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Abstract

Motion and depth provide critical information in au-

tonomous driving and they are commonly used for generic

object detection. In this paper, we leverage them for im-

proving semantic segmentation. Depth cues can be useful

for detecting road as it lies below the horizon line. There

is also a strong structural similarity for different instances

of different objects including buildings and trees. Motion

cues are useful as the scene is highly dynamic with mov-

ing objects including vehicles and pedestrians. This work

utilizes geometric information modelled by depth maps and

motion cues represented by optical flow vectors to improve

the pixel-wise segmentation task. A CNN architecture is

proposed and the variations regarding the stage at which

color, depth, and motion information are fused, e.g. early-

fusion or mid-fusion, are systematically investigated. Ad-

ditionally, we implement a multimodal fusion algorithm to

maximize the benefit from all the information. The proposed

algorithms are evaluated on Virtual-KITTI and Cityscapes

datasets where results demonstrate enhanced performance

with depth and flow augmentation.

1. Introduction

Recently, semantic segmentation has gained huge

attention especially after the emergence of deep learning.

Semantic segmentation aims at associating a certain class

to each pixel in the surrounding scene. For an autonomous

vehicle, this task is crucial to fully perceive the surrounding

environment and react accordingly. With the significant

progress in embedded devices and their computation power,

semantic segmentation is gaining more attention in prac-

tical applications. The majority of semantic segmentation

algorithms rely only on color information captured by a

camera sensor to label each pixel with a specific class.

However, such algorithms do not make use of the specific

conditions associated with autonomous driving scenes with

regard to motion or geometry. In this work, we make use of

depth maps and optical flow and study the impact of these

signals on semantic segmentation task through constructing

fusion CNNs.

The main contributions of this paper include:

1. Implementation of CNN based fusion architecture to

study the benefit of depth and flow signals over stan-

dard RGB images for semantic segmentation.

2. Comparison between early-fusion and mid-fusion al-

gorithms using both synthetic and real automotive

datasets, namely Virtual-KITTI and Cityscapes.

3. Empirical study to evaluate the proposed approach us-

ing different depth and optical flow estimation algo-

rithms.

4. Proposing a multimodal fusion CNN to utilize the

three modalities for semantic segmentation.

The rest of the paper is organized as follows: review of

the related work is presented in Section 2, the network ar-

chitecture is detailed in Section 3, the experimental setup

and results are illustrated in Section 4 and finally Section 5

concludes the paper.

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation has been a challenging problem

in recent years and several approaches were investigated

for this task. In [3] [2], patch-wise training was adopted

to perform classification. In [3] a Laplacian pyramid was

used while in [7] a deep network was utilized to avoid post-

processing. [12] exploited end-to-end training using fully-

convolutional network to learn heatmaps that were upsam-

pled to finally reach the original image size at the classifi-

cation stage. In SegNet [1], deconvolution networks were

used for upsampling while keeping the corresponding max-

pooling indices from the encoder. Several CNN approaches

used only images as input for the segmentation task.
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2.2. Depth Estimation for Autonomous Driving

Depth is a very important cue that implicitly encodes

scene and object geometry information. Knowing only

color semantics without depth is not enough for full en-

vironment perception. In addition to depth sensors such

as LIDAR, depth can be estimated using several camera-

only approaches. The most common way for camera-based

depth estimation is based on stereo images using the SGM

[8] algorithm where pixels from the left and right image are

matched across epipolar lines. Disparity is subsequently

computed according to a cost function that guarantees the

smoothness of the output surface. Structure from Motion

(SfM) approaches use monocular camera but suffer from

limited performance when dealing with moving objects.

Several CNN methods were used to estimate depth using

monocular cameras such as in [19][11]. Unsupervised ap-

proaches [6][5] are very beneficial for autonomous driving

applications due to the lack of annotated datasets that gen-

eralize to multiple scene structures.

