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Abstract

Accurate detection of objects in 3D point clouds is a central

problem for autonomous navigation. Most existing meth-

ods use techniques of hand-crafted features representation

or multi-sensor approaches prone to sensor failure. Ap-

proaches like PointNet that directly operate on sparse point

data have shown good accuracy in the classification of sin-

gle 3D objects. However, LiDAR sensors on Autonomous

Vehicles generate a large scale point cloud. Real-time ob-

ject detection in such a cluttered environment still remains

a challenge. In this study, we propose Attentional Point-

Net, which is a novel end-to-end trainable deep architecture

for object detection in point clouds. We extend the theory

of visual attention mechanisms to 3D point clouds and in-

troduce a new recurrent 3D Localization Network module.

Rather than processing the whole point cloud, the network

learns where to look (finding regions of interest), which sig-

nificantly reduces the number of points to be processed and

inference time. Evaluation on KITTI car detection bench-

mark shows that our Attentional PointNet achieves compa-

rable results with the state-of-the-art LiDAR-based 3D de-

tection methods in detection and speed.

1. Introduction

From high-speed Autonomous Vehicles that navigate on

busy crossroads [1], to mobile robots that sweep the floor

in your home [2], to humanoid robots that would serve you

food in the restaurant, or quad-copters mapping and inspect-

ing an industrial factory, and many other applications rely

on three-dimensional (3D) data of physical surrounding.

Accurately understanding the environment around them is

crucial to their functioning in all these applications.

With the rapid development of Laser technology and

availability of compact and affordable laser scanners (Li-

DARs), more 3D data is being captured and processed. In

this work, we study one important task in 3D perception

– 3D object detection, which classifies the object category

Figure 1. Attentional PointNet: 3D object detection in point clouds

and estimates the oriented 3D bounding boxes of physical

objects in 3D space. Navigation of Autonomous Vehicles

is one such principal application where high-resolution Li-

DARs are extensively used. LiDARs generate data in the

form of point clouds representing the external surface, the

geometry of the real-world objects. Unlike RGB images,

point clouds are unstructured and how to interpret them to

be used by deep learning architectures still remains an open

problem. Recently Qi et al. in [3] proposed PointNet, a

deep network architecture that can handle point cloud data

directly without converting it into other forms of representa-

tion like images or volumetric grids. The simpler PointNet

architecture, has shown impressive results on several tasks

such as object classification and semantic segmentation.

Although PointNet can classify the whole point cloud,

an adaptation to instance-level 3D object detection is not

straightforward. Also, another limitation is that in the origi-

nal work proposed by [3], the maximum number of points in

the point cloud has been limited to 4096; however, a typical

point cloud from a LiDAR contains more than 100k points.

Therefore, it is an open challenge how to use PointNet with

larger point sets.

Dealing with very large clouds is possible by cutting it



into smaller regions processed separately. Some very re-

cent multi-sensor approaches [4] [5] have proposed to first

use the state of the art 2D detectors with RGB image and

then projecting the detected 2D bounding boxes into 3D

space to reduce the search space. Variants of PointNet are

finally used for regressing the corresponding 3D bounding

boxes. However, the need for an additional camera that is

time synchronized and calibrated with the LiDAR restricts

their use and makes the solution more sensitive to sensor

failure modes.

Recently Simon et al. in Complex- YOLO [6] proposed

an approach to project point clouds into birds-eye-view

RGB height-map and used a modified YOLO 2D object

detector to regress 3D bounding boxes. Converting point

clouds into height-map does retain the height information

but the structural information of the object is lost. For ex-

ample, structures whose vertical projection is similar to cars

can easily be miss-classified and result in false positives.

Currently, VoxelNet [7] and SECOND [8], are the two

deep networks which directly use 3D LiDAR data without

converting them into other 2D representations and output

3D bounding box predictions for multiple objects in uncon-

trolled environments. SECOND outperforms the state-of-

the-art LiDAR-based 3D detection methods by a large mar-

gin. However, these architectures are complex and require

a high amount of computation in order to run in real-time.

This work focuses on exploring alternative methods for

detection based on LiDAR data only. We aim to design an

efficient but simple architecture providing real-time perfor-

mance on lower compute capability hardware. To this end,

we propose to use visual attention mechanism with point

clouds to sequentially attend to smaller regions containing

the objects of interest. Bounding boxes and object cate-

gories are then estimated using a PointNet like architecture

on the attended parts of the cloud, hence the name Atten-

tional PointNet.

