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Abstract

Classical monocular vSLAM/VO methods suffer from the

scale ambiguity problem. Hybrid approaches solve this

problem by adding deep learning methods, for example by

using depth maps which are predicted by a CNN. We sug-

gest that it is better to base scale estimation on estimating

the traveled distance for a set of subsequent images. In this

paper, we propose a novel end-to-end many-to-one traveled

distance estimator. By using a deep recurrent convolutional

neural network (RCNN), the traveled distance between the

first and last image of a set of consecutive frames is esti-

mated by our DistanceNet. Geometric features are learned

in the CNN part of our model, which are subsequently used

by the RNN to learn dynamics and temporal information.

Moreover, we exploit the natural order of distances by us-

ing ordinal regression to predict the distance. The evalua-

tion on the KITTI dataset shows that our approach outper-

forms current state-of-the-art deep learning pose estimators

and classical mono vSLAM/VO methods in terms of distance

prediction. Thus, our DistanceNet can be used as a compo-

nent to solve the scale problem and help improve current

and future classical mono vSLAM/VO methods.

1. Introduction

Autonomous robots and vehicles crucially depend on

knowing where they are and how they move in the envi-

ronment. In the last decade, many variants of SLAM ap-

proaches have been proposed to solve exactly this task.

SLAM algorithms vary significantly in the types of sen-

sors they use (cameras, Lidar, Radar, ultrasound, ....). Even

though most systems deployed to the real world are be based

on a fusion of multiple sensors, the demand to push even

single sensors to the very limits of their application range is

caused by the need to keep systems operational even under

partial failure of some sensors. Therefore, there is a current

trend in academia as well as in industry to solve the per-

Figure 1. The pipeline of our proposed end-to-end many-to-one

DistanceNet. This RCNN architecture consists of a CNN, which

learns geometric features and an RNN that infers the traveled dis-

tance based on temporal information. The output of our model is

a multi-hot-encoded distance class vector.

ception tasks only with one monocular camera keeping the

same accuracy and robustness.

All monocular visual SLAM (vSLAM) or visual odom-

etry (VO) methods have in common that they may yield

state-of-the-art results but cannot observe the absolute scale

directly. Thus, they depend on external information (e.g.

distance from the camera to the ground plane or measure-

ment of current speed from a speedometer) to resolve this

ambiguity. In the present paper, we propose a deep learn-

ing approach that determines scale information implicitly

during training, without requiring any further external input

during operation. The relation between visual motion and

3D motion in the real world is learned during training from

pose-annotated visual data (e.g. the KITTI data set).

Our novel deep learning approach estimates the traveled

distance of the ego-vehicle exploiting temporal information

of consecutive frames. Since the frame rate is a known pa-

rameter, the traveled distance is equivalent to the current
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speed and the scale factor can be directly resolved by sim-

ply relating the unscaled speed of a monocular vSLAM or

VO method with the absolute scaled traveled distance of our

approach. In contrast to that, current hybrid state-of-the-art

mono vSLAM approaches apply deep learning techniques

to resolve the unknown absolute scale by either deploying

CNNs to estimate depth maps from a monocular image or

they perform deep learning guided ground plane estimation

where a CNN is used to label the ground plane area and ex-

ternal knowledge about the camera height above ground is

exploited. In both of these cases, the deep learning method

is unable to utilize temporal information and does not di-

rectly yield the absolute scale.

The main contribution of this paper is as follows: We

use a recurrent convolutional neural network (RCNN) to

reliably and robustly determine the traveled distance from

a video sequence in an end-to-end manner. For this pur-

pose, we use an optimized RCNN architecture similar to

[22, 23, 10, 24], and a novel loss function to train the net-

work. In comparison to other learning based methods, our

network outperforms all current state-of-the-art, even clas-

sical, mono vSLAM/VO methods in determining the abso-

lute scale. Indeed, one can argue that our approach is sim-

pler than VO networks, which estimate the full 6-DoF pose,

but this assumption does not hold, because it makes no dif-

ference for estimating the distance if further parameters are

also predicted from the given observations. Thus, our pro-

posed DistanceNet can be used to solve the scale problem

and even improve classical mono vSLAM/VO method with-

out any additional information.