2.3. Flow Estimation for Autonomous Driving

Optical flow estimation is a standard module in recent

commercial vehicles and with the rapid progress of embed-

ded computing power, dense optical flow is currently being

computed instead of sparse flow maps. However, optical

flow estimation is still a challenging task due to the highly

dynamic environment of autonomous driving. In this case,

the scene exhibits two types of motion, ego-motion and

object motion. For accurate optical flow estimation, ego-

motion compensation has to be carried out. CNN methods

have also been introduced to learn scene motion such as [10]

which performs generic foreground object segmentation,

[14] which performs pixel-wise segmentation and [17][15]

which carries out motion segmentation. CNNs have also

been used to estimate optical flow [9][13] [20].

3. Methodology

A novel CNN architecture for semantic segmentation is

proposed in this section. The variations regarding the stage

at which color, depth and motion information are fused to-

gether result in a slightly different network for which per-

formance is investigated. To this end, four network archi-

tectures were implemented:

• Unimodal architecture which provides baseline seg-

mentation results for each information signal sepa-

rately.

• Early-Fusion architecture which fuses two signals

prior to feature extraction and extracts joint features

via CNN.

• Mid-Fusion architecture which extracts features for

two modalities using a CNN extractor, then fuse the

information on the feature level.

• Multimodal Mid-Fusion architecture which fuses

color, motion, depth information altogether using the

Mid-Fusion approach.

3.1. Unimodal Architecture

Our baseline network is based on the encoder-decoder

architecture of FCN8s [12] which utilizes the VGG [18] for

feature extraction in the encoder part. The fully connected

layers of the VGG are removed and replaced by three up-

sampling layers to reconstruct the original image size. Skip

connections are used to extract high resolution features and

avoid losing information while reducing size of the image

due to maxpooling layers. 1x1 convolutions are used to ad-

just depth of feature maps to be able to add to deeper layers.

Softmax is used to determine the likelihood for the output

to belong to a certain class and cross-entropy is utilized for

loss function. We make use of this network to evaluate the

performance of semantic segmentation using a single piece

of information, i.e. RGB, depth or flow-only.

3.2. Early­Fusion Architecture

This architecture fuses raw signals prior to feature ex-

traction. The network input in this case is 3D volume com-

prising four layers. Three of them are RGB layers and the

fourth layer is optical flow or a depth map. Several opti-

cal flow representations have been studied experimentally

using this network, namely Colorwheel representation in 3

channels, magnitude and direction in 2 channels and mag-

nitude only in 1 channel. The depth map consists of 1 layer

which is concatenated directly to RGB image. The input

channels are normalized from 0 to 255 to have the same

values as the RGB image. The first layer of the network

is adapted so that it accepts an input of four channels and

the corresponding weights are initialized randomly while

the pre-trained VGG weights are used in the rest of the net-

work. This architecture allows us to perform fusion for the

input information without increase in complexity.

3.3. Mid­Fusion Architecture

A methodology similar to [17] is adopted where we con-

struct a mid-fusion network that performs feature extrac-

tion for each modality separately then uses feature-level

fusion to combine both cues together. Fusion is done at

the last layer of the VGG while skip connections are uti-

lized to avoid losing information due to down sampling.

This network provides the best results in fusing two signals

however, it is also more computationally expensive because

number of parameters in the encoder part is doubled. The

network still has the advantage of utilizing pretrained VGG

weights without modifications.

2



Figure 1: Top: Unimodal Architecture. Bottom: Multimodal-Mid-Fusion Architecture

3.4. Multimodal Mid­Fusion Architecture

In this architecture, we introduce multimodal fusion us-

ing three modalities. We construct a CNN that extracts fea-

tures from three input signals then fusion is done on feature-

level using the same approach as Mid-Fusion network. The

output feature maps are fused using a summation junction,

and finally, encoder output is upsampled to reach the origi-

nal image size as illustrated in Figure 1.

4. Experiments

4.1. Experimental Setup

The VGG encoder network is initialized with the

pretrained weights and dropout with probability 0.5 is

used. Input resolution for Virtual-KITTI is 375x1242

while Cityscapes images are downsized to half-size to be

512x1024. The metric used for evaluation is class-wise In-

tersection over Union (IoU) and mean IoU over all classes.

