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Abstract

In a crowded and cluttered environment, identifying a

particular person is a challenging problem. Current iden-

tification approaches are not able to handle the dynamic

environment. In this paper, we tackle the problem of identi-

fying and tracking a person of interest in the crowded envi-

ronment using egocentric and third person view videos. We

propose a novel method (Visual-GPS) to identify, track, and

localize the person, who is capturing the egocentric video,

using joint analysis of imagery from both videos. The out-

put of our method is the bounding box of the target per-

son detected in each frame of the third person view and the

3D metric trajectory. At glance, the views of the two cam-

eras are quite different. This paper illustrates an insight

into how they are correlated. Our proposed method uses

several difference clues. In addition to using RGB images,

we take advantage of both the body motion and action fea-

tures to correlate the two views. We can track and localize

the person by finding the most ”correlated” individual in

the third view. Furthermore, the target person’s 3D trajec-

tory is recovered based on the mapping of the 2d−3D body

joints. Our experiment confirms the effectiveness of ETVIT

network and shows 18.32% improvement in detection accu-

racy against the baseline methods.

1. Introduction

In recent years, wearable cameras are everywhere, e.g.

on smartphones, portable cameras, and AR/VR devices.

Egocentric video from these wearable cameras is a popular

way to record a person’s sports or daily activities. Mean-

while, the third view cameras, e.g surveillance cameras,

have been deployed to many places and can be used for

person localization and tracking. It is important to com-

bine those two data sources for cross-view analysis. In this

paper, we use the egocentric video to find the person in the

Figure 1. Visual-GPS system. Given an egocentric video and a

third view video, visual-GPS system identifies and tracks the ego-

centric camera mounted person in the third view camera using a

motion and action based model. Furthermore, the system is able

to recover the 3D metric trajectory of the person.

third view for person tracking in a highly dynamic and large

crowded environment. It is helpful to indoor assistive navi-

gation [35, 17, 16] for visually impaired people, and urban

street navigation for shopping and touring purpose [1].

In this paper, we propose a joint view approach as illus-

trated in Fig.1 to address this problem. We assume that the

person wears a head-mount camera with a downward ob-

servation angle. We aim to not only identify and track the

ego-camera mounted person in the third view, but also re-

cover the 3D metric trajectory of the person.

There are some existing works on third and egocentric

view joint identification. All of these approaches, however,

use only color images. They use two-stream Siamese or

triplet network architecture [13, 28, 5] to learn the correla-

tion between third and ego views. In these models, a 3D

convolutional neural network [31, 33, 23] and a segmen-

tal consensus for cross-domain verification [33, 13, 28] are

commonly used. However, the forward view which only

offers pure appearance features is not capable to model

the association across views, especially when the illumi-
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nation and the environment are dynamic. Thus, using an

appearance-based siamese or triplet model to correlate these

two views with temporal and spatial features would fail

[13]. Moreover, the graph solution using relative view in-

sight is not applicable under this situation [5].

Different from [5, 13], our method introduces both the

motion and action factors, which are invariant to the envi-

ronment appearance and light changes. We also argue that

the clothes texture should not be used as a single feature

for person identification in a large crowd because people

may wear similar clothing. In order to train and validate

our method, we designed 5 scenarios for data collection and

collected 40 pairs of videos with more than 20 candidates.

For each pair of an egocentric video and a third-person view

video, a person is required to wear a GoPro camera with

video recording and the third view GoPro camera is used to

record the entire environment simultaneously.

In this paper, we build a visual-GPS system to detect and

track a person in the third view camera. We formulate the

problem as finding a person in the third view video whose

motion and action are the most ”correlated” with the ego-

centric view video. We construct a DNN (i.e. ETVIT) that

learns the action and motion features for joint identifica-

tion. Using motion features enables our method to be robust

against the background and lighting changes. The ETVIT

consists of four components i.e. ego action model (2D

DNN), ego-motion model (2D CNN), third action model

(3D DNN), and third motion model (2D DNN). We recover

the 3D trajectory of the target person using a 3D-2D projec-

tion to estimate the real-time position and orientation of the

person.

