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Abstract

In this paper, we present an extension to LaserNet, an

efficient and state-of-the-art LiDAR based 3D object detec-

tor. We propose a method for fusing image data with the

LiDAR data and show that this sensor fusion method im-

proves the detection performance of the model especially at

long ranges. The addition of image data is straightforward

and does not require image labels. Furthermore, we ex-

pand the capabilities of the model to perform 3D semantic

segmentation in addition to 3D object detection. On a large

benchmark dataset, we demonstrate our approach achieves

state-of-the-art performance on both object detection and

semantic segmentation while maintaining a low runtime.

1. Introduction

3D object detection and semantic scene understanding

are two fundamental capabilities for autonomous driving.

LiDAR range sensors are commonly used for both tasks due

to the sensor’s ability to provide accurate range measure-

ments while being robust to most lighting conditions. In

addition to LiDAR, self-driving vehicles are often equipped

with a number of cameras, which provide dense texture in-

formation missing from LiDAR data. Self-driving systems

not only need to operate in real-time, but also have limited

computational resources. Therefore, it is critical for the al-

gorithms to run in an efficient manner while maintaining

high accuracy.

Convolutional neural networks (CNNs) have produced

state-of-the-art results on both 3D object detection [15, 18]

and 3D point cloud semantic segmentation [29, 34] from Li-

DAR data. Typically, previous work [11, 15, 31, 32, 34, 35]

discretizes the LiDAR points into 3D voxels and performs

convolutions in the bird’s eye view (BEV). Only a few

methods [14, 18, 29] utilize the native range view (RV) of

the LiDAR sensor. In terms of 3D object detection, BEV

methods have traditionally achieved higher performance

than RV methods. On the other hand, RV methods are

usually more computationally efficient because the RV is a

compact representation of the LiDAR data where the BEV

Figure 1: Example object detection and semantic segmen-

tation results from our proposed method. Our approach uti-

lizes both 2D images (top) and 3D LiDAR points (bottom).

is sparse. Recently, [18] demonstrated that a RV method

can be both efficient and obtain state-of-the-art performance

when trained on a significantly large dataset. Furthermore,

they showed that a RV detector can produce more accurate

detections on small objects, such as pedestrians and bikes.

Potentially, this is due to the BEV voxelization removing

fine-grain details which is important for detecting smaller

objects.

At range, LiDAR measurements become increasingly

sparse, so incorporating high resolution image data could

improve performance on distant objects. There have been

several methods proposed to fuse camera images with Li-

DAR points [2, 11, 15, 19, 21, 30]. Although these methods

achieve good performance, they are often computationally

inefficient, which makes integration into a self-driving sys-

tem challenging.

In this paper, we propose an efficient method for fusing

2D image data and 3D LiDAR data, and we leverage this ap-

proach to improve LaserNet, an existing state-of-the-art Li-

DAR based 3D object detector [18]. Our sensor fusion tech-

nique is efficient allowing us to maintain LaserNet’s low



runtime. Unlike the previous work, which addresses 3D ob-

ject detection and semantic segmentation as separate tasks,

we extend the model to perform 3D semantic segmentation

in addition to 3D object detection. By combining both tasks

into a single model, we are able to better utilize compute

resources available on a self-driving vehicle. Our approach

can be trained end-to-end without requiring additional 2D

image labels. On a large dataset, we achieve state-of-the-art

performance on both 3D object detection and semantic seg-

mentation tasks. Figure 1 shows an example of our input

data and resulting predictions.

2. Related Work

2.1. 3D Object Detection

Several approaches have been proposed for 3D object de-

tection in the context of autonomous driving. Since LiDAR

directly provides range measurements from the surface of

objects, it is one of the most popular sensors used for this

task [13, 14, 18, 31, 32, 35]. Multiple works [2, 11, 15] have

shown that fusing LiDAR data with RGB images improves

the performance of object detection especially at long range

and for small objects. Thus, in this work, we focus on fusing

camera images with a state-of-the-art LiDAR based detec-

tor [18].