4.2. Datasets

Two well-known datasets, namely Virtual-KITTI and

Cityscapes, are used in the experiments. Virtual-KITTI pro-

vides perfect annotations while Cityscapes provides more

realistic data. Virtual-KITTI consists of 21,260 frames

that are generated using the Unity game engine. They in-

clude 5 different environments under different weather con-

ditions. Virtual-KITTI provides semantic annotation for 14

classes which we train our network to predict. The dataset

is split into 80% for training and 20% for testing. On the

other hand, Cityscapes dataset consists of 5,000 real im-

ages that have fine semantic segmentation annotations. The

split provided by this dataset is used and results are re-

ported on the validation set which is not used in training.

For Virtual-KITTI dataset, the ground truth data provides

perfect depth and optical flow estimations that are used to

train our networks. Additionally, experimental results using

CNN-based depth and flow estimators, namely monoDepth
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Table 1: Quantitative results on Virtual-KITTI dataset using IoU metric.

Type Mean Truck Car Van Road Sky Building Guardrail TrafficSign TrafficLight Pole

RGB 66.47 33.66 85.69 29.04 95.91 93.91 68.15 81.82 66.01 65.07 40.91

D (GT) 55 67.68 58.03 56.3 73.81 94.38 43.95 14.61 53.97 56.51 42.67

RGBD (GT) 66.76 65.34 91.74 56.93 95.46 94.41 54.91 73.42 60.21 46.09 30.46

RGB+D (GT) 72.13 62.84 93.32 38.42 96.33 94.2 79.04 90.85 72.22 67.83 34.4

D (monoDepth) 46.1 36.05 75.46 33.2 77.3 87.3 32.3 6.8 42.14 45.9 15.9

RGB+D (monoDepth) 68.92 40.57 86.1 50.3 95.95 93.82 70.43 86.3 68.66 67.58 35.94

F (GT) 42 36.2 55.2 20.7 62.6 93.9 34 15.23 51.5 33.2 29.3

RGBF (GT) 65.328 70.74 80.2 48.34 93.6 93.3 62.05 67.86 55.14 55.48 31.9

RGB+F (GT) 70.52 71.79 91.4 56.8 96.19 93.5 66.53 82.6 64.69 64.65 26.6

F (Flownet) 28.6 24.6 47.8 14.3 57.9 68 4.9 0.8 31.8 18.5 6.6

RGB+F (Flownet) 68.84 60.05 90.87 40.54 96.05 91.73 68.52 82.43 65.2 63.54 26.54

RGB+D+F (GT) 71.88 71.688 92.08 61.44 95.85 94.83 71.86 83.42 64.69 60.67 31.08

Table 2: Quantitative results on Virtual-Kitti different flow representations using IoU metric.

Type Mean Truck Car Van Road Sky Building Guardrail TrafficSign TrafficLight Pole

RGBF

(GT-Color Wheel)
59.88 41.7 84.44 40.74 93.76 93.6 49.43 52.18 62.21 49.61 21.52

RGBF

(GT-Mag & Dir)
58.85 45.12 82.3 30.04 90.25 94.1 56.48 51.48 58.74 49.7 26.01

RGBF

(GT-Mag only)
65.32 70.73 80.16 48.33 93.59 93.3 62.04 67.86 55.13 55.48 31.92

RGB+F

(GT-3 layers Mag)
67.88 35.7 91.02 24.78 96.47 94.06 74.4 84.5 69.48 68.95 34.28

RGB+F

(GT-Color Wheel)
70.52 71.79 91.4 56.8 96.19 93.5 66.53 82.6 64.69 64.65 26.6

[6] and FlowNet2[9] are used to assess the impact of esti-

mated depth and flow maps instead of perfect ground truth.

For Cityscapes, we provide results of using classical depth

and flow estimators, namely SGM [8] and Farneback [4],

and compare results with CNN estimators monoDepth, and

FlowNet2 to evaluate the impact of noisy input on segmen-

tation. Classical approaches provide noisy disparity and

flow maps while CNN-based estimators provide smoother

output and hence less noisy, however less accurate due to

tendency of CNNs for over-smoothing. We provide experi-

mental comparison for using both approaches.