We make the following contributions in this paper: 1)

We proposed a novel action and motion-based person iden-

tification and tracking model for cross views in Section.4;

2) We verified the mono 3D trajectory recover solution us-

ing 3D-2D pose estimation; 3) We build a comprehensive

data-set and validate our proposed method in Section.5.

2. Related Works

Egocentric and Third View Joint Modeling - The

problem of associating first (mobile) and third (static) view

was firstly discussed in [3] to improve the object detection

in the third view. [29] addressed the problem of using the

egocentric and third view camera for action recognition. In

[4], temporal and spatial graph matching is proposed to cor-

relate the video from the first view and third view. In [13],

persons are localized in the third view given both the third

and ego camera frames using patial-domain semi-siamese,

motion-domain semi-siamese, dual-domain semi-siamese,

and dual-domain semi-triplet networks. Besides correlation

method discussion, in [28] ”Charades-Ego Dataset” of daily

human activity is collecyed and the baseline of perform-

ing basic across-view frame-to-frame association is studied.

These works mainly consider context features as the main

clue, and they did not consider pose features and motion

(odometry) feature. Besides, our work differs from other

works that we perform an association of downward view

and third static view, which could help to increase the ro-

bustness of tracking.

Temporal and Spatial Model for action Learning -

Temporal information was first introduced to solve action

recognition in [31], where a 3D convolutional operation

with 3D max-pooling were first discussed which greatly

improved the performance of learning temporal features.

Then, a ResNet [14] based 3D convolutional neural net-

work is proposed in [23] to achieve higher accuracy using a

smaller model. Spatial information is commonly used in de-

tection and correlation [18]. To match egocentric and third

view, [4] uses a naive concatenation approach. 3D convo-

lutional approach [13] has also been used. However, none

of the above method learn the pose information in time or

space. Current success in human pose detection [11] en-

ables the learning of action in a graph convolution manner

[36] in both temporal and spatial domain.

Learning for Localization - RGB-D method [27] is the

first widely used localization approach. The first learn-

ing approach toward end-to-end localization is proposed

in [20]. In order to address the sequence continuous con-

straints, authors in [12] proposed recurrent network to en-

able smooth localization. [32] demonstrated how to incor-

porate visual odometry prediction and global localization

to relieve the requirement of a huge dataset while achiev-

ing higher localization accuracy at the same time. Recently,

a similar approach [10] using both pose loss and velocity

loss is proposed to increase the convergence of the model.

Tracking is a traditional topic in both computer vision and

robotic area [34], and later learning approach has been suc-

cessfully demonstrated with real-time performance [15].

3. Visual-GPS:

In this section, we propose Visual-GPS for cross-view

person identification and tracking in a crowded and dynamic

environment. We first present an overview of the proposed

Visual-GPS system and then discuss the approach of each

part, especially the ETVIT network. Finally, we illustrate

the recovery of the 3D trajectory of the person.

3.1. Approach Overview

Figure 1 depicts the framework of the proposed Visual-

GPS system and figure 2 illustrates the cross-view identifi-

cation and tracking network (ETVIT). The key idea of the

Visual-GPS is to identify a person in the third view who is

capturing the egocentric video using motion and action fac-

tors. Visual-GPS consists of three main steps. First, we

track every person appear in the third view with the bound-

ing box, person ID, and frame index output. Given the third



Figure 2. Pipe line of our Ego-downward and third view identification and tracking (ETVIT) model. The model is learning in a joint

approach of ego-downward view and third view using motion and action feature.

and ego videos, we track every person in the third view

video using a DNN tracker [25, 9] to obtain the frame ID

and the corresponding person bounding box pair. Then, we

crop each person out in the third view RGB image and the

dense flow image based on the bounding box.

Second, a four channel DNN (ETVIT), which incorpo-

rates the ego and third view motion and action feature, is

used for cross-view identification. For the third view, it

takes an RGB clip and a flow clip as input to learn action and

motion separately using two DNNs. The action is learned

based on the SMPL model using a 3D DNN model [23].