2. Related Work

In this section, we review classical as well as deep learn-

ing based vSLAM/VO methods and discuss how they solve

the scale ambiguity problem. For the classical approaches,

there are basically two possibilities to retrieve the absolute

scale: First, it can be resolved indirectly by additional in-

formation from an external sensor or it is inferred directly

from an appearance based approach, which is mainly based

on deep learning techniques. These different types of scale

recovery will be studied below.

2.1. Classical Methods

Generally, classical methods can be divided into direct

and indirect methods. Direct methods, like LSD-SLAM

[4], DSO [3], PMO [5] or SVO [6], optimize feature cor-

respondences directly in the image by minimizing the pho-

tometric error between consecutive frames to retrieve 3D

information about the environment and the camera motion

simultaneously. In contrast to that, indirect or feature-based

methods, like PTAM [11] or ORB-SLAM [16], proceed in

two steps: First, some good 2D feature correspondences are

found in an image sequence, using one of several proven

and tested handcrafted feature descriptor. Then, the 2D

coordinates of these correspondences are optimized using

a geometric objective function, like the reprojection error,

yielding estimates of the geometry and the relative pose. A

drawback of all mono vSLAM methods is the unobservable

absolute scale and the accumulated scale drift over time.

To solve this problem, these approaches depend on external

information. For example, this information can be added ei-

ther in the form of an additional sensor, as a stereo camera

[21] or a speedometer, or with knowledge about the position

of the ground plane relative to the camera without usage of

deep learning [18, 30].

Recent and state-of-the-art mono vSLAM/VO methods

mainly use CNNs to resolve the scale ambiguity problem.

The approaches of [19, 26, 25] and [14] have trained a CNN

to deploy a scaled depth map from single monocular im-

ages. These dense depth maps are used to extend the op-

timization scheme of the classical frameworks, like for in-

stance a so-called virtual stereo setup [25] for DSO or ini-

tializing depth filters [14] in SVO directly from the depth

map, to eliminate the scale ambiguity. Another possibility,

which is pursued by [5], is to first detect the ground plane

with a CNN in the image and then to infer the scale with

the knowledge of the height of the mounted camera above

the detected street level. These hybrid methods represent

the current state-of-the-art in terms of accuracy and robust-

ness, which is also confirmed by the rankings in the KITTI

odometry benchmark [8].

2.2. Deep Learning Methods

For several years, deep learning approaches have become

increasingly successful and achieve astonishing results for

solving different computer vision tasks, like image classi-

fication, semantic or instance segmentation or even natural

language processing. Currently, there are two different end-

to-end ways to tackle the vSLAM problem with deep learn-

ing.

Unsupervised training of two CNNs, a depth CNN (D-

CNN) and a pose CNN (P-CNN) is one possible solution

to retrieve the 6-DoF pose with deep learning. In these ap-

proaches [31, 15, 20, 28], two or three consecutive monoc-

ular images or even additional spatial images from a stereo

camera jointly serve as the input for both CNNs. Based on

this stacked input data, the D-CNN tries to predict a depth

map. This depth map and the stacked images are the input

of the P-CNN, which estimates a 6-DoF relative pose be-

tween these stacked images. This estimated pose and the

depth map are used to wrap one (or more, depending on the

approach) of the input images that it optimally coincides

with the other respectively the reference image. The result-

ing photometric error between these images and additional

penalty terms, like a smoothness term, depending on the

approach, form the unsupervised loss function of the CNN



Figure 2. The figure shows the network architecture of our model. After resizing, the images are passed into the CNN. The obtained

features are the input for the RNN which returns a multi-hot-encoded distance class.

which is minimized during training. On the basis of this

coincidence of the images, the pose is indirectly predicted

by the CNN. A similar approach was also proposed by [27]

and [29], but they have extended this pipeline with optical

flow information.

