs observe the ground at a



certain altitude where objects (pedestrian, car, bicycle etc.)

in a scene cover considerably smaller pixel areas [14]. Be-

sides, real-time processing is required for these vehicles to

enable instant flight control for detection and tracking that

are common surveillance applications [14] .

In this study, we propose an efficient solution for small

object detection on high-resolution images while maintain-

ing fast execution with low complexity and memory foot-

print. For this purpose, we focus on pedestrian and vehicle

detection on board of MAVs that involves the problems dis-

cussed so far. Solution for these problems relies on three

stages: In the first step, training data set is augmented with

the use of subset tiles that are cropped within the original

high-resolution images while the object bounding boxes are

mapped accordingly. Such crops map small objects to a

larger relative area and prevent misses at the early layers of

CNN structure during the train phase. The second step fo-

cuses on the deployment of CNN, where target images are

divided into overlapping tiles and object detection is exe-

cuted on each tile independently. Object proposals in each

tile are merged for final detections in the original resolution

of the input image. In order to benefit the power of tiling

while fulfilling real-time requirements, we exploit an effi-

cient framework, Pelee [15], that is originally applied on

images of size 304x304. We modify the feature resolution

in Pelee to tackle small objects as the third alternative. All

the experiments are conducted on NVIDIA Jetson TX1 and

TX2 modules which are very popular mobile GPUs.

The organization of the paper is a follows. In section

2, we briefly talk about the previous work on object detec-

tion mainly focusing CNNs. In the third section, problem

is clarified by introducing the main algorithm design, de-

scription of the data set used in the paper. After presenting

experimental results in Section 4, we conclude the paper

with certain remarks on the use of tiling at different stages.

2. Related Work

The recent learning-based object detection techniques

can be categorized into two: The region proposal based

methods that involve generation of region proposals fol-

lowed by classification and the regression/classification

based methods adopting a unified framework for detection

and classification. Each mainstream approach is summa-

rized in the following sub-sections providing the drawbacks

specifically on small object detection and give certain de-

tails about the recent advances in this topic.

2.1. Region Proposal Based Framework

These methods, including R-CNN, SPP-net [16], Fast R-

CNN, Faster R-CNN, R-FCN [17], FPN [18], and Mask

R-CNN [19], formulate the object detection task as a two-

stage problem. The first stage generates region propos-

als within an image while the second stage classifies each

proposal into different object categories according to CNN

based deep features. These methods use regions to localize

the objects rather than looking at the full frame.

Significant amount of research is devoted to improve

the extraction of candidate bounding boxes that replaces-

the well-known sliding window approach. R-CNN gener-

ates about 2K region proposals for each image based on

selective search [20] that uses a simple bottom-up group-

ing and provides more accurate candidate boxes in arbitrary

sizes. This approach can be computationally expensive due

to straightforward two-step approach: the first step crops

externally computed box proposals, then the second step

executes a CNN classifier on these cropped boxes. Fast

R-CNN alleviated this problem by pushing the entire im-

age once through a feature extractor and then cropping at

an intermediate layer. In order to accelerate the process,

Faster R-CNN generates box proposals via neural networks

instead of an external proposal utilized in both R-CNN and

Fast R-CNN. Although these methods have provided more

accurate results, they are far from real-time deployment on

mobile devices due to high computation and memory re-

quirements as given in Table 1.

2.2. Regression/Classification Based Framework

Due to the ever increasing number of applications re-

quiring accurate object detection on mobile devices, ex-

tensive research is conducted on efficient model design.

This tendency pioneered the regression/classification based

approaches such as MultiBox [21], AttentionNet [22], G-

CNN [23], YOLO [7], SSD[6], YOLO variants [24, 25] and

Pelee[15]. These techniques exploit a single convolutional

network to predict both the bounding boxes and class prob-

abilities of the objects in a single run that significantly re-

duces the computational load.