For the egocentric view, we predict the 3D body pose in the

third view using SMPL model [19] to initialize the pose and

motion of egocentric view (see Section.4 for details). Then,

it predicts the relative ego-view motion and action between

consecutive frames with dense flow images as input. Fi-

nally, the ETVIT regress the target person by concatenating

the intermediate features from the four DNNs.

Third, we keep tracking of each person using a Bayesian

filter considering motion constraints, and we recover the

person 3D metric trajectory based on pinhole camera model

based on the 3D-2D projection using the SMPL body mesh.

3.2. FrontEnd Tracking and Initialization

The person detection and tracking module is built upon

prior works in person detection [25, 9], which predict the

bounding box of a person as well the frame ID appeared

across the time. In this paper, we use a Yolo-V3 [25] with

Kalman motion filter to track a person with 3 second time

tolerance. Then, we crop out each person in the third view

as crY in RGB image and crY fl in optical flow image. The

cropped RGB images are directly used to predict the 3D

body p̧ (i.e. 19 body joints) of each person [19]. There

is one issue that the egocentric view does not have a sense

of the global coordinate system (the third view). To solve

this, we introduce a third view 3D body pose initialization

method to transform the egocentric pose and motion to the

world coordinate system.

Initialize Egocentric Pose: In this paper, We use a

Skinned Multi-Person Linear (SMPL) [21] model to model

the 3D body. We input a 2D image into a system that pre-

dicts the 3D 19 body joints which is similar to [19] to model

a person. SMPL model factors the human body into shape

β - how individuals vary in height, weight, body proportion

and poses θ - the 3D surface deforms with articulation.It

forms a 3D mesh which is continuous quad structure, and

represented as M(β, θ; Φ) : R|θ|×|β| 7→ R3N .

Given the 8 third view cropped RGB images, we use

the first frame to predict the 3D pose of the person, that

is, M(β, θ). Then, we define the corresponding egocen-

tric first pose as M(β, θ). The egocentric pose model only

needs to estimate the relative pose variance (i.e. ∆Psmpl =
(∆β,∆θ)) for action learning.

Initialize Egocentric Motion: Ego-downward motion

is highly related to the initial pose in the third view. Be-

cause, the same motion with different initialization would

be totally different (in Section.4.1). In this paper, we define

the ego-downward view coordinate system represented by

joints 9 : Rightshoulder, 10 : Leftshoulder, 13 : Neck

as illustrated in Fig.3, where x axis points from left shoul-

der to right shoulder, z points out and perpendicular to

the chest, and y points downward which is perpendicu-

lar to x and z axis. Given 3D human body joints p̧ =
{(xi, yi, zi)|i = 1, 2, ..., 19}, we can follow the above defi-

nition to obtain the initial transformation of the person, that

is, thirdTinit = (~rp, p̧center).



Figure 3. For Visual-GPS, we defined the world coordinate system

as indicated in (b), where x to the right, downward is y, and z

is the direction pointing to the inside of the image. For the ego-

centric view, the coordinate system is controlled by joint 9, 10, 13,

where the origin is the center node of the three and z is upward

and perpendicular to the surface formed by the three joints.

3.3. ETVIT Person Identification

One of the main goal of this paper is to provide a ro-

bust person identification and tracking system even in a dy-

namic and crowded environment, especially regardless of

the changes in the environment. Given the cropped third

view RGB and flow images, and the egocentric view flow

images, we use four individual encoders and regressors to

learn the motion and action features. The overall network

pipeline is outlined in Fig.2.

The third view has a motion encoder and an action en-

coder to learn the 2D translation and action feature for joint

identification. For the action encoder, it is a 3D network in-

spired by P3D network [23] and we adopt using 18 layers.

It takes consecutive 8 RGB images as input and predicts the

action label (the label is generated using K-means as dis-

cussed in Section.4.1). The motion model predicts relative

translation in the 2D image frame taking flow image as in-

put, that is, it predicts (∆x,∆y). Thus, we can predict the

trajectory of the person as discussed in Section.4.1.

For the egocentric view, we also have a motion en-

coder and an action encoder to learn the motion and action.

Since we have the third view to initialize the motion (i.e.