A completely different end-to-end approach, which be-

longs to supervised learning and is quite similar to our pro-

posed method, has been developed in DeepVO [22] and its

successors ESP-VO [23], MagicVO [10], DGRNets [13]

and SRNN [24]. The main idea of these methods is that they

estimate the pose based on a temporal sequence of images

with a RCNN. In such a network, features are first extracted

by a CNN, which is in almost all approaches a variant of

the FlowNet [2], and then passed on as input to a recurrent

network consisting of (bidirectional) long short-term mem-

ory (LSTM) cells. Within these cells, the network implicitly

learns the dynamics and the relations between the input im-

ages and finally infers the pose based on this information. A

downside to this approach is that no 3D information about

the environment can be retrieved.

Recently, another interesting approach to estimate the 6-

DoF pose was published by Almalioglu et al. [1]. They pre-

dict the pose of consecutive frames from different perspec-

tives with a Generative Adversarial Network (GAN).

Current learning based approaches usually perform

worse in comparison to classical vSLAM methods. Ad-

ditionally, to the best of our knowledge, all current state-

of-the-art deep learning techniques that belong to the class

of end-to-end methods are only capable of predicting the

6-DoF pose, but cannot reconstruct a temporal consistent

map of the environment and do not optimize the pose and

map globally like it is done in classical vSLAM methods.

Thus, classical approaches are still superior to purly learn-

ing based methods and can be further improved, if accurate

and reliable scale information is introduced.

3. Proposed Model

In this chapter, we will take a closer look at the architec-

ture of our proposed DistanceNet. The network takes two

images as input and returns a vector of multi-hot-encoded

distance classes. The model consists of a CNN and a RNN

part, as shown in Figure 2. More details about the two net-

works are provided in the following sections.

3.1. Network Architecture

For calculating the traveled distance between two con-

secutive images, the network takes these images as input

and stacks them together after three convolution layers have

been applied to the input images. In a preprocessing step,

these images are normalized and resized to a resolution of

768× 256 pixels.

The CNN is used to extract geometric features of the in-

put, which are semantically meaningful for the RNN to esti-

mate the distance between them. But these features are gen-

erally different from the ones of a classification network that

is looking for specific image content like a traffic light or

pedestrians. Our geometric features are learned over several

images and therefore we stack adjacent ones. The obtained

features are used as input to the RNN. A recurrent network

is capable of learning dynamics and temporal information

in video sequences exploiting these features. That means,

it is no problem to use several image pairs as input and re-

turn the total traveled distance between the first and the last

image.



Our network returns a vector of multi-hot-encoded dis-

crete distance classes with the actual class given by the sum

of hot-encoded labels.

3.1.1 Convolutional Neural Network

The concept of transfer learning can be exploited for a bet-

ter training convergence and a better generalization to un-

seen data of the CNN. In order to achieve that, we need to

use an already pretrained network that takes two images as

input and provides geometric features of the stacked input

images. In our approach, we use FlowNetC as feature ex-

tractor, which is a variant of FlowNet [2].

Normally, FlowNetS and FlowNetC are estimating the

optical flow between two images. The former takes two

stacked images as input while the second processes both

separately and concatenates them with a correlation layer

afterwards. The architecture including the correlation layer

of FlowNetC is shown in Figure 2. In this network, the

dimension of the input images is shrinked to a resolution of

12 × 4 pixels while the feature channel size is increased to

1024 in the last layer.

3.1.2 Bidirectional Long Short Term Memory

Recurrent neural networks have the characteristic to learn

through sequences. The RNN gets image pairs over multi-

ple time steps and estimates the distance between the first

and last given image. This is possible by passing the pre-

vious output as input for the next step whereby information

of previous images is stored in memory. This knowledge is

used to estimate the traveled distance between consecutive

frames.

Unfortunately, this approach suffers from vanishing gra-

dients. Hence, the sequence length must be limited. Using

Long Short-Term Memory (LSTM) can be one solution to

reduce this problem. A LSTM consist of states, which save

information, and gates, which can modify or delete these

states. A state with the related gates is called a cell and

LSTM layers consist of several of such LSTM cells.