In this class of algorithms, YOLO splits an image into an

MxM grid, within each, only one object is predicted. Each

grid predicts a fixed number, say N, of bounding boxes,

which keep class probability and offset values. Hence, a to-

tal of MxMxN boxes are predicted. The boxes having a class

probability above a specified threshold are used to locate the

objects in whole image. YOLO struggles in generalization

of objects with unusual aspect ratios and dealing with small

objects that impose strong spatial constraints on bounding

box predictions. In order to handle these problems, SSD

is introduced that is a combination of YOLO and Faster R-

CNN. SSD takes an input image and learns the bounding

box and class probabilities at the same time as in YOLO.

Furthermore, it uses anchor boxes at various aspect ratios

such as 1/2, 1/3, 1, 2, 3 similar to Faster R-CNN, hence,

reducing the previous problems of both.

Feature extraction methods such as MobileNetv2 [26]

and ShuffleNet [27] used in SSD are heavily dependent on

the depth-wise separable convolution, which lacks efficient

implementation. On the contrary, a recent method, Pelee,

proposes an efficient architecture that is built on conven-



tional convolution with DenseNet [28] to alleviate the ef-

ficiency problem. In addition to stem block and compos-

ite function optimizations, Pelee uses 5 scale feature maps

(19x19, 10x10, 5x5, 3x3, 1x1) to reduce computational cost

instead of one 38x38 feature map used in SSD. As a re-

sult, Pelee has faster and more lightweight feature extrac-

tors, while yielding still accurate results [15].

A comprehensive comparison for the regional and

regression-based techniques is given in Table 1, which is an

extended version of a table presented in [15], with the en-

tries copied from the related papers. It is clear that regional

methods are far from real-time deployment on mobile plat-

forms. Pelee and YOLOv3 are the most efficient models

with comparable accuracy.

2.3. Improvements for Small Objects

SSD models are competitive with Faster R-CNN and R-

FCN on large objects, while they typically have (very) poor

performance on small objects [29]. For this reason, stud-

ies have been revealed to ensure speed balance of accuracy

in small objects. RMNet[30], a recent study, which does

not compromise the accuracy while satisfying the real-time

computational constraints. The authors emphasize the depth

of the CNN based network as the key component of a ro-

bust feature extractor and utilize a residual deep network

with a hundred layers. In order to overcome the computa-

tional burden of a very deep network, the residual blocks are

lightened by depth-wise convolutions, bottlenecks and the

limited number of feature channels. An SSD model using

RMNet as the backbone, which is available in the OpenVino

toolkit[31], ingests images of 1024x1024 and leverages rel-

ative high-resolution in small object detection.

[32] uses a two-level tiling based technique in order to

detect small objects. In the first level YOLO-v2 object

detection model is utilized as an attention model to focus

on the regions of interest with a coarse tiling of the high-

resolution images up to 8K. In the second level, attention

outputs are used to select image crops of a finer tiling, and

the same object detection model is applied once more on

these image crops. Both the first and second level detection

tasks for the corresponding image crops are performed on

a GPU server. In contrast to their work, we design a fixed

scheme tiling and avoid any extra computational needs like

an attention model to operate fully on the edge side.

Recently, [33] proposes a dynamic tiling approach where

the sizes of tiles are arranged according to the network in-

put size. Even though, it is not constrained by real-time

execution (by use of tiny-YOLO and DRONET), [33] intro-

duces novel attention and memory mechanisms for efficient

and dynamic tile utilization. In contrast to their work, we

propose overlapping static tiles to preserve object detection

along the tile boundaries, extend the use of tiles during train

stages and focus on real-time execution.

3. Problem Description

The constraints on the real-time deployment of object

detection frameworks on mobile devices (especially MAVs

and battery equipped vehicles) strictly limits the number of

available networks. The aforementioned region-based ap-

proaches are not convenient for prompt operation, while

regression-based techniques are designed for onboard pro-

cessing. In Table 1, accuracy on COCO data-set and com-

putation timings (frame per seconds (FPS)) on Nvidia TX2

are illustrated for various regression-based techniques with

their mobile adapted versions as well. According to the ta-

ble, recently introduced Pelee is not only faster than all mo-

bile detection frameworks (SSD+MobileNet and YOLOv3-

tiny [35]) but also enables comparable accuracy with re-

spect to the models having the 10x larger size and 4x slower

computation capability (such as YOLOv2). To our best

knowledge, Pelee is not only the currently best alternative

among various state-of-the-art techniques but also provides

enough room for additional computation.

Even though Pelee enables real-time performance on

mobile GPUs, it still suffers from the detection of small

objects in high-resolution images due to characteristics of

SSD as shown in Figure 1. In the figure, typical outcomes

of Pelee detection (304x304) are shown for a couple of im-

ages in the VisDrone2018 Video[36] data set. The poor ob-

ject detection performance is obvious especially for smaller

objects along with the areas indicated by yellow A-B-C-D.

VisDrone2018 VID[36] data set with more than a million

bounding box annotations in training set, 140k annotations

in validation set for 11 different class labels (pedestrian,

person, bicycle, car, van, truck, tricycle, awning-tricycle,

bus, motor, others) is a perfect choice for our scenario. We

group the classes in VisDrone2018 into two main groups as

pedestrian and vehicle for a more well defined simpler task.

The pixel height and width histograms of human and ve-

hicle classes in the training set are shown in Figure 2 with

purple color (after scaling the images into 1920x1080). It is

clear that half of the annotations correspond to objects hav-

ing pixel heights and widths smaller than 50 pixels. This

value is half of the threshold that is discussed in the in-

troduction section according to the standards [11]. In the

VisDrone2018 dataset, small objects form the majority and

only half of the objects meet the monitoring threshold and

only 20% of the objects meet the detection threshold of 10%

of the image height. This is a common case for MAV based

surveillance. Under these circumstances, the expected de-

tection rate for a perfect detector can be at most 50% after

shifting the margins for a favor (setting the threshold as half

of the DORI standards).

4. Proposed Approach

In order to handle the small object detection problem, we

propose a tiling approach that is applied both in the training



Table 1. Object detection result on COCO test-dev2015

Speed on Avg. Precision (%), Iou:

Model Input Dimension Model Size TX2(FPS) Titan(FPS) 0.5:0.05:0.95 0.5

Fast R-CNN [3]1 224x224 - NA - 19.7 35.9

Faster R-CNN[4]1 224x224 - NA 7 21.9 42.7

SSD300[6] 300x300 - - 46 23.2 41.2

SSD512[6] 512x512 - - 19 26.8 46.5

SSD300[6]2 300x300 34.30 M - 46 25.1 43.1

SSD512[6]2 512x512 - - 19 28.8 48.5

YOLOv2[15] 416x416 67.43 M 32.2 - 21.6 44.0

YOLOv3[15] 320x320 62.3 M 21.5 - - 51.5

YOLOv3-Tiny 416x416 12.3 M 105 - - 33.1

SSD+MobileNet 300x300 6.8 M 80 - 18.8 -

SSDlite+MobileNetv2 320x320 4.3 M 61 - 22 -

Pelee[15] 304x304 5.98 M 120 - 22.4 38.3

1 VGG-16[34] based 2 These models are trained with the new data augmentation

Figure 2. The height and width historams of pedestiran and vehi-

cle objects for original and tile extended data set

and inference stages as illustrated in Figure 3. In the figure,

a typical 3x2 tiling is shown, where arbitrary tiling can be

applied depending on the image resolution and target object

aspect ratios. The input images are divided into overlapping

tiles so that the relative pixel area of small objects increases

with respect to the images fed into the network. This is

applicable to any kind of network, on the other hand, we

have chosen Pelee [15] to obtain significant improvement

in accuracy with the help of fast execution.