Tinit = (TR,T t)) and the action M(β, θ), the egocentric

motion model and action model take the flow image as in-

put and learn the relative pose variance and transformation

for integration.

Finally, we concatenate the intermediate features from

the four sub-models to perform regression to identify the

person from cross views (shown in Fig.2).

3.4. Tracking and 3D Trajectory Prediction

After obtaining the identification of the person who pro-

vides the egocentric video, we introduce to use a Bayesian

filter to further smooth the prediction of the target person.

It follows the fact that the motion of the person should be

continuous. Following [30], the tracking prediction will be

updated and normalized.

Figure 4. We can detect the 2D translation in the third-view image

represented by ∆B̧ as in (a). Meanwhile, the third view human

3D pose M(θ, β) can also be used to obtain transformation T and

mapped to the 2D image.

In order to recover the 3D trajectory of the person, we

assume that the human is with a 1.8 meters height as pro-

posed in [19]. Through HMR [19], we have 3D joints to

2D joints mapping, thus we can predict the person position,

i.e.(x, y, z), in the world coordinate system using the pin-

hole camera model [24] given cameras intrinsic parameters

Kc.

4. ETVIT Network Model

In this section, we discuss the proposed ETVIT network

for cross view person identification. We first present the

detail for each module, and then illustrated the regression

of the overall network.

4.1. Learning Action Feature by Applying 3D Pose

Learning Third View Action To predict the action,

we follow the two-step: 1)first, we use K-means to clas-

sify the action for semi-supervised learning. 2) then, we

train a deep 3D-ResNet 18 to predict the action. We first

predict 3D poses using HMR [19] on our training data,

over 80000 images, and then we use K-means to clas-

sify every 8 consecutive pose into 400 clusters with label
trdL = {0, 1, 2, ..., 399}. For a snippet (i.e. 8 consecu-

tive RGB cropped images, crY = {crIi|i = 0, 1, ..., 7})

and its corresponding 3D action cluster label trdL 7→ K −
means({trdp̧i|i = 0, 1, ..., 7}). Each third view clip has a

dimension of 8×W×H×C, with C Channels, W width, H

height, and 8 frames. We introduce a 3D ResNet-18 to learn

the action which is inspired by [23]. 3D ResNet-18 has a to-

tal of 4 blocks. The first three blocks are with a max-pooling

of 2×2×2 in both spatial and temporal channels, and there

is no temporal pooling with the four blocks. It also doubles

the depth while the dimension decreased from 64 for the

first block to 512 for the fourth block. The final output is

a 512 dimensional feature vector. Finally, we construct a 3
layered fully-connected network for action regression.

Learning Ego View Pose Variation As discussed in



Section.3.2 that we initialize the Ego-view pose using the

first frame of third view, we only need to predict the pose

variance between two frames. In this paper, we propose to

learn the pose variance based on flow image (x and y di-

rection, respectively) using a ResNet-50. For a clip of RGB

images, we have 7 flow images. The input is W×H×C im-

age with channel C = 2, width and height W = H = 112
as the original model. The output of the average-pooling

layer is a 2048 dimensional vector. Finally, we iterative

optimize shape and pose using a 3 layers fully-connected

network to obtain the pose variance, ∆β = ∆β + ∆∆β

and ∆θ = ∆θ + ∆∆θ, where ∆∆ is the variation of the

iterative difference.

4.2. Learning Motion for Correlation

Learning Third View Translation To learn third view

motion, we introduce 2D ResNet−50 and followed by two

fully connected layers architecture to predict the relative

translation. The input are 7 consecutive third view cropped

flow images crY = {trdIflowi |i = 1, ..., 7}, and the expec-

tation is the tracked bounding box centers sequence B̧trj .

For each flow frame, the motion model predicts rela-

tive translation, i.e. (∆x,∆y). For a flow clip, the model

predicts the relative translation as V = {(∆xi,∆yi)|i =
1, 2..., 7}. Thus, the predicted trajectory of the video clip

is, [0, 0;∆x1,∆y1; ...;
∑7

i=1
∆xi,

∑7

i=1
∆yi].

Learning ego-downward View Translation Similar

to PosNet [20], ego-translation model predicts the 6-DoF

transformation between two frames. The rotation is repre-

sented using quaternion q, the integration of rotation uses an

error quaternion [6], that is, qtk+1
= qtk+1|tk ⊗ qtk . Where,

qtk+1|tk is called the error quaternion,

qtk+1|tk = exp(∆θ
2
)

=











[

cos(||∆θ
2
||)

sin(||∆θ
2
||) ∆θ

||∆θ||

]

||∆θ|| 6= 0

[1 0 0 0] ||∆θ|| = 0.
(1)

The model only needs to predict the error quaternion

∆q ∈ R3 (which is only 3 parameters) and relative transla-

tion ∆t ∈ R3 using 6 parameters.

4.3. Training and Regression Details

As we do have the label and expectation to directly su-

pervise the training for both ego and third view action and

motion, we can use these two errors as non-local losses to

optimize the estimation for both views. As shown in Fig.5,

we show how the four modules contribute to action and mo-

tion loss.

Action Regression To learn the action, the third view

directly takes the clip as input for the 3D-ResNet, and the

ego view predicts the pose variance and integrates the pose

Figure 5. Our loss module consists of four parts: third view action

loss, third view motion loss, ego view action loss, ego view motion

loss.

for regress. We introduce cross entropy loss to optimize

action learning,

L(Xa) =

399
∑

i=0

yo,ilog(Po,i), (2)

where yo,i is the binary indicator if the class label i is the

correct prediction of current observation and Po,i denotes

the corresponding probability.

Motion Regression For motion, the ground truth is the

2D trajectory that tracked by the Yolo tracker. The third

view directly predicts the translation in third view image,

and the ego view predicts the error quaternion ∆q and

relative translation ∆t. We define the motion as a L1

norm between the expectation and the prediction,

L(Xt) = ||B̧trj − tclip||L1, (3)

where ||||L1 denotes L1 norm, B̧trj is bounding box cen-

ter trajectory, tclip is the predicted trajectory.

5. Experiments

5.1. Dataset Collection

The dataset collection considers the following chal-

lenges: 1) same color dressing or close color; 2) back-

ground difference as context inference for verification; 3)

the number of people related with accuracy; 4) similar mo-

tion situation. All the data collected are listed in Table.1,

which contains a total number of 40 videos. For the training

and validation purpose, we collected 30 single person ego-

downward and third view videos under 5 different back-

grounds. For each pair, it contains an ego-downward video

and a third view static video. For all the video pairs, we gen-

erate clips which contain 8 raw images and 7 flow images

as training and testing purpose. We highlight the challenge

of verification if the person in the third view have the same

dressing and collect extra data on this. The testing data con-



Figure 6. Represented illustration of our collected data. The training and validation data are collected under different backgrounds. For test

data, we consider the same-dressing in the third view (SDT) and also a large area with over dozens of people. SDE denotes same dressing

ego view.

Figure 7. The motion model Block 3 activations. The colors range

from blue to red, denoting low to high activations.

tains 2 to 3+ person in view cases, and the synchronization

is performed using a GoPro camera remote controller.

5.2. Implementation Details

Dataset Preparation For each pair of videos, we per-

form the following operations which can be repeated in a

step by step manner: 1) parse the videos into images; 2)

Generate dense optical flow and represent in x and y direc-

tional separate images [8]; 3) For third view frames, first we

perform person detection and tracking to obtain the bound-

ing boxes [9] for cropping. Then 3D pose estimation of

generating the 3D joints is performed for each cropped im-

age using HMR [19]; 4) The 3D poses set of each clip is

then clustered using K-means algorithm [7], with K = 400
in this paper. Then, we can obtain the action label for each

frame. We also tried 300, and 500. It should be advised that

a bigger K should be more accurate for verification consid-

Table 1. A summary of collected videos in our dataset.