Currently, the LSTM cells can only represent and store

information about previous frames. But a normal LSTM

cell can be extended to a bidirectional LSTM (Bi-LSTM),

which does not depend on past data only, but can also pro-

cess data from current incoming images. For this extension,

two standard LSTMs are stacked together. One runs for-

ward as usual and the other backward through the sequence.

In Figure 2, the RNN part of our DistanceNet is shown.

The model consists of two Bi-LSTM layers with 800 cells

each.

Figure 3. In the many-to-one approach only the output for the last

time step matters. The others are thrown away.

3.1.3 Output

The output of our model is a multi-hot-encoded vector ~v

with a length of K discrete distance classes. Unfortunately,

in most cases the network does not return integral numbers

but probabilities inside the range of [0, 1]. Because of that,

the output of a single distance class, which is encoded as

one component in our output vector, must be rounded to

binary labels:

~v ′ = (ρ(v1), ρ(v2), ..., ρ(vK))T , with (1)

ρ(x) =

{

1, x ≥ t

0, otherwise
(2)

Normally, the threshold for rounding is set to t = 0.5 but

for some models, slightly different thresholds can improve

the results.

With just zeros and ones the actual class c can be deter-

mined. For that, all the leading ones until the first zero are

summed:

c =

K
∑

k=1

η(~v ′, k), with (3)

η(~v, k) =











1, k = 1 and ~vk = 1

1, η(~v, k − 1) = 1 and ~vk = 1

0, otherwise

(4)

The first class that represents a distance of 0m is encoded

by a vector with only zeros. The opposite with only ones

stands for the last class and the maximum distance that can

be estimated. Thus, the possible amount of classes deter-

mines the granularity of the model. A vector with length of

K can encode K + 1 classes. With a maximum distance

dmax the distance dstep between two adjacent classes is cal-

culated by:

dstep =
dmax

K
. (5)



The RNN returns these classes for every time step, but it is

not necessary to take care of all of them. In our many-to-one

approach, which is shown in Figure 3, only the last output

is required. This means that the network gets image pairs

for multiple time steps and given the last pair, it returns the

distance between the first and last image.

3.2. Loss Function and Ordinal Regression

For a better generalization and training convergence, we

divide the traveled distance into classes. These distance

classes are predicted by multi-hot-encoded vectors as the

output of our network. Moreover, the different classes have

a natural order. To keep this information for the network,

we can use ordinal regression and transform the distance

estimation problem into binary classification subproblems

as proposed in [7]. This means that the distance is no

longer estimated on its own. Instead, multiple classifiers are

trained and those jointly estimate the result. The training is

done by minimizing the mean loss by tuning the hyperpa-

rameters θ of the model with a batch size of N , multi-hot-

encoded estimations ~e and ground truth multi-hot-encoded

classes ~c:

θ = argminθ

1

NK

N
∑

n=1

K
∑

k=1

L(~en,k,~cn,k) (6)

This equation shows that the loss is not only calculated for

every element n in the batch (first sum), but rather than that

it is also calculated for every digit k in the element (second

sum). This is where the multiple classifiers are trained. As

a loss function L, we consider binary cross entropy (BCE)

and focal loss (FL), which was introduced by [12].

3.2.1 Binary Cross Entropy Loss

In a binary classification problem, two parameters are given.

One is the target t that can be 0 or 1 and thus encodes the

right class that should be predicted. The other one is the

probability p in the range of [0, 1], which is the prediction

of the network. For training, we need to measure the error

between the target t and the estimated probability p. Ex-

actly, this is done with the BCE:

BCE(p, t) = −t log(p)− (1− t) log(1− p) (7)

The ground truth target t ensures that only one side of the

equation is active. A target of 0 disables the left hand side

and a target of 1 the right. Because of that a good estima-

tion is always approaching the error of log(1) = 0 and thus

means a low error. Vice versa, a bad estimation results in a

low value of the logarithm and therefore a high error.