4.3. Results

Several tables are provided in this section for quantita-

tive comparison of semantic segmentation results. Table

1 illustrates that depth and flow augmentation improve

results in Virtual KITTI dataset. For depth, we adopted two

methods for usage of depth maps. One is the ground truth,

and the other is monoDepth [6]. With ground truth we

obtained 5.7% improvement in IoU which is the best-case

scenario. Higher improvement was obtained for specific

classes, for example, 32%, 28%, 9% and 8% for Truck,

Van, Building and Traffic Lights classes. With non-perfect

depth maps we obtained improvement over RGB-only by

3% for mean IoU. For optical flow, we used ground truth

as perfect estimator, and flowNet [9] as a realistic flow

estimate. Fusion with ground truth improved mean IoU

by 4% while moving classes were improved significantly.

For example, improvements of 38%, 28% and 6% were

obtained for Truck, Van and Car classes. Fusion with

FlowNet improved mean IoU by 2.37%. We refer to early

fusion with Depth by RGBD, mid-fusion by RGB+D while

GT denotes Ground Truth. The same strategy is applied to

fusion with optical flow.

Table 3 shows results on more challenging dataset

Cityscapes. Cityscapes is more complex with very high

level of detail compared to Virtual-KITTI. Moreover, it

only has a total of 5k images for training and testing

compared to 21k images in Virtual-KITTI. We make use

of two depth maps, namely SGM which is obtained using

stereo setup and provides noise disparity map and the

other one is obtained using monoDepth estimator. Using

SGM we obtained 1% increase in mean IoU while larger

improvement for objects like Buses and Trains with 6.3%

and 9% improvement. Using monoDepth, results were very

close to SGM which shows the networks capability to fuse

the information even with noise input. For optical flow,

we used classical Farneback algorithm which improved

moving objects like Motorcycle for 14%. Fusion with

flowNet maps surprisingly provided slightly lower results

than Farneback, however there is improvement for large
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Table 3: Quantitative results on Cityscapes depth and Flow fusion using IoU metric.

Type Mean Bicycle Person Rider Motorcycle Bus Car Train Truck Building Road Sky TrafficSign

RGB 62.47 63.52 67.93 40.49 29.96 62.13 89.16 44.19 48.54 87.86 96.22 89.79 59.88

D (SGM) 47.8 39.84 54.99 29.04 11.29 48.1 82.36 27.17 35.3 78.42 95.15 81.18 27.96

RGBD (SGM) 55.5 56.68 60.27 34.64 21.18 58 86.94 36.54 37.64 84.7 94.84 84.64 45.48

RGB+D(SGM) 63.13 65.32 67.79 39.14 37.27 69.71 90.06 53 45.5 87.44 96.6 91.06 59.44

D(monoDepth) 40.89 36.63 44.6 18.5 7.3 37.5 77.78 21.6 31.1 77.01 92.83 89.33 24.67

RGB+D (monoDepth) 63.03 65.85 67.44 41.33 46.24 66.5 89.7 55.1 49.7 87.25 96.01 90.3 59.8

F (Farnebaeck) 34.7 34.48 37.9 12.7 7.39 31.4 74.3 11.35 19.42 72.77 91.2 79.6 11.4

RGBF (Farnebaeck) 47.8 52.6 55.8 31.1 22.4 39.34 82.75 22.8 20.7 80.43 92.24 81.87 44.08

RGB+F (Farnebaeck) 62.56 63.65 66.3 39.65 47.22 66.24 89.63 51.02 36.1 87.13 96.4 90.64 60.68

F (Flownet) 36.8 32.9 50.9 26.8 5.12 25.99 75.29 15.1 25.46 65.16 90.75 50.16 29.14

RGBF (Flownet) 52.3 54.9 58.9 34.8 26.1 53.7 83.6 40.7 28.1 79.4 94 79.4 45.5

RGB+F (Flownet) 62.43 64.2 66.32 40.9 40.76 66.05 90.03 41.3 54.7 87.3 95.8 91.07 58.21

RGB+D+F 62.58 65.46 68.18 43.09 37.5 64.4 88.34 57.13 41.45 86.86 96.13 87.96 59.23

Table 4: Quantitative results on Cityscapes using different flow representations using IoU metric.