Single

Person

Three backgrounds A total 30
pair of videos

containing over

100, 000 image

pairs

Multi-person

Two Person: No Crossing 1 pair of videos

Two Person: Crossing 1 pair of videos

Three Person: No Cross-

ing

1 pair of videos

Three Person: Crossing 1 pair of videos

Group Crossing: 4 pair of videos

Same Dressing
Two Person: No Crossing 1 pair of videos

Group : Crossing 1 pair of videos

ering a more general application purpose.

Following the above procedures, we can obtain: 1) raw

image, flow images, and action label for ego-downward

view; 2) raw image, flow images, bounding box, and action

label of each person, and the corresponding 3D pose indi-

cated by 19 joints for third view (it is used to calculate the

initial transformation T = (R, t) for motion model). For all

the 30 single person videos, we choose 24 for training and

6 for testing.

Training Details We choose to initialize each model us-

ing a pre-trained ResNet [14] which is trained on ImageNet-

ILSVRC [26]. All the models are implemented in Pytorch

[22], with a learning rate as 0.01 and weight decay 0.001
for 200 epochs using two Nvidia 1080 GPUS. For our net-

work, we trained each sub-model independently. Then we

perform joint optimization for final verification.

5.3. Results and Comparison

Baselines We first implement multiple baselines to

compare the performance considering inputs, and mod-



Table 2. Verification accuracy (in %) baselines on our dataset, and

higher is better. Where SW denotes share weight.

Resnet-

18

Resnet-

34

Resnet-

50

Resnet-

101

Siamese Image 50.39 51.03 50.55 50.42

Siamese Flow 52.53 50.75 51.63 52.06

Semi-siamese SW 53.34 52.41 52.78 51.35

Semi-siamese 52.1 51.89 51.29 50.91

Temporal-Siamese

Image

52.21 51.6 51.43 -

Temporal-Siamese

Flow

54.77 55.9 55.10 -

Temporal Semi-

siamese

51.74 53.96 50.89 -

Triplet [28] 52.80 51.28 51.63 51.49

els. These baseline method are proposed in peer re-

searches [13, 28, 23] including spatial-domain siamese

network [13], motion-domain siamese network[13], two-

stream semi-siamese network [13], triplet network [28], and

temporal domain image and flow network [13, 23]. We

also demonstrate the weight share performance for siamese-

network. We deploy 2D and 3D Resnets [23] to learning

spatial and temporal features.

For feature, we performed the training and testing using

image data and flow data in independent networks, while we

also performed learning using both information in a semi-

siamese approach. Table.2 summaries the accuracies of the

above models. In this paper, we use accuracy as a metric

to evaluate the models as [28]. It shows in the table that

temporal models are significantly much better for our track-

ing problem, and also flow information is more accurate.

Since we ask the person to move frequently and fast, thus

it is harder to verify using pure context feature. The maxi-

mum accuracy according to these methods is 55.9% which

is 3D temporal Resnet-34 model using optical flow as input.

However, the semi-temporal model does not show any im-

provement, which may be caused by limited data of a color

feature of our dataset.

In this table, we can also see that a share weight siamese-

model is more effective than the none-share models with an

average 1% percent higher. For Semi-siamese model, in

the spatial domain, it is a four channel network takes both

flow and image as input. The triplet model is implemented

as proposed in paper [28], where a none-corresponding im-

age has used as input of the model. The resulting accuracy

indicates that the triplet structure can achieve similar per-

formance compared to the temporal flow model, and it does

not require a huge amount of parameter to train.

For the baseline implementation, we did not implement

semi-triplet as proposed in [13] since we regard the track-

ing is performed in a large crowd. Thus, the semi-triplet

Table 3. Verification performance of proposed model. AP(%): Av-

erage Precision, and AR%: Average Recall

Model Accurcy % AP AR

Action Model 72.50 68.92 42.32

Translation Model 70.03 64.38 38.74

ETVIT Model 74.22 69.78 47.93

model will have to perform exponential times due to the re-

quirement of input. However, the above data tells: 1) flow

information is more important for identification; 2) complex

model may not help if simply using spatial and temporal in-

formation.

ETVIT Model Testing

1) Performance and Analysis We also test our pro-

posed model on a single person dataset. The results are

summarized in Table.3, where we also test the action model

and motion model separately. We can obtain that the pro-

posed method outperforms the best baseline by 18.32%.