3.2.2 Focal Loss

Lin et al. [12] have published the focal loss an extension to

BCE:

FL(p, t) = −t(1− p)γ log(p)− (1− t)pγ log(1− p) (8)

The left side of the equation measures the error for the pos-

itive target 1. The error of a already well predicted p is

reduced by adding (1− p)γ as a multiplier. High values for

the prediction p are pushing the multiplier down and thus

the complete error. Similarly, the right side with negative

target 0 and low prediction values is doing the same.

This keeps the focus on bad estimations. It is more im-

portant to have all values on a sufficient value instead of

some perfect ones for the price of a worse.

The effectiveness of the focal loss can be tuned with γ.

As proposed in their paper, we use γ = 2 and the class

balance weights are accordingly mapped into the range of

[0.25, 0.75].

3.2.3 Class Balancing

Sometimes the amount of the different class examples are

unbalanced. This can lead to the network focusing on a few

classes only during training, while less common ones are

ignored. To avoid that, we use class balancing weights as

follows:

L′(p, t) = αcL(p, t) (9)

The loss function is scaled with the inverted probability of

the occurrence αc of the class c to be estimated. In general,

this approach increases the loss of less common classes.

In our model, class weights are applied to full meters.

Due to this, the class c must be rounded to get the corre-

sponding αc.

3.3. Model Parameters

All important parameters are listed below. In total, 10

normalized and consecutive images with a resolution of

768 × 256 pixels are packed into 9 image pairs. These are

given to the network as input time step by time step. With

the last pair, the network returns the estimated distance be-

tween the first and the last of the 10 images.

The CNN architecture of our DistanceNet ist adopted

from the FlowNet and pretrained weights are used. Fur-

thermore, we freeze the weights of the first layers (conv 1,

conv 2, conv 3, conv redir and conv 3 1) during training,

while the other layers can be updated in the backward pass.

Two Bi-LSTM layers with 800 cells each form the RNN.

To avoid overfitting, a dropout with the rate of 0.3 is used

between and after the layers. In addition, the gradients of

the LSTMs are clipped to a value of 1. Thereby gradient

exploding is avoided.



As loss, we use the focal loss with γ = 2 and the class

weights are mapped to the range [0.25, 0.75].

4. Training and Evaluation

This section describes the training procedure of our net-

work and the achieved results. We also compare our re-

sults with the pose estimates of other current state-of-the-art

vSLAM/VO methods by extracting the estimated distance

from them.

4.1. System Configuration

We trained our network on the following soft- and hard-

ware:

• PyTorch 1.0 with Python 2.7.15

• 3 NVIDIA Titan Xp with 12 GB RAM

• AMD Ryzen Threadripper 1900X with 64 GB RAM

4.2. KITTI Dataset

Geiger et al. [8] published the KITTI odometry bench-

mark, which contains of 22 different driving sequences of a

vehicle. In order to test the performance of the algorithms

in the benchmark, ground truth pose data is only published

for the first 11 sequences. The sequence 01 is the only one

which is recorded on a highway. We exclude it from our

training set, because it comprises only about 1100 images

which is too less to generalize to highway scene in contrast

to all the other rural and urban sequences, which we use for

training our network.

Accumulating the traveled distance of the vehicle in 10

consecutive frames, we set the maximum distance to 15 me-

ters, which can be split into discrete classes. The KITTI se-

quences have been recorded with 10 fps and thus they match

exactly with our chosen time step length. That means the

output of our network is not only a distance class, but also

a speed measurement in meter per second.

4.3. Training

Multiple factors influence the results of our network. To

show this, we also evaluate the following ablation studies of

our model:

• DistanceNet-Reg: Regression based training with the

mean squared error (MSE) instead of class losses

• DistanceNet-BCE: Utilizing BCE loss instead of focal

loss

• DistanceNet-LSTM: Using standard LSTM cells in-

stead of Bi-LSTMs

• DistanceNet-FlowNetS: Replacing the FlowNetC with

FlowNetS

Method trel rrel
ESP-VO 6.16 6.66

DeepVO 5.96 6.12

SRNN 6.78 3.07

SRNN-se 6.29 2.88

SRNN-point 5.47 2.53

SRNN-channel 4.97 2.26

Table 1. Averaged translation and rotation error of DeepVO, ESP-

VO and different variants of SRNN on the KITTI sequences 03,

04, 05, 06, 07 and 10. The results are taken from the published

data of the SRNN paper [24].