The existing camera and LiDAR fusion methods can be

divided into three different groups: 2D to 3D, proposal fu-

sion, and dense fusion. In 2D to 3D approaches [5, 19, 21,

30], 2D object detection is first performed on the RGB im-

ages using methods such as [17, 23]. Afterwards, these 2D

boxes are converted to 3D boxes using the LiDAR data.

These methods rely on computationally expensive CNNs

for 2D detection, and they do not leverage the 3D data to

identify objects. Whereas, our approach uses a lightweight

CNN to extract features from the 2D image, and we use

these features to enrich the 3D data. Furthermore, these

types of methods require both 2D and 3D bounding box la-

bels, while our method only requires 3D labels.

Like the 2D to 3D approaches, proposal fusion meth-

ods [2, 11] also consist of two stages. First, they propose

3D bounding boxes by either sampling uniformly over the

output space [11] or by predicting them from the LiDAR

data [2]. The 3D proposals are used to extract and combine

features from both sensor modalities. The features are ex-

tracted by projecting the proposals into each view and pool-

ing over the area encapsulated by the proposal. The features

from each sensor are combined and used to produce the final

3D detection. Since these methods require feature pooling

for every proposal, they typically have a high runtime.

With dense fusion [15], LiDAR and image features are

fused into a common frame, which enables single stage 3D

object detection. Specifically, [15] uses the 3D points from

the LiDAR to project features from the image into 3D space,

and they use continuous convolutions [28] to merge these

features into the voxelized BEV. To utilize continuous con-

volutions, [15] needs to identify the k nearest 3D points for

each voxel which is a computationally expensive operation.

Our proposed method falls into this group; however, we use

the 3D points to project the image features directly into the

native range view of the LiDAR sensor. We demonstrate

that our approach is efficient and can significantly improve

detection performance.

2.2. 3D Semantic Segmentation

Previous work on 3D semantic segmentation has rep-

resented LiDAR data in multiple ways: as a point cloud

[3, 4, 22, 28], a voxelized 3D space [9, 24, 26, 34], and

a spherical image [29]. The accuracy and efficiency of a

method depends on its representation of the data. Methods

that discretize the 3D space can lose information through

quantization errors, which limits their ability to produce a

fine-grain segmentation of the data. Whereas, methods that

operate directly on point cloud data are often slower, since

the unstructured nature of the representation does not allow

for efficient convolutions.

Fusion of color and geometric data has been extensively

explored with the data obtained from RGB-D cameras of in-

door scenes [1, 25]. In this setup, the image pixels have both

RGB values and a depth measurement. Methods which rep-

resent this data as a 3D point cloud [12, 26] decorate each

point with its corresponding RGB values and feed it as in-

put to their model. Methods which represent the RGB-D

data as separate images [6, 7, 20, 27], extract features from

both images and combine the features at multiple scales us-

ing a CNN. Since there is a dense correspondence between

RGB and depth, the fusion is performed at a per-pixel level.

For outdoors scene with LiDAR, there is only a sparse cor-

respondence between the camera pixels and the range mea-

surements. We demonstrate that combining the RGB values

with their corresponding LiDAR point does not help per-

formance. Alternatively, we extract features from the RGB

image using a CNN and then fuse those features with the Li-

DAR points in the native range view of the sensor. We show

that at long ranges, the additional image data improves the

semantic segmentation of the 3D points.

3. Proposed Method

In the following sections, we describe our modification

to LaserNet [18] to fuse RGB image data, and to jointly

perform semantic segmentation of the 3D point cloud in ad-

dition to 3D object detection. An overview of our proposed

method can be seen in Figure 2.

3.1. Input Data

Self-driving vehicles leverage a suite of sensors to col-

lect data from its environment. The input to our proposed



Figure 2: Our proposed method fuses 2D camera images and 3D LiDAR measurements to improve 3D object detection and

semantic segmentation. Both sensor modalities are represented as images, specifically the 3D data is represented using the

native range view of the LiDAR (Section 3.1). Our approach associates LiDAR points with camera pixels by projecting the

3D points onto the 2D image, and this mapping is used to warp information from the camera image to the LiDAR image

(Section 3.2). Instead of warping RGB values as depicted, we fuse features extracted by a CNN (Section 3.3). Afterwards,

the LiDAR and camera features are concatenated and passed to LaserNet [18], and the entire model is trained end-to-end to

perform 3D object detection and semantic segmentation (Section 3.4).

method is 3D data from a Velodyne 64E LiDAR, and 2D

data from a RGB camera. An example of the input data is

shown in Figure 2.