4.1. Pelee Architecture

The entire PeleeNet network consists of the Stem Block

motivated by Inception-v4 [37], seven stages of feature ex-

tractor and ResBlocks. First, four stages of feature extractor

consist of Dense Block which connects each layer to every

other layer in a feed-forward fashion. In the training pro-

cess, the input frame is downsampled to 304x304 resolu-

tion. Then, the downsampled image is fed to the stem block

which improves the feature expression performance without

too much computational cost. In feature extraction stages,

the network learns visual representation in 5 scales of fea-

ture maps (19x19, 10x10, 5x5, 3x3, and 1x1) with differ-

ent aspect ratio, which is given to the residual block (Res-

Block) [38] before producing predictions for object class

and bounding box location.

Our object detection system is based on the source code

of SSD 1 and is trained with Pytorch [39]. The VGG-16[34]

network used for feature extraction is replaced with Pelee.

The batch size is set to 32. Our momentum value is 0.9,

weight decay is 5e-4 and gamma value is 0.5. The learning

rate is set to 0.001 initially, then decreased by a factor of 10

after 10K, 20K, 30K, 40K and 70K iterations, respectively.

The training is terminated at 120Kth iteration.

4.2. Tiles in network training

In order to alleviate small object problems, we decrease

the effect of image down-sampling that is a common tool

applied during training. The images are divided into smaller

images by the help of overlapping tiles, where the sizes of

tiles are selected according to the size of the images uti-

lized in the related train framework. As shown in Figure 3,

lower resolution images (MxN) are cropped from the origi-

nal images by overlapping tiles. It is important to note that,

input image resolution is set to 1920x1080 just before tiling

in order to fix the size of tiles. Each tile corresponds to

a new image where ground truth object locations are ar-

ranged accordingly without change of object size. In that

way, the relative object sizes are increased in the cropped

image compared to the full frame. The cropped (MxN) im-

ages and the full frame are utilized as the input data for the

training of the network. It is important to note that the full

frame is also fed into the network training in order to detect

large objects in the scene.

The overlaps between the tiles are used to preserve the

objects along the tile boundaries and prevent any miss due

to image partitioning. In this study, we have chosen 25%

intersection between consecutive tiles; resolution N of the

1https://github.com/amdegroot/ssd.pytorch



Figure 3. The proposed tiling approach is both applied in training the network and deployment stages. The object detection results on the

tiles and the full frame are merged for the final outcome.

Table 2. The effect of tiling grid on cropped image size, number

of images and annotated bounding boxes

Tiling Grid Resolution(wxh) Image Bbox

1x1 1920x1080 24198 1106990

3x2 768x432 147412 2527166

5x3 480x432 256341 2553814

sub-sampled images (for both width and height) is given

according to the number of tiles (T) and image size (S) as:

N = 4S/(3T + 1). (1)

The effect of tiling on the cropped image resolution, the

number of bounding boxes and images for VisDrone2018

data set are given in Table 2. Increasing the grid size to

5x3 results in 2.5 fold increase in the number of annotated

bounding boxes due to overlapping ratio. Comparing the

image resolution of Pelee, which is 304x304, and the tile

resolutions, the rate of down sampling is greatly decreased

to keep small objects in the detectable range of network.

As the tiling increases, larger objects may not fit within the

tiles and the intersecting areas, and the risk of loosing larger

object annotations also increases. Therefore, at some point

the increase in tiles starts to decrease the number of anno-

tations. The effect of tile extension on the distribution of

object sizes is given in Figure 2, where the blue color repre-

sents the extended histogram. The object annotations within

the tiles are scaled up with respect to the scale that maps

cropped images to full resolution (1920x1080) to extract the

histogram. Hence, as observed the increase of large objects

in Figure 2, smaller objects are treated as larger objects by

the proposed tiling approach.