We claim the following contributions:

• We propose a novel deep architecture called Atten-

tional PointNet for 3D object detection. The network

directly operates on sparse 3D points, is end-to-end

trainable and it learns the shape of the objects, not only

their appearances from certain point of views.

• We extend visual attention mechanisms to 3D point

clouds for multiple object detection. Given a cluttered

environment, we show that the network learns to attend

to the objects of interest, thus reducing the data needed

to be processed.

• We conduct experiments on the KITTI benchmark and

show that Attentional PointNet achieves near real-time

performance and comparable results in LiDAR-based

car detection methods.

2. Related work

With the rapid development of 3D sensor technology, Li-

DARs are quickly becoming a key sensor in many robotic

applications. Also, the availability of many open sourced

high quality annotated 3D point cloud data has motivated

researchers to develop efficient feature representations to

detect and localize objects in point clouds[9]. When rich

and detailed point clouds are available, hand-crafted fea-

tures yield satisfactory results. However, their inability to

generalize and adapt to more complex shapes and unstruc-

tured environment results in limited success for autonomous

navigation.

Following the general trend in computer vision, Deep

Learning (DL) emerged as the dominating methodology for

representation learning in point cloud processing, replac-

ing manual feature engineering for representation of point

clouds. However, In contrast to images where the detailed

textured information is available, point clouds represent the

outer surface of the objects in the scene. They are sparse,

unordered and have a highly variable point density. Dealing

with these challenges, most existing algorithms are based

on the following approaches:

• Converting point clouds into 2D images [6, 10] and

reinstating the state-of-art deep architectures to detect

multiple objects and then projecting results back to 3D

space. However, converting point clouds to 2D images

results in losing essential 3D structural information of

the objects. The appearance of an object from a single

view can be ambiguous whereas the shape of an object

would contain more information for classification and

localization of the object.

• Converting point clouds into volumetric forms like

voxel grids [11, 12] and generalizing image CNNs to

3D CNNs. However, for dense 3D data, computational

and memory requirements grow cubically with the res-

olution of voxels.

• Another approach is inferring 3D bounding boxes di-

rectly from 2D images [13]. However, the depth esti-

mation greatly affects the accuracy of image-based 3D

detection.

Other work involves multi-modal fusion [14, 10, 15] com-

bining images and LiDAR data to improve detection accu-

racy particularly for small objects (pedestrians, cyclists).

Recent work [3, 16, 17, 18, 19, 20] proposes novel types

of network architectures, which directly process raw point

clouds without converting them to other formats. Among

these, PointNet [3] which is simple and works in real-time,

has shown encouraging results for single object classifica-

tion and semantic segmentation. We chose PointNet as the

backbone for our model.



Figure 2. Attentional PointNet for 3D object detection: We use Attention Mechanism in 3D space to sequentially attend to relevant

smaller regions (3D glimpse) of a large point cloud and classify object inside the glimpse. Given the point cloud and the corresponding

height map, network sequentially regress parameters of a 3D Transformation matrix representing pose of a fixed size 3D glimpse. A

modified PointNet (T-Net) then estimates another 3D transformation matrix and size representing the 3D bounding box of the object inside

the glimpse. Where B is the batch size.

3. Attentional PointNet

Visual search is extensively involved in everyday percep-

tion, and biological systems like the human eye, and it man-

ages to perform it remarkably well. As in [21], human per-

ception does not process the whole scene in its entirety at

once. Humans focus to attend to relevant parts in the scene

for acquiring necessary information when and where it is

needed. Focusing onto smaller relevant parts of the scene

saves “computational bandwidth” as only fewer pixels need

to be processed. Irrelevant parts in the scene are out of fixa-

tion and they are ignored, this reduces the complexity of the

task.

Mnih et al. in [22, 23] proposed a deep Recurrent Neu-

ral Network (RNN) which processes a multi-resolution crop

(glimpse) of input image at each iteration. Selective atten-

tion and manipulation of the data by cropping is a non- dif-

ferentiable operation and the network could not be trained

with backpropagation. To overcome this, Jaderberg et al.

in [24] proposed Spatial Transformer Network (STN) mod-

ule which explicitly allows the spatial manipulation of data

within the network. Transformations including scaling,

cropping, rotations, as well as non-rigid deformations are

performed on the entire feature map (non-locally).

Recurrent-STN [25] used STN with RNN to localize and

recognize multiple objects simultaneously. Bernardino et

al. in [26] also proposed an attention mechanism based

method that learns how to segment the instances sequen-

tially. These Mechanisms have also been successfully

adapted to dynamic sequences in computer vision (spa-

tiotemporal data) [27].

Taking inspiration from human perception of sequen-

tially recognizing the objects by moving fovea from one ob-

ject to the next relevant object, and building upon the work

in [24, 25, 26], we propose to use Visual Attention with

point clouds in Euclidean space for the 3D object detection.

3.1. Proposed Architecture

The proposed architecture of Attentional PointNet as shown

in Figure 2 consists of several core functional blocks: Con-

text Network, Recurrent Localization Network, 3D Trans-

former, and Resampler, Classifier, 3D Box Estimation. The

network takes the raw 3D point clouds generated from high-

resolution LiDARs and outputs bounding boxes for car de-

tection. A special loss function was designed for the net-

work to be end to end trainable, explained in subsection 4.2.

3.2. Context Network

As its name indicates, the Context Network extracts con-

text features of the input pointcloud, allowing it to attend

to possible locations of objects of interest. It consists of

two input streams: 3D Points belonging to a cropped re-

gion of (12m×12m) and the corresponding height map, a

vertical projection of the point cloud in the form of a 2D

Figure 3. PointNet [3] is the backbone of our Context Network



image of size 120×120 cells. We use a simplified ver-

sion of PointNet [3], where we exclude the T-Net as shown

in Figure 3. Through a series of 1D convolutions (Multi-

Layer Perceptron), the networks converts the point set into a

higher dimensional feature space, followed by max pooling

as a symmetric function to aggregating information from all

the points. The resulting vector is denoted as 3D context.

Aforementioned height map is generated by projecting

the point set on the ground plane, details of which are given

in subsection 4.1. We use standard convolutions followed

by max pooling layer to convert it into a feature vector, de-

noted as 2D context.

Finally, we fuse 3D context with 2D context by sum-

ming them, projecting the representations into a joint space.

Alignment of two embedding spaces was crucial after thor-

ough experimentation we found addition gives equally good

results as concatenation while keeping the network capacity

low.

The two contexts are complementary. The bird’s eye

view alone is not discriminative enough to differentiate

structures that look similar to a car when projected verti-

cally, while the 3D context in such cases can provide useful

insights; On the other hand, understanding complex struc-

tures, such as bushes, is difficult in 3D. In this case, having a

2D perspective of the data clearly provides complementary

information.

3.3. Recurrent Localization Network

The Recurrent Localization Network is the heart of our At-

tentional PointNet architecture. Unlike in [4] [5], where 2D

RGB images are used to detect objects and then are pro-

jected into 3D space to obtain the region proposals, we aim

for a LiDAR only solution. Inspired by [26] [25], the recur-

rent localization network sequentially attends to the location

of the new object at every iteration (i). This module consist

of two parts, as illustrated in Figure 2:

(i) The recurrent part consist of a GRU layer, which takes

the context vectorC of size (B, 1024) as input from the con-

text network and hi−1 a hidden vector from the GRU cell in

previous iteration (i − 1). It outputs a vector hi of shape

(B, 512) which is the input to the Localization Network.

(ii) The localization part is a 3 layer fully connected net-

work which takes hi as input from the GRU cell at ev-

ery iteration and, similar to [24], regresses 5 parameters

(cos θi, sin θi, Txi, T yi, T zi) ∈ Θi of a 3D transformation

matrix, which corresponds to the attention operation (se-

lecting the attended glimpse). Let Θ = {Θ1,Θ2...Θn} be

the set of the transformation matrix parameters at each iter-

ation, whereas n is the number of iterations.

For simplicity we have only considered rotation along

z-axis and Transformation matrix can be written as:

T (Θi) =









cos θi − sin θi 0 Txi
sin θi cos θi 0 Tyi
0 0 1 Tzi
0 0 0 1









(1)

where θ is the angle of rotation along the z-axis. θi =
tan−1(sin θi/ cos θi). We only consider the rigid 3D trans-

formations and neglect the scale and shear. This is evident

in the case of pointcloud and in contrast with images, as the

scale/ size of the object does not change with respect to the

distance of the object from the sensor. Unlike the original

STN [24] that has no direct supervision on transformation

T (Θi), we explicitly supervise our localization network to

predict object locations.

This can be formulated as follows:

C = fcontext(I) (2)

hi = fRNN (C, hi−1) (3)

T (Θi) = floc(hi) (4)

where fcontext is the context network taking I as input

(point set and height-map) and outputs the context vector

C, fRNN is a GRU cell, and floc is the Localization Net-

work. Here, a rigid transformation T (Θi) is produced at

each time-step from the hidden state of the RNN. Impor-

tantly, the rigid transformations are conditioned on the pre-

vious transformations through the time dependency of the

RNN.

3.4. 3D Transformer and Resampler

To make the attention operation differentiable, and the

whole network trainable end-to-end, we resort to a 3D

Transformer network. It takes the transformation matrix

parameters as input and transforms the input pointcloud

P (4096, 3) → P ′(4096, 3). The pointwise rigid 3D trans-

formation is given by:









xti
yti
zti
1









= T (Θi)









xsi
ysi
zsi
1









(5)

where (xti, y
t
i , z

t
i) are the transformed coordinates of output

pointcloud P ′, (xsi ; y
s
i , z

s
i ) are the source coordinates of the

input pointcloud P , and T (Θi) is the rigid transformation

matrix.

Let the input point cloud be in the bounding box of size

(W,L,H) centered at (0, 0, 0) in R
3 space is transformed

such that the points belonging to object of interest fall in-

side a smaller bounding box of size (W ′, L′, H ′) centered

at (0, 0, 0) in R
3 space. This is more clearly illustrated in

Figure 4.



Figure 4. 2D illustration of working of 3D Transformer

As the network attends to the points falling inside the

smaller bounding box, it can be called as a 3D Attention as

shown in Figure 2. Points inside 3D glimpse are cropped

and are resampled with replacement to 512 points.

3.5. Localization and recognition

Given the points inside the attended region (3D glimpse),

this module estimates an oriented 3D bounding box of the

object. For this purpose, we use a light-weight regression

PointNet(T-Net) as in [4]. Our modified T-Net regresses 5

parameters (cos δi, sin δi, txi, tyi, tzi) ∈ ∆i of 3D transfor-

mation matrix representing true centre and orientation of the

object and it also regresses 3 parameters (H, W, L) of size of

the 3D bounding box. Let ∆ = {∆1,∆2..∆n} be the set of

transformation matrix parameters representing the bound-

ing box of object inside the 3D glimpse. The final bounding

box location and orientation can be found by:

T (Ψi) = T (Θi) ∗ T (∆i) (6)

The objects are classified with a 2 layer fully connected

network which takes hi as input from the GRU cell at ev-

ery iteration and outputs a score (objectness) indicating the

probability of having a specified object in the attended re-

gion.

4. Training & Experiments

We evaluate our model on the KITTI 3D object detec-

tion benchmark [28] which contains 7,481 training images/

point clouds and 7,518 test images/point clouds. In this

work, we only evaluate our network on the Car category.

Since the KITTI dataset does not provide ground truth for

the test set and the access to the test server is limited, we

use a similar evaluation protocol as the one used in [14],

[7]. We split the training dataset into 70/30 percent ratio

as a training set and a validation set respectively. The split

avoids samples from the same sequence being included in

both the training and the validation set.

Figure 5. (a) Illustrates the expanse of FOV of camera in the birds-

eye-view with sample labels. (b) Shows subdivision of FOV area

into equally spaced cropped regions of (12m x 12m).

4.1. Data Augmentation

The point cloud data in each frame of KITTI dataset is typ-

ically composed of ≈ 100k points and has a range of about

120m. As in this paper, we aim to directly work with the

point set, using the whole point cloud data as input to the

network is impractical. Moreover, the KITTI dataset only

provides labels of the objects in the field of view (FOV) of

the camera [28] as shown in Figure 5. We therefore remove

all points falling out of the FOV.

We train the model on a custom dataset, which was gen-

erated by augmenting the KITTI dataset. To this end, we

subdivide the FOV area from each scan into equally spaced

cropped regions of 12m×12m with an overlap of 1m as

shown in Figure 5. We illustrate the effect of the 3D Visual

Attention Mechanism on these cropped regions.

Each cropped region consists of a number of points rang-

ing between 20,000 to none. Directly processing all the

points not only imposes increased memory/efficiency bur-

dens on the computing platform; the highly variable point

density throughout the space might also bias the detection.

We randomly sample each cropped region to a fixed number

of N=4096 points.

Inspired by [14], [6], each cropped region of size

12m×12m is also converted into a grayscale image of size

120×120 pixels encoding height information as shown in

Figure 6. We projected and discretized the 3D point clouds

into a 2D grid with resolution of about r=10cm. We choose

z ∈ [−2m, 3m], to cover an area above the ground to



Figure 6. Left: point cloud of 12m x 12m cropped region. Center:

Corresponding height-map. Right: Associated sequence of 3 la-

bels (bounding boxes), second row consist of only two cars (green)

hence one of the bounding box (red) is outside the cropped region.

about 3m height, expecting trucks as highest objects. Let

P ∈ R
3 be the set of all the points in a cropped region and

H ∈ R
mxm be the height map with m = 120. We define

§j = fPS(Pi, r) with S ∈ R
mxm mapping each point with

index i in cropped region into a grid cell Sj of our height-

map. The set describing all points mapped into a a specific

grid cell of height map can be defined as:

Pi→j = {Pi = [x, y, z]T |Sj = fPS(Pi, r)} (7)

H(Sj) = max(Pi→j .[0, 0, 1]
T ) (8)

Next, we generate a sequence of labels for each cropped

region. The information from KITTI dataset is used to

check if there are any cars inside each cropped region and

we note the position, orientation and size of them (green).

After a thorough analysis, we found around 95% of all the

cropped regions of 12m x 12m area have a maximum of 3

cars. So, for each cropped region we have a sequence (i)
of 3 labels Ψgt = {Ψgt

1
,Ψgt

2
,Ψgt

3
} the set of transformation

matrix parameters representing the ground-truth bounding

boxes where Ψgt
i = (cosψgt

i , cosψ
gt
i , Tx

gt
i , T y

gt
i , Tx

gt
i ).

If there are less than 3 cars, we generate bounding boxes of

a fixed size at a fixed location outside the cropped region as

non-car (red). Figure 6 shows some samples of our gener-

ated dataset.

The KITTI dataset consists only a few numbers of

ground truths in each frame which lead to a significantly

higher number of cropped regions without cars than those

with the cars. In order to have a balanced dataset, authors

in SECOND [8] have used a data augmentation approach to

first, generate a database containing the labels of all ground

truths and their associated point cloud data (points inside the

3D bounding boxes of the ground truths), then randomly in-

troducing several ground truths from this database into cur-

rent training point cloud via concatenation. We have opted

a simpler approach and kept the number of cropped regions

with no cars and with cars in equal proportion. Our aug-

mented KITTI dataset consists of a total of 27,041 cropped

regions for training.

4.2. Loss Function

We jointly train the full model including all modules (con-

text network, recurrent localization Network, classifier, and

3D box estimation T-Net) with the following set of losses:

Lseq−i = α ∗ Lcls + β(LT1−reg + LT2−reg)

+ γ ∗ Lsize−reg + λ ∗ Lreg (9)

Lfinal =
1

3

n=3
∑

i=1

Lseq−i (10)

Lreg = ||I − T (Ψ)T (Ψ)T ||2 (11)

where Lseq−i is the total loss for a sequence, Lcls is

the classification loss, LT1−reg is for the transformation

matrix parameters regressed by the Localization Network,

LT2−reg is for the transformation matrix parameters re-

gressed by T-Net and Lsize−reg is the regression loss for

bounding box size. We used binary cross-entropy loss for

the classification task and smooth-l1 (Huber) loss is used for

all the regression cases. Lreg is the regularization loss. We

constrain our predicted transformation matrix to be close to

the orthogonal matrix. As in [3], it helps the optimization

to become more stable and the network achieves better per-

formance. For training, we have predefined the length of

the predicted sequence as n=3. A primary challenge of the

sequential detection is matching predictions and ground-

truth instances. We compute a maximum-weighted bipartite

graph matching between the output instances and ground-

truth instances as in [26], [29]. Matching makes the loss in-

sensitive to the ordering of the ground-truth instances. The

matching weight Mij is the IoU score between a pair of

detections and the ground-truth instances. We use the Hun-

garian algorithm to compute the matching; we do not back-

propagate the network gradients through this algorithm.

Mij = fiou(Ψ−Ψgt) (12)

Ψmatched = fmatch(Mij) (13)

The network performs three predictions for each input

cropped region. At each sequence, the network focuses

on the new object. If there are less than three objects, we

explicitly force the network to focus on the outside of the

cropped region and classify as negative detection for the re-

maining number of sequences.



Figure 7. Attentional PointNet (vanilla) network architecture: Lo-

calization Network directly regress the size of bounding box.

4.3. Network and Training Details

The 3D Context Network consists of three fully connected

layers implemented as 1D convolutions with input-output

feature sizes as (3, 64), (64, 128), (128, 1024) respectively

for each layer. For each input point, we only use x, y, z

coordinate values as attributes. All the layers include ReLU

and batch normalization except for the first layer which does

not have Batch normalization layer. Localization Network

also consists of three fully connected layers with input-

output sizes as (512, 256), (256, 128), (128, 5) respectively.

Only the first two layers include ReLU and only the first

layer includes batch normalization. The transformation ma-

trices are firstly initialized by the identity matrix. In the

loss function, the values of the hyperparameters are kept as

α = 1, β = 1.5, γ = 0.5 and λ = 0.01.

We train the model with stochastic gradient descent

(SGD) with a momentum of 0.9, weight decay of 0.0005

and a batch size (B) of 32. We keep the learning rate to be

0.01 for the first 40 epochs and then lower it to 0.001 for

further epochs. We observed that the network converges in

≈ 120 epochs. Training on our custom KITTI dataset takes

8 to 9 hours to converge with PyTorch and GTX 1080GPU.

To evaluate the effectiveness of our 3D bounding box es-

timation module, we also trained a vanilla version of our

Attentional PointNet network as shown in Figure 7. In the

vanilla version, we remove the 3D bounding box estima-

tion module and directly regress the sizes from the localiza-

tion network and use Θ transformation matrix parameters

for box center coordinates and orientation.

Hardware — We trained, validated and tested the model

on an Intel Xeon CPU W3520 and a GeForce GTX 1080

GPU with 8GB on Ubuntu 16.04 using PyTorch version 1.0.

5. Results

3D detection is a more challenging task as it requires finer

localization of objects in 3D space. For the Car cate-

gory, we compare the proposed method with several top-

performing algorithms, including multi-sensor approaches:

MV3D [14], Frustum PointNet [4] and RoarNet [5] ; Li-

DAR based approaches: VeloFCN [30], VoxelNet [7] and

RT3D [31]; LiDAR based birds-eye-view (BV) approach:

Complex-YOLO [6];. We train Attentional-PointNet from

Table 1. Performance comparison in 3D detection: average pre-

cision (in %) on KITTI validation set. Note that our method is

validated on our splitted validation dataset, whereas all others are

validated on the official KITTI test set. All values are from the

official KITTI leaderboard.

Method Modality FPS
Car

Easy Mod. Hard

MV3D [14] Lidar+Mono 2.8 71.09 62.35 55.12

F-PointNet [4] Lidar+Mono 5.9 81.20 70.39 62.19

AVOD [32] Lidar+Mono 12.5 73.59 65.78 58.38

RoarNet [5] Lidar+Mono 10 83.95 75.79 67.88

VeloFCN [30] Lidar - 15.20 13.66 15.98

RT3D [31] Lidar 11.23 23.49 21.27 19.81

VoxelNet [7] Lidar 4.3 67.27 52.87 46.62

Complex-YOLO [6] Lidar (BV) 16.6 55.63 49.44 44.13

A-PointNet (vanilla) Lidar 12.5 49.47 44.64 41.71

Attentional-PointNet Lidar 8.06 58.62 52.28 47.23

Table 2. Analysis of computation time required by Attentional

PointNet
Task Time

Pre - processing 0.084 sec

Model forward pass 0.038 sec

post-processing & NMS 0.002 sec

Total 0.124 sec

scratch using only the LiDAR data provided in KITTI

dataset. Finally we provide our results as Average Preci-

sion (for IoU > 0.7) on KITTI dataset for the detection of

Car category.

Table 1 summarizes the comparison for the Car category

detection, Attentional PointNet achieves comparable Av-

erage Precision of 52.28% for moderate difficulty among

the network architectures using LiDAR data only. Also, in

terms of inference time, Attentional PointNet shows credi-

ble performance. The vanilla version outperforms all the ap-

proaches except Complex-YOLO which only uses the birds-

eye-view projection of LiDAR data, the computation time

is lower but it suffers in 3D detection accuracy. We can ob-

serve that the multi-sensor approaches achieve significