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Abstract

Human perception of visual similarity relies on infor-
mation varying from low-level features such as texture and
color, to high-level features such as objects and elements.
While generic features learned for image or face recogni-
tion tasks somewhat correlate with the perceived visual sim-
ilarity, they are found to be inadequate for matching look-
alike images. In this paper, we learn the ‘look-alike feature’
embedding, capable of representing the perceived image
similarity, by fusing low- and high-level features within a
modified CNN encoder architecture. This encoder is trained
using the triplet loss paradigm on look-alike image pairs.
Our findings demonstrate that combining features from dif-
ferent layers across the network is beneficial for look-alike
image matching, and clearly outperforms the standard pre-
trained networks followed by fine-tuning. Furthermore, we
show that the learned similarities are meaningful, and cap-
ture color, shape, facial or holistic appearance patterns, de-
pending upon context and image modalities.

1. Introduction

Humans perceive visual similarity based on various
types of internal image representations, which stem from
low-level, mid-level, and high-level interpretations of im-
ages [2]. Perceived visual similarity depends on how hu-
man brain understands the given scene based on informa-
tion from different-scales, along with a system which re-
trieves similar scenes from the memory. Mimicking such
highly complex structure of visual perception to learn a vi-
sual similarity measure is quite a challenging problem for
machines, while being useful for tasks such as image re-
trieval [6, 7]. The existing works in image retrieval deal
with images from similar modalities (or portraying similar
concepts), and therefore are not suitable for the perceived
visual similarity measurement when images feature differ-
ent subject types across diverse modalities. In such cases,
we are interested to learn the feature embedding that repre-
sents the perceived visual similarities between images. Few
examples of such image pairs are shown in Figure 1.
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Figure 1. Totally-Looks-Like Dataset [2]. Example image pairs.

Rosenfeld et al. [2] collected a dataset consisting of look-
alike image pairs, paired by humans based on their per-
ceived visual similarity of the images. The authors conduct
experiments to imitate the way humans make these pair-
ings, using features extracted from state-of-the-art convolu-
tional neural networks (CNNs). While they believe that suf-
ficiently generic visual features must reproduce these pair-
ings without explicitly being trained for the task, the result
obtained using feature-based pairings was found to be far
from the ground truth pairings. Based on the findings from
[2], we aim to examine the capability of CNNs to imitate
the way humans perceive visual similarity of images across
various modalities such as photos, cartoons and sketches.

2. Learning Perceived Similarity

Knowing that the available pre-trained networks do
not provide satisfactory features for the look-alike image
matching, we aim to directly learn an embedding that re-
flects the perceived similarities, using a training set of sim-
ilar (positive) and dissimilar (negative) image pairs. Our
approach focuses on training a CNN to map images onto
a ‘look-alike’ feature space, where the Euclidean distances
between embeddings represent the perceived visual similar-
ity of images. We frame the problem of look-alike matching
as an image retrieval task. Given a query image, we retrieve
its closest look-alike from a database of images, using the
feature embeddings as shown in Figure 2.

Base Architecture. We use the Inception-ResNet-v1 ar-
chitecture as in FaceNet [4], due to its ability to achieve high
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Figure 2. Look-alike Feature Embedding. The aim is to obtain
a mapping to the look-alike feature space in which the distances
between the representations of look-alike images are minimized.

performance with a small number of parameters. FaceNet
directly learns how to represent face images in a compact
Euclidean space in which the distances between the embed-
dings correspond to a measure of facial similarity. Math-
ematically, we represent the network with the embedding
function f : Z — R9, that maps a given RGB image
| € Z = R“*"*3 onto a d-dimensional space.

Triplet Loss and Triplet Selection. The embedding
vector f(I) obtained by the network can now be interpreted
as the representation of the image | in a similarity-sensitive
space. The desired property of this space is that the dis-
tance between two embedding vectors can be considered
as a measure of the perceived similarity of the correspond-
ing images. Given a pair of perceptually similar images
(L;,R;) € Z?, we want to learn an embedding network f (1)
that minimizes the distance between the two embeddings,
and that maximizes the distance between the embeddings
of any two unrelated images. Triplet loss minimization [5]
has proven to be a suitable strategy for such tasks.