The Velodyne 64E LiDAR measures the surrounding ge-

ometry by sweeping over the scene with a set of 64 lasers.

For each measurement, the sensor provides a range r, re-

flectance e, azimuth angle θ of the sensor, and elevation an-

gle φ of the laser that generated the return. The 3D position

of the measurement can be computed as follows:

p =





x
y
z



 =





r cosφ cos θ
r cosφ sin θ

r sinφ



 (1)

where p is ordinarily referred to as a LiDAR point. As in

[18], we form an image by mapping lasers to rows and dis-

cretizing the azimuth angle into columns. For each cell in

the image that contains a measurement, we populate a set of

channels with the LiDAR point’s range r, height z, azimuth

angle θ, and intensity e, as well as a flag indicating if the

cell is occupied. The result is a five channel LiDAR image.

The camera captures a RGB image which covers the

front 90◦ horizontal and the full 30◦ vertical field of view of

the LiDAR image. We crop both the RGB and LiDAR im-

age to align the field of views of the sensors, which results

in a 512×64×5 LiDAR image and a 1920×640×3 RGB

image. These two images are the input to our model.

3.2. Sensor Fusion

As illustrated in Figure 2, the 2D image and the 3D

points are related through projective geometry. To fuse the

LiDAR and RGB data, we begin by projecting each LiDAR

point p onto the RGB image,

α [u, v, 1]
T
= K (Rp+ t) (2)

where (u, v) is the pixel coordinate of the 3D point in the 2D

image, K is the intrinsic calibration matrix of the camera,

and R and t are the rotation matrix and translation vector

that transform the 3D point from the LiDAR’s coordinate

frame to the camera’s coordinate frame. As a result, we ob-

tain a mapping from the LiDAR image to the RGB image,

and we can use this mapping to copy features from the RGB

image into the LiDAR image, as shown in Figure 2. If we

fuse raw RGB data in this way, a significant amount of in-

formation would be discarded. Alternatively, we can fuse

learned features extracted by a CNN from the RGB image.

This allows the network to capture higher level concepts

from the image data, so that more information is conveyed

when fused with the LiDAR image. The CNN used by our

method to extract features from the RGB image is described

in Section 3.3.

If the feature map has a different resolution than the

original image, we update the mapping between points and

pixel by dividing the pixel coordinate by the difference in



scale (u/sx, v/sy). Afterwards, the pixel coordinates are

rounded to the nearest integer value.

Although we only use a single camera in this paper, it is

straightforward to extend this approach to incorporate mul-

tiple cameras.

3.3. Network Architecture

Our network architecture consists of two main compo-

nents: an auxiliary network used to extract features from

the RGB image, and a primary network designed to process

features from both sensors.

The auxiliary network, shown in Figure 3, takes a RGB

image as input and produces a feature map. This network

contains three ResNet blocks [8], where each block down-

samples the feature map by half and performs a set of 2D

convolutions. The number of the feature channels in each

block is 16, 24, and 32 respectively.

The features extracted from the RGB image are warped

into the LiDAR image using the method described in Sec-

tion 3.2. If there is no valid mapping between a point in the

LiDAR image and a pixel the RGB image, the image fea-

ture vector at that position is set to all zeros. Afterwards,

the LiDAR image contains a set of feature channels derived

directly from the LiDAR data, as well as, a set of feature

channels extracted and warped from the RGB image. To

ensure both sensors contribute to the same number of chan-

nels, we expand the LiDAR feature channels by passing

them through a single 3× 3 convolutional layer.

The channels from both sensors are concatenated and

passed to the primary network. The deep layer aggrega-

tion network [33] described in [18] is used as our primary

network. Finally, a 1× 1 convolution is used to convert the

output of the network into our predictions.

3.4. Predictions and Training

In the previous work [18], the model is trained to predict

a set of class probabilities and a set of bounding boxes for

each point in the LiDAR image. Since the model classifies

LiDAR points as vehicle, bike, pedestrian, or background, it

already performs 3D semantic segmentation to some extent.

To provide more information to downstream components in

a self-driving system, we increase the number of class to

distinguish between background and road as well as bicy-

cles and motorcycles.

The training procedure is mostly unchanged from [18].

We simply add the additional classes to the classification

loss, and we do not modify the regression loss. Although

the loss is applied at each point in the LiDAR image, the

parameters of the auxiliary network can be updated by back-

propagating the loss through the projected image features. It

is important to note that the image feature extractor requires

no additional supervision; therefore, no supplemental 2D

image labels are necessary.

Figure 3: Our network used to extract image features (left),

which is constructed from a set of ResNet blocks (right).

The dashed line implies a convolution is used to reshape the

feature map.

4. Experiments

Our proposed method is evaluated and compared to

state-of-the-art methods in both 3D object detection and

semantic segmentation on the large-scale ATG4D dataset.

The dataset contains a training set with 5,000 sequences

sampled at 10 Hz for a total of 1.2 million images. The

validation set contains 500 sequences sampled at 0.5 Hz for

a total of 5,969 images. We evaluate the detections and seg-

mentation within the front 90◦ field of view and up to 70
meters away.

To train the network, we use the settings described in

[18]. We train for 300k iterations with a batch size of 128

distributed over 32 GPUs. The learning rate is initialized to

0.002 and decayed exponentially by 0.99 every 150 itera-

tions. Furthermore, we utilize the Adam optimizer [10].

4.1. 3D Object Detection

The performance of our approach and existing state-of-

the-art methods on the task of 3D object detection is shown

in Table 1. Following the previous work, we use the average

precision (AP) metric. To be considered a true positive, a

detection must achieve a significant intersection-over-union

(IoU) with the ground truth. For vehicles, we require a 0.7

IoU, and for pedestrians and bikes, we use a 0.5 IoU. The

existing detectors do not differentiate between bicycles and

motorcycles, so for comparisons, we merge the two classes

into a single bike class.

In most cases, our proposed method out-performs the ex-

isting state-of-the-art methods on this dataset. Compared

to methods that solely utilize LiDAR data, our approach

does significantly better at longer ranges. The LiDAR mea-

surements are reasonably dense in the near range, but fairly



Table 1: BEV Object Detection Performance

Method Input
Vehicle AP0.7 Bike AP0.5 Pedestrian AP0.5

0-70m 0-30m 30-50m 50-70m 0-70m 0-30m 30-50m 50-70m 0-70m 0-30m 30-50m 50-70m

PIXOR [32] LiDAR 80.99 93.34 80.20 60.19 - - - - - - - -

PIXOR++ [31] LiDAR 82.63 93.80 82.34 63.42 - - - - - - - -

ContFuse [15] LiDAR 83.13 93.08 82.48 65.53 57.27 68.08 48.83 38.26 73.51 80.60 71.68 59.12

LaserNet [18] LiDAR 85.34 95.02 84.42 67.65 61.93 74.62 51.37 40.95 80.37 88.02 77.85 65.75

ContFuse [15] LiDAR+RGB 85.17 93.86 84.41 69.83 61.13 72.01 52.60 43.03 76.84 82.97 75.54 64.19

LaserNet++ (Ours) LiDAR+RGB 86.23 94.96 85.42 70.31 65.68 76.36 56.52 50.08 83.42 91.12 81.43 70.97

Table 2: 3D Semantic Segmentation Performance

Method Input mAcc mIoU
Class IoU

Background Road Vehicle Pedestrian Bicycle Motorcycle

2D U-Net [34] LiDAR 81.95 76.39 92.03 97.92 93.76 74.47 61.25 38.90

LaserNet++ (Ours) LiDAR+RGB 91.77 86.62 93.59 98.23 97.67 86.19 80.98 63.07

Table 3: Ablation Study for Semantic Segmentation

Image Features
mIoU

0-70m 0-30m 30-50m 50-70m

None 86.37 87.51 74.89 64.38

RGB Features 86.60 87.70 75.09 64.75

CNN Features 86.62 87.59 76.05 69.57

sparse at long range. Adding the supplemental 2D data im-

proves performance where the 3D data is scarce; conversely,

less benefit is observed where the 3D data is abundant.