The independent action model can achieve 72.5% in accu-

racy and translation model can achieve a 70.03%.

2) Action VS Motion Model The result shows that Ac-

tion model has a 2.47% higher accuracy than Motion model,

and 4.54% higher average precision. It is because the mo-

tion model does not tell any difference when human is static

or just move the part of the body. We also visualize the ac-

tivations and the overlay to the image of the motion model

as illustrated in Fig.7. It can be seen that the third view

translation highly attend to the center of the flow, while, the

ego-motion model attend to the outer body region for trans-

lation estimation. For action sub-model, the activations of

each model the third block is Fig.8. We observe the action

model attending to joints to perceive pose information both

in RGB-image and flow images.

3) Ego Odometry VS Third View Odometry We also

compare the importance of ego-view translation and third

view translation. We directly introduce to add the trans-

lation as an independent channel into the temporal semi-

siamese model, in a fully connected layer (Appear In ap-

pendix). The result shows that third view translation can

increase the validation accuracy (20% of the training data)

from 79.05% to 81.80%. It can be explained according to

Fig.7 that our ego view has a limited view of the world, also

the head motion introduces error.

4) Test On Multi-person Videos Then, we test the pro-

posed model in our multi-moving people cases with results

illustrated in Table.4. For the ground truth, it is obtained us-

ing a tracker and manual label. It is can be seen in Table.4

that ETVIT can achieve an average accuracy 67.77% for all

the test cases. For society cross, the filtering fails due to

much crossing happens. For implementation, we perform

the prediction of all the detected person and conclude based

on the maximum score.

ETVIT model has lower accuracy when the ego-camera



Figure 8. Block 3 activations of the action model. The colors range from blue to red, denoting low to high activations.

Table 4. The verification accuracy % on multi-people testing data.

Test Case Accuracy Bayes

Filter

Multi-person

Two Person : No

Crossing

72.26 96.17

Two Person :
Crossing

62.18 80.76

Three Person :
No Crossing

72.25 92.27

Three Person :
Crossing

65.39 91.52

Group Crossing : 57.26 -

Same Dressing
Two Person : No

Crossing

72.26 96.17

Three Person :
Crossing

65.39 91.52

mounted person crossed with other pedestrians. It is due

to partial observable of the body, the 3D pose estimation

would fail. In this paper, we also introduce a Bayes filter

with motion prediction to filter the verification results[2].

The filtered results are illustrated in Table.4, which shows

promising if given a few people in view.

5) Adaptivity Analysis From all tests, we conclude that

our model achieves a high identification accuracy by at least

10%. We also find several limitations of our model at the

current stage. First, if all the persons are static or with a

similar pose in view, our algorithm would fail. Second, if

all person with the same action and motion, it also fails.

Visual-GPS Demonstration and Comparison

Visual-GPS 3D trajectory is shown in Fig.9. The results

are competitive compared to pure visual odometry (VO).

We found that VO fails tacking after 13.4 seconds, and

we can see that it drifts so quick compare to our Visual-

GPS. The Visual-GPS performs the trajectory predict via

2D-3D pose association and the 3D trajectory is illustrated

in Fig.9(b). Besides, the start and end position is given in

Figure 9. Visual-GPS 3D trajectory recover demonstration and

comparison with visual odometry.

Fig.9(a), and we can visualize in Fig.9(c) that Visual-GPS

accurately predict the 3D position of the target person.

6. Conclusion

We present a Visual-GPS system which incorporates a

downward egocentric camera and a third view camera to

identify, track, and localize a target person in the crowded

and dynamic environment. The Visual-GPS proposes an ac-

tion and motion learning model for cross-view identifica-

tion. It is motivated by the observation that the ego view

is not able to sense the third view’ coordinate informa-

tion. Our experimental results show that our method out-

performs the state-of-art verification model on cross view

verification, even with the same dressing. It delivers a com-

petitive generalization of cross-view verification on semi-

supervised learning for localization and tracking using ac-

tion and motion clue.
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