Type Mean Bicycle Person Rider Motorcycle Bus Car Train Truck Building Road Sky TrafficSign

RGBF

(Mag only)
47.8 52.63 55.82 31.08 22.38 39.34 82.75 22.8 20.7 80.43 92.24 81.87 44.08

RGBF

(Mag & Dir)
54.6 57.28 58.63 33.56 18.49 56.44 84.6 41.15 31.8 84.41 95.5 87.86 44.26

RGBF

(Color Wheel)
57.2 61.47 62.18 35.13 22.68 54.87 87.45 36.69 40.2 86.28 95.94 90.07 51.64

RGB+F

(3 layers Mag)
62.1 65.15 65.44 32.59 33.19 63.07 89.48 43.6 57.2 87.88 96.17 91.48 55.76

RGB+F

(Color Wheel)
62.56 63.65 66.3 39.65 47.22 66.24 89.63 51.02 36.11 87.13 96.4 90.64 60.68

objects like Truck class in which we obtained 6% increase

in IoU. We argue that this is due to over smoothing of CNN

algorithms to the optical flow map while Farneback provide

noisy map however with higher level of detail.

Table 2 and Table 4 show comparative study for

different flow representations. Different representations

include using optical flow magnitude only, magnitude and

direction concatenated together , and finally color wheel

representation. Color wheel is showed to provide good

representation for both magnitude and direction in a color

map which is also consistent with the input expected from

VGG pretrained weights. In both Table 1 and Table 3 we

report results of fusing all the information together. In

this experiment we constructed a CNN network with three

encoders, and we fuse the information on the feature level.

RGB+D+F provide significantly higher performance than

standard RGB. However, results do not show the benefit

of fusing the three modalities together. This might be due

to the network learning one modality implicitly without

explicitly using it. Another reason is that standard network

architecture we use may not be able to fuse different

modalities together. In future work, we plan to maximize

the benefit from these crucial signals using more complex

network architectures.

RGB+D and RGB+F obtain the best result where depth

and motion significantly improved segmentation. This can

be confirmed visually in Figure 2 through the white van with

no texture in the background. RGB-only was not able to

correctly classify it, and considered it as part of the build-

ing behind it. However, when Depth and motion are added,

the van is segmented better. The same comment applies

for fusion with FlowNet, however, we still need more ro-

bust algorithms to get more benefit from this information.

Qualitative result on Cityscapes are illustrated on Figure 2

where it is shown that RGB+D significantly improved the

bus classification compared to RGB-only. It is shown that

the network was not able to classify the bus using color in-

formation only. Using depth signal alone provides better

result than RGB and consequently contributes to improv-

ing the bus classification which is seen in RGB+D result.

On the other hand, fusion with monoDepth improved result

of RGB however, with less accuracy compared to SGM. It

can be seen that the SGM depth map is more accurate than

monoDepth map despite the noisy pixels as the bus is better

perceived visually in SGM map than monoDepth. Usually,

CNN algorithms tend to oversmooth the output, which in

this case provided less contrast between the bus and back-

ground.
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Cityscapes-Depth Fusion Cityscapes-Flow Fusion Virtual-KITTI Depth Fusion Virtual-KITTI Flow Fusion

Figure 2: Qualitative results on Cityscapes fusion. First Row: Input RGB images. Second Row: Input Depth and flow

maps. Third Row: RGB-only output. Fourth Row: Fusion output. Fifth Row: CNN-based Depth and flow maps. Sixth

Row: Fusion with CNN-based maps. Seventh Row: Ground Truth

5. Conclusions and Future Work

This work provides a CNN-based architecture that uses

multimodal information fusion for sematic segmentation.

The network focuses on autonomous driving applications

where prior information is exploited to enhance the segmen-

tation task. The utilization of depth information implicitly

captures the strong geometric similarity found in structures

in most autonomous driving scenes whereas the use of op-

tical flow facilitate handling moving objects in the highly

dynamic environment. An ablation study is provided to

evaluate the impact of fusing color, depth and motion infor-

mation at different stages of the network including early-

fusion, mid-fusion and multimodal-mid-fusion stages. It

was found out that fusing depth and optical flow separately

provided the best results. Multimodal fusion provided im-

proved performance over baseline RGB-only segmentation

network. Future work may include proposing deeper more

complex network architecture that accommodates all three

information cues for improved performance. Further work

can also investigate utilizing structural constraints [16] to

further enhance segmentation results.
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