4.3. Tiles during inference

The same structure given in Figure 3 is also exploited

during the detection of objects. First of all, the input frames

are resized to 1920x1080 and tile images are generated by

cropping the input frames according to the number of tiles

that is determined by the computational capacity. The tile

grid during inference can be different from the grid in train-

ing phase due to the computational issues. Each tile is

treated independently as well as the original frame and the

resulting detection boxes with class probabilities are gath-

ered as the initial results. At this point, there will be dupli-

cate object detections in the initial results due to overlaps

between the tiles and the full frame. The initial results are

merged according to the intersection of bounding boxes and

class scores. If the intersection of duplicate detections is

above 25%, then the one with higher score is accepted as a

better choice and the other one is removed from the detec-

tion list. In the merge step, small objects get higher scores

within the tiles compared to the full frames in general, while

reverse is the case for bigger objects that have sizes compa-

rable with the tiling area. Therefore, both small and large

objects are handled carefully.

The number of tiles linearly increases the complexity of

the overall detection framework. Therefore, this approach is

applicable for lightweight and efficient networks in order to

meet real-time inference without increasing memory usage.

On the other hand, small object detection accuracy can be

increased obviously because relative object sizes can really

be very small in the original high-resolution frames. Even

low number of tiles can improve small object detection sig-

nificantly which is presented in the experiments section.

4.4. Pelee Framework Modifications

The tiling approach introduces additional computation

that linearly depends on the number of grids. In order to

tackle the small object problem, the number of feature ex-

traction layers can also be increased to detect small objects

without increasing the computational time too much. In the

original SSD structure, 38x38, 19x19, 10x10, 5x5, 3x3, and

1x1 feature vectors are utilized. SSD with Mobilenet [40]



does not use the 38x38 feature vector to provide the balance

between speed and accuracy. Instead of 38x38, they add

another 2x2 feature map for prediction. In this way, they

use a smaller network to gain from speed while scarifying

accuracy in small object detection. The original Pelee ar-

chitecture also discards the 38 feature map for speed versus

accuracy trade-off but does not utilize a 2 feature map like

MobileNet. In our framework, we train the Pelee network

with 38 feature map to increase accuracy in small objects.

5. Experiments

We have examined the effects of different feature extrac-

tion approaches and various tiling grid sizes in the train and

inference phases on the speed and accuracy for small ob-

ject recognition. It is important to note that computation

times on mobile GPUs are the limiting factors for the tiling

grid size. We make use of the criteria given in Embedded

Real-time Inference Challenge [41], indicating at least 5

fps on TX2. Vino, Pelee and Pelee38 (that uses 38x38 fea-

ture maps) run at 16.5, 101 and 77.8 FPS on TX2 accord-

ingly. Thus, we can do at most 2x1 tiling for Vino, while

tiling can be up to 5x3 for Pelee. Vino tiling does not in-

clude the full frame because of the computational issues.

The performance metric is calculated on the VisDrone2018

[36] validation videos involving 2843 images with 114k an-

notations.

In Table 3, the comparison between two efficient net-

works Vino [31] and Pelee[15] that utilize different fea-

ture extraction frameworks is given with their single (first

two rows) and best performance tiling versions under 5

fps limitation on TX2 (rows 5 and 6) based on the accu-

racy. Pelee T5x3 I5x3 indicates that the Pelee model is

trained through 5x3 tiling and 5x3 tiling is utilized in infer-

ence time. There are two main differences between these

networks: Vino gets images with size 1024x1024 while

Pelee gets images of size 304x304 as input, and Pelee uti-

lizes DenseNet based feature extraction methods while Vino

makes use of RMNet, which is a larger and more expensive

network. As shown in Table 3, Vino has a higher accuracy

than Pelee when original networks are applied without any

tiling; because Vino is trained on larger images and is a

deeper model.

Tiling significantly improves the performance of Pelee

such that the MAP (IoU: 0.5) is increased from 11% to 36%.

The accuracy of vehicles and pedestrians in 5x3 tiling are

increased by 2.5x and 5x correspondingly. It is clear that,

tiling is more effective on small objects, pedestrians in this

case, while it also boosts up medium sized objects.

As indicated previously, Vino is almost 10 times more

time consuming than Pelee, hence tiling grid size is smaller.

Tiling Pelee outperforms Vino by 25% while the compu-

tation is kept over 5 fps on TX2. The results in Table 3

indicate that the Vino 2x1 tiling model in inference can not

increase accuracy much more than single version of Vino

because of the structure of SSD. SSD makes many predic-

tions for better coverage of location, scale and aspect ratios

such as 1/2, 1/3, 1/1, 2/1, 3/1. Vino 2x1 tiling grid which is

selected based on the available processing limits, match up

with SSD aspect ratio.

The effect of feature extraction layer is also analyzed

in Table 3, where a comparison between different number

of feature extraction networks (Pelee and Pelee38) is given

with their single and tiling versions based on the accuracy.

Pelee38 uses one additional feature vector (extra 38) com-

pared to original Pelee. It has been observed that the object

detection MAP (IoU: 0.5) increases from 11% to 23% while

frame rates are decreased by 25% on average for both TX1

and TX2. Pelee38 improves pedestrian detection more sig-

nificantly than the vehicle detection, 200% and 64% corre-

spondingly. In no tiling case, by the use of larger feature set

(38x38), the network shows greater success, as expected, in

small objects.

The improvement with tiling for Pelee38 is not as signif-

icant as in the case of Pelee19 due to smaller object adap-

tation with the additional feature introduced in Pelee38.

Moreover, Pelee38 increases computation by 16% and 25%

for TX1 and TX2. In that manner, original Pelee feature

map is more appropriate for tiling operations while Pelee38

is more efficient for non-tiling scenarios.

The effect of object height on the detection accuracy is

also analyzed in Figure 4, where the first row compares the

hit rate of the networks (Vino, Pelee, Pelee38 and tiling ver-

sions) for the IoU of 0.5. Pelee and Pelee38 with tiling out-

perform Vino for smaller objects in both pedestrian and ve-

hicle classes where after the height of 100 pixels in pedes-

trian and width of 150 pixels in vehicle classes, Vino out-

performs Pelees. In general, object detection accuracy in-

creases with the size of the objects while there is a sudden

accuracy drop in all networks for vehicles around width of

270 pixels. This is mainly due to the low number of objects

at that width such that false prediction affects the accuracy

with higher impact. Figure 5 illustrates the height and width

distribution of pedestrian and vehicles(blue) and the number

of detected objects at the specific height and widths (green)

by Pelee T5x3 I5x3. The vehicles wider than 120 pixels

are almost detected by 100% while detection does not ex-

ceed 85% for pedestrians at any pixel heights. Figure 5 is

informative for the comprehension of the capability of net-

works with respect to the object sizes.

For the sake of completeness, visual results are also

given on three samples of VisDrone2018 image set in Fig-

ure 6. The results also support that tiling has a profound

effect on the detection of smaller objects as well as the ob-

jects located in low contrast regions. The lower left region

in the night image (center column) and lower right region

of the image in the third column have low contrast regions



Table 3. The accuracy achieved by Vino and Pelee with/without tiling. The tile grid for Vino is smaller than Pelee according to the

computational complexity.

Avg. Precision (%), Iou:

Model Vehicle Pedestrian MAP FPS on:

0.5 0.75 0.5:1.0 0.5 0.75 0.5:1.0 0.5 0.75 0.5:0.95 TX1 TX2

Vino 32.27 17.29 17.21 24.74 3.64 8.75 28.50 10.46 12.98 11.7 16.5

Pelee 17.03 5.68 7.39 5.93 0.18 1.43 11.48 2.93 4.41 58 101

Pelee38 28.45 14.30 14.95 17.97 1.28 5.28 23.21 7.79 10.11 48.2 77.8

Vino I2x1 33.30 15.40 17.17 24.51 3.60 8.75 28.91 9.50 12.96 5.7 8.3

Pelee T5x3 I5x3 41.39 19.55 21.07 30.26 2.94 9.61 35.82 11.24 15.34 3.5 6.3

Pelee38 T5x3 I5x3 44.35 22.64 23.53 28.99 3.25 9.69 36.67 12.95 16.61 3 4.8

Figure 4. Detection performance for different networks with re-

spect to object sizes

Figure 5. Detection performance for Pelee T5x3 I5x3 with re-

spect to object sizes

that makes object detection even harder. On the other hand,

tiling on Pelee can detect images significantly better than

the other techniques.

Table 4 shows the effect of different tiles in training and

inference stage on MAP accuracy when the IoU is 0.5 on the

Table 4. The effect of different tiling grids in network training and

inference when IoU is 0.5

T/I 3x2 4x4 5x3 6x3

Single 26.55 25.77 28.48 27.81

3x2 30.63 34.62 34.11 31.69

5x3 28.57 30.86 35.82 35.88

Pelee network. Rows and columns indicate the tiling grids

in train (T) and inference (I) phases. Tiles in the training

phase have a significant impact on the accuracy, such that

each value in the last two rows is larger than the values in

the first row. There is almost 40% increase in performance

between the worst and the best cases. There is also an obvi-

ous relation between the tiles in inference and train such that

inference tile grids should be more than train tile grids and

the difference should not be too large. The best performing

tiles in inference for the case where training is achieved by

tiles of 3x2 and 5x3 are 4x4 and 6x3 correspondingly, which

are within a neighborhood of train tiles.

In order to observe all the possibilities in tiling for differ-

ent networks (Vino, Pelee-P, Pelee38-PP) with the effects

on Top-1 accuracy and computational time (on TX2), the

experiments are summarized in Figure 7. The red line indi-

cates the 5 FPS threshold that is a criteria in the aforemen-

tioned challenge. We discard tiles larger than 3x2 for Vino

since the timings increase significantly while accuracy does

not improve; moreover we include full frame (as indicated

by +1) Vino detection for this plot. As shown in the Figure,

Pelee T5x3 I5x3 has the best accuracy within the available

processing limits. Vino tile 3x2 has the best accuracy with

a significant overhead in computation, while Pelee38 with

single tile is the fastest approach that exceeds 20% top-1

accuracy threshold. Pelee38 trained through 5x3 tile and

inference with 3x2 tile provides a good trade-off between

accuracy and computational time.



Figure 6. Top to bottom: ground truth, Pelee, VINO, Pelee 5x3 tiling with pedestrian (red) and vehicle labels(green)

Figure 7. Speed versus Accuracy graph on different network

6. Conclusion

Processing fixed size input makes the deep neural net-

work based detectors prone to miss small objects. Espe-

cially for the SSD approach, prior boxes used as a reference

for the localization problem defines a lower bound for the

size of minimum detectable objects. Extending the feature

maps of Pelee with 38x38 feature map as in the original

SSD, boost the accuracy more than 3 times for the pedes-

trian class. Complementary to using finer feature maps in

SSD network is to provide high-resolution images into net-

work without losing their details as much as possible. The

processing time of PeleeNet gives opportunity to use it mul-

tiple times to focus on the details of the image of interest.

The proposed approach exploits this fact and partitions the

image into tiles according to real-time constraints. The ac-

curacy boost obtained by the tiling approach reaches to 4

fold with respect to the conventional method. The experi-

ments show that mimicking the inference tiling at the train-

ing phase is also beneficial. Providing the training data in

a similar distribution of image resolution makes the net-

work to learn image space representations better. Using tiles

at training step as an additional data augmentation method

also increases the small object detection performance 20%

significantly.

Training a network with higher resolution images

through larger feature maps, result in high computation and

memory requirements. The proposed tiling approach in-

creases the computational time linearly while keeping mem-

ory requirements fixed due to sequential tile processing.

Computation and memory budgets can also be traded-off

by feeding the tiles in batch format. Hence the proposed

approach can be even used as a parameter in network de-

sign, considering the budgets of a targeted platform.
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