On smaller objects (pedestrian and bike), our approach

significantly out-performs the existing method that uses

both LiDAR and RGB data. We believe this is due to our

method representing the LiDAR data using a RV where the

previous work uses a BEV representation [15]. Unlike the

RV, the BEV requires the 3D data to be voxelized, which

results in fine-grain detail being removed.

4.2. 3D Semantic Segmentation

The evaluation of our proposed method on the task of

3D semantic segmentation compared to the existing state-

of-the-art is shown in Table 2. To assess the methods, we

use the mean class accuracy (mAcc), the mean class IoU

(mIoU), and the per-class IoU computed over the LiDAR

points as defined in [34]. To perform semantic segmenta-

tion, we classify each point in the LiDAR image with its

most likely class according to the predicted class probabil-

ities. If more than one point fall into the same cell in the

LiDAR image, only the closest point is classified, and the

remaining points are set to an unknown class. Since the res-

olution of the image is approximately the resolution of the

LiDAR, it is uncommon for multiple points to occupy the

same cell. For comparisons, we implement the method pro-

posed in [34], and we incorporate focal loss [16] into their

method to improve performance.

On this dataset, our approach considerably out-performs

this state-of-the-art method across all metrics. It performs

particularly well on smaller classes (pedestrian, bicycle, and

Figure 4: The confusion matrix for our method on the task

of 3D semantic segmentation.

motorcycle). Again, we believe this is due to our approach

using a RV instead of the BEV representation used in the

previous work [34]. The BEV voxelizes the 3D points, so

precise segmentation of small objects is challenging.

In Table 3, we study the effect of different image features

on semantic segmentation. Since the LiDAR data becomes

sparse at far ranges, the segmentation metrics are dominated

by the near range performance. We know from Table 1

that image features improve long range performance; there-

fore, we examine the segmentation performance at multi-

ple ranges. In the near range, there is practically no benefit

from fusing image features. However, at long range, fusing

image features extracted by a CNN considerably improves

performance. Fusing raw RGB values has little effect on

performance. Lastly, Figure 4 shows the confusion matrix

for our approach. Unsurprisingly, the majority of confusion

is between the motorcycle and bicycle class.

Figure 5 shows qualitative results for our method on both

tasks, 3D object detection and 3D semantic segmentation.



Figure 5: A few interesting successes and failures of our proposed method. (Top) Our approach is able to detect every

motorcycle in a large row of parked motorcycles. (Second) Our method is able to detect several bikes which are approximately

50 to 60 meters away from the self-driving vehicle where LiDAR is very sparse. (Third) The network classifies most of the

LiDAR points on the person getting out of a car as vehicle, however it still produces the correct bounding box. This is a

benefit of predicting bounding boxes at every LiDAR point. (Bottom) Due to the steep elevation change in the road on the

right side, the model incorrectly predicts the road points as background.



Table 4: Runtime Performance

Method Forward Pass (ms) Total (ms)

LaserNet [18] 12 30

LaserNet++ (Ours) 18 38

4.3. Runtime Evaluation

Runtime performance is critical in a full self-driving sys-

tem. LaserNet [18] was proposed as an efficient 3D object

detector, and our extensions are designed to be lightweight.

As shown in Table 4, the image fusion and the addition

of semantic segmentation only adds 8 ms (measured on a

NVIDIA TITAN Xp GPU). Therefore, our method can de-

tect objects and perform semantic segmentation at a rate

greater than 25 Hz.

5. Conclusion

In this work, we present an extension to LaserNet [18]

to fuse 2D camera data with the existing 3D LiDAR data,

achieving state-of-the-art performance in both 3D object de-

tection and semantic segmentation on a large dataset. Our

approach to sensor fusion is straightforward and efficient.

Also, our method can be trained end-to-end without any 2D

labels. The addition of RGB image data improves the per-

formance of the model, especially at long ranges where Li-

DAR measurements are sparse and on smaller objects such

as pedestrians and bikes.

Additionally, we expand the number of semantic classes

identified by the model, which provides more information

to downstream components in a full self-driving system. By

combining both tasks into a single network, we reduce the

compute and latency that would occur by running multiple

independent models.
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