A triplet of images 7; = (I, 17,17) € Z3, includes the
anchor image, as well as a positive (the pair counterpart)
and a negative image. The loss for 7; is then computed as

Ur) = 1O = FODIE = IFAF) = FODIE + al+,
(D

where [-]; = max(-,0) is the hinge operation, and « is a
margin parameter. For a batch of triplets 7, the triplet loss
{ then is given by
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During training, triplets are selected by hard-negative
mining in order to have challenging examples for the model
to learn. For each image pair in the dataset (I¢,17) :=
(L;, R;), a negative image 17 is sampled randomly from the
set of images which violate the margin « [4].

Hierarchical Feature Integration Architecture. With
the aim of combining the outputs from low-level and mid-
level layers with the final embedding, we extend the base

architecture. To this end, we learn a new embedding that
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integrates features across multiple layers of the network hi-
erarchy by a linear combination of the corresponding ac-
tivations. Since the importance of the outputs from low-
level and mid-level layers are not clear for our task, relative
weights given to these layers are also being learned by the
model as a set of scalar coefficients. These scalar coeffi-
cients are modeled as 1 x 1 Conv parameters in our network.
Specifically, we extend the base architecture as follows.

e Each layer in the network stem and the reduction layers
in the Inception ResNet-v1 are combined via a series of
operations: output of 10 selected layers are connected
to 10 separate 1x 1 convolution layers with d channels
for dimension reduction, followed by average-pooling
operation to obtain vectors of size 1 xd. These vectors
are only used to extract information from the layers be-
longing to the original architecture, and these vectors
are not directly passed through to the final embedding.

e A stacking layer is used to combine the outputs from
the extracted feature vectors and the FaceNet embed-
ding vectors, yielding a matrix of size 11 xd.

e An 1x1 convolutional layer with 11 filters is used for
dimension reduction, to obtain a final embedding of
1xd. The output of this layer is the ‘look-alike’ feature.

The resulting architecture is depicted in Figure 3.
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Figure 3. Hierarchical Feature Integration. Look-alike features

are extracted and integrated across different levels of the feature
hierarchy by systematically introducing skip-connections.

3. Experiments

Our experiments for the perceptual similarity measure-
ment task can be divided into two parts. First, we ob-
tain the baseline results using a state-of-the-art pretrained
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Figure 4. Qualitative Look-Alike Retrieval Comparison. We compare the FaceNet baseline model (top row) to our proposed feature
integration technique (bottom row) on various examples from the TLL test set. Green markings indicate correct matches. Our approach
retrieves more meaningful images in general, and is able to capture a wide variety of similarity types.

Method m =10 m = 20 m = 60

top-1 | top-2 | top-5 | top-1 | top-2 | top-5 | top-1 | top-2 | top-5
Random chance 10% | 20% | 50% 5% 10% | 25% 2% 3% 8%
TLL Baseline [2] 38% - - 27% - - - -
FaceNet 45% | 58% | 83% | 32% | 45% | 65% | 24% | 30% | 37%
FaceNet + fine-tuned on TLL | 61% | 72% | 90% | 45% | 58% | 75% | 31% | 43% | 59%
Ours + fine-tuned on TLL 64% | 76% | 94% | 53% | 65% | 83% | 39% | 51% | 69%

Table 1. Look-Alike Retrieval Accuracy. We report the top-1, top-2, top-5 accuracies for different methods, including random choice, us-
ing generic+facial features from [2], FaceNet features, FaceNet features fine-tuned on the TLL dataset, and our proposed feature integration
technique fine-tuned on the TLL dataset. We evaluated over test reference sets of sizes m = {10, 20, 60}.

CNN model, followed by fine-tuning using the triplet loss were collected from an entertainment website where users
paradigm. Second, we integrate features across the network were able to vote for the visual similarity of two given
hierarchy, to represent images in the perceived visual simi- images. The images within the dataset represent various
larity space, and compare against the baseline. modalities such as photos, cartoons, and sketches with ex-

amples including (but not limited to) human faces, cartoon
characters, animals, and objects (see Figure 1). The di-
versity of these image pairs gives insight into the features
used by humans when making similarity judgments, as the
image pairs manifest several possible ways of similarities.
Some examples include general facial similarity, facial fea-
ture attributions to animals and objects, similarity in terms
of color, texture, and shape [2]. Hence, similarity may not
be explained by only low- or high-level representations.

We use the FaceNet model with Inception-ResNet-v1 ar-
chitecture; a choice made under the assumption that a net-
work trained for face recognition can also extract features
across different hierarchy levels [4]. We initialize it with
weights pre-trained on the VGG-Face 2 dataset [ 1]. Follow-
ing FaceNet, we set the embedding dimension to d = 128,
and used the same hyperparameters, with a reduced learning
rate of 7 = 1075 for fine-tuning. We employed a publicly
available implementation in Tensorflow [3].

Dataset and Evaluation Metric. We perform training We split the data into 240 test and 5776 training image
and evaluation of our models on the previously mentioned pairs, and employ data augmentation via vertical flips for
Totally-Looks-Like (TLL) dataset [2]. The TLL dataset training. The model accuracy is then evaluated by averaging
consists of 6016 similar image pairs from the wild, which over batches of m images, where m € {10, 20, 60}, as in
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Figure 5. Qualitative Look-Alike Retrieval Results. Each row of the mosaics shows the anchor image, the top-5 matches, and the ground
truth match (columns from left to right) of a sample using our proposed method. Green markings indicate correct matches. From left to
right we show: samples with successful top-5 retrieval, failed retrievals, random faces, and random samples.

the image retrieval task. For each L;, we randomly sample
m — 1 images from the other pairs within the test set, where
these images are represented by |, with k& € {1,..,n — 1}.
Then, the image R; is also included in this image batch as
l,; hence, a reference set of images S of size m is obtained.
After assembling the batch, the embedding vectors corre-
sponding to these m candidates are calculated, and the pair-
wise distances of the embeddings (distance between f(L;)
and the candidate images |y, for k& € {1, ..,n} are calculated.
The images |;; are ranked in terms of these distances, and
the average top-1, top-2 and top-5 accuracies are computed
over all test batches, which are summarized in Table 1.

FaceNet-based baseline models. We extract FaceNet
features from the input images using the original FaceNet
model, and calculate the similarity between images using
the Euclidean distance in the feature embedding. Since our
dataset includes non-face images as well as face images
across various modalities, such as cartoons or sketches, we
remove the face detection step from the input pipeline. The
network is then trained with the TLL dataset via triplet loss
learning, starting from the pre-trained weights. Doing so,
yields better performance, with the ability of capturing low-
or high-level similarities separately. However, we observed
that the model was still inadequate to capture the mixture of
low- and high-level similarities.

Hierarchical Feature Integration. For training the ex-
tended architecture, two alternatives were considered. First
one was to train the whole model, together with 1 x 1 Conv
layers, as shown in Figure 3. Second one was to freeze
the weights of the layers from the initial architecture and
train only the additionally introduced (1 x 1 Conv) layers.
We found that training only the additional layers results in
the best feature representation in terms of image retrieval
performance. In fact, this implies that a rich feature hier-
archy has already been learned, which can be exploited for
‘look-alike’ similarity task by designing a feature integra-
tion path in the network. Figure 4 gives a qualitative im-
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pression of the performance gain as measured in terms of
accuracy. In Figure 5, we show qualitative results of our
proposed method for different subsets of the test set.

4. Conclusion and Future Work

In this work, we investigated learning schemes for look-
alike image matching. Our experiments show that perceived
similarities appear in different levels of the feature hierar-
chy. This can be exploited for improved matching perfor-
mance, by integrating features from multiple layers.

For future work, further insights may be obtained by
localizing regions important for visual similarity. Other
recognition tasks may also benefit from the proposed tech-
nique, due to the explicit learning of visual similarity.
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