To train these networks, we first map the pixel values of

the RGB images to the range of [0, 1] and then subtract the

pixel means [0.411, 0.432, 0.45] from them. Furthermore,

we use data augmentation to generate more training data

for better generalization. Therefore, we flip the images of a

input sequence randomly with a probability of 0.5.

We use Adam as optimizer with a start learning rate of

0.0001 and beta values of [0.9, 0.999] and weight decay

of 0.001. Every model is trained for up to 200 epochs.

Because the batch size is constrained by the RAM of

the GPUs, we use accumulating gradients. The gradients

of multiple micro batches are successively calculated and

summed before the optimizer is called. With this method,

we reach a total batch size of 512.

The output vector length of our model is set to 155, thus

156 classes can be encoded in total. This means, the net-

work is estimating in decimeter steps and has a range of

0m to 15.5m.

4.4. Evaluation

Three different types of approaches are used to validate

our model:

• Classical methods: ORB-SLAM [16], DSO-Mono [3],

DSO-Stereo [21] and PMO [5]

• CNN methods: GeoNet [27] and SfMLearner [31]

• CNN+RNN methods: DeepVO [22], ESP-VO [23] and

variants of SRNN [24]

To our knowledge, DeepVO was the first VO system with a

RNN structure. The architecture is similar to our network,

but uses FlowNetS instead of FlowNetC, LSTMs instead

of Bi-LSTMs and poses are estimated instead of discrete

distance classes. Furthermore, they are not using ordinal

regression. The extended version ESP-VO adds fully con-

nected layers and a SE(3) composition layer at the end of

the network.

Unfortunately, we were not able to get the estimated

poses of these networks, but we received the data of the

different SRNN variants [24] published by Xue et al. They



estimate the rotation and translation parameter of the pose

separately and choose suitable features for each of them

with guided feature selection. For this purpose, SRNN-se

uses a SENet [9] inspired guidance, while SRNN-point is

based on point-wise and SRNN-channel channel-wise cor-

relation. SRNN does not use guided features at all. To men-

tion briefly, ConvLSTMs [17] are also used to keep the spa-

tial structure of the features given to a RNN.

The results in table 1 show that SRNN-point and SRNN-

channel performs better than DeepVO and ESP-VO on the

averaged translational and rotation error, while SRNN and

SRNN-se yield worse results. With this information, we

have upper and lower bounds for the DeepVO and ESP-VO

performance and thus it should be possible to compare our

results and the ones of them without knowing the estimated

poses.

Unfortunately, the different deep learning networks are

not trained on the same sequences. Because of that, we

evaluate our results in two steps. In the first step, our model

and the variants of it are trained on the sequences 00, 02, 08

and 09. By that, we can compare with the different SRNN

networks on the common test sequences 03, 04, 05, 06, 07

and 10. The results of all classic methods are added as well.

In the second step, we want to evaluate against GeoNet and

SfMLearner. They used as test sequences 09 and 10. Be-

cause of that the DistanceNet is trained a second time on the

sequences 00, 02, 03, 04, 05, 06, 07 and 08, like these two

approaches.

We compare our results on the one hand by using the

root mean squared error (RMSE) and on the other hand in

terms of the accuracy (Acc) of the predicted right classes of

the model. For the latter metric, the estimated and real dis-

tances are rounded to full meters and then compared with

each other. A further measure for the consistency of the

model is defined by the accuracy with one-meter deviation

(AccDev). This means an estimated distance is also clas-

sified as correct when it is one meter away from the real

distance. A consistent model should have a much higher

value on this accuracy than on the accurate one (Acc).

4.5. Result Analysis

Table 2 is divided into two parts: the upper one for the

classic and the lower one for deep learning methods. For

both parts, the best results are highlighted. DSO-stereo per-

forms better than anything else but this is not a surprise,

because they use a stereo camera setup, where the scale

ambiguity does not exist. The best amongst the classic

mono-based methods in our evaluation has been achieved

by PMO.

In comparison with our DistanceNet it has a worse result

for the RMSE but an unexpectedly high value in accuracy.

This is an indicator for an inconsistent method that has some

good and some worse results. A view on the accuracy with

Method RMSE Acc AccDev

ORB-SLAM-mono 7.4623 0.0221 0.0368

DSO-mono 7.3854 0.0241 0.0452

PMO 0.7463 0.7183 0.9633

DSO-stereo 0.0756 0.9387 1.0

SRNN 0.6754 0.6121 0.9667

SRNN-se 0.6526 0.5801 0.9727

SRNN-point 0.5234 0.6267 0.9822

SRNN-channel 0.5033 0.6487 0.9873

DistanceNet-FlowNetS 0.5544 0.6292 0.9752

DistanceNet-Reg 0.5315 0.6848 0.9855

DistanceNet-LSTM 0.4167 0.6871 0.9896

DistanceNet-BCE 0.3925 0.7158 0.9930

DistanceNet 0.3901 0.6984 0.9916

Table 2. Averaged results on KITTI sequences 03, 04, 05, 06, 07

and 10.

Method RMSE Acc AccDev

GeoNet 6.2302 0.0306 0.0544

SfMLearner 7.5671 0.0216 0.0505

DistanceNet 0.4624 0.6669 0.9841

Table 3. Averaged results on KITTI sequences 09 and 10.

Figure 4. The errors of DistanceNet, SRNN-channel and PMO for

the first 500 frames of the sequences 05 and 07. An error is cal-

culated by subtracting the estimated distance from the actual one.

Positive errors exceeded the actual distance and negative ones have

not reached it.



one-meter deviation confirms this because PMO suddenly

falls back.

Since DistanceNet performs better than all SRNN vari-

ations on RMSE as well as on accuracy and we declared

SRNN-channel as a bound for DeepVO and ESP-VO, we

probably perform better than these as well. The compari-

son with the networks GeoNet and SfMLearner is shown in

Table 3. Here, the DistanceNet achieved better results as

well and thus outperforms all methods without the classical

stereo-based DSO-stereo method.

The effect of different network parameters is revealed

by our ablation studies of DistanceNet. FlowNetC as

well as ordinal regression give a huge performance boost

as the comparison between DistanceNet-FlowNetS and

DistanceNet-Reg with DistanceNet shows. The usage of

Bi-LSTMs is recognizable but not that much and a differ-

ence between BCE and focal loss is barely noticeable.

In addition to the results in both tables, Figure 4 shows

the temporal error of DistanceNet, SRNN-channel and

PMO over the sequences 05 and 07. A positive error means

the actual distance is exceeded. Vice versa, with a nega-

tive one it is not reached. All methods suffer from both of

these mistakes so that a recognizable pattern cannot be seen.

But DistanceNet is always inside the range [−1, 1], actually

most of the time it is inside [−0.5, 0.5] and thus better than

its counterparts.

5. Conclusion & Summary

In this work, we presented a novel end-to-end deep learn-

ing approach for traveled distance prediction on a sequence

of consecutive images. Using a RCNN architecture, our ap-

proach is able to learn features with a CNN and temporal

information with a RNN. Moreover, we exploit the natural

order of distances by using ordinal regression.

The evaluation on the KITTI dataset shows that we out-

perform current state-of-the-art learning based methods and

even classical mono methods for vSLAM/VO. Additionally,

we evaluate that better performance is reached by ordinal

regression.

In a next step, we intend to develop a new hybrid mono

vSLAM/VO method by incorporating the predicted distance

from our DistanceNet to resolve the scale ambiguity prob-

lem.
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V. Golkov, P. v. d. Smagt, D. Cremers, and T. Brox. FlowNet:

Learning optical flow with convolutional networks. In In-

ternational Conference on Computer Vision (ICCV), pages

2758–2766, 2015.

[3] J. Engel, V. Koltun, and D. Cremers. Direct sparse odom-

etry. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 40(3):611–625, 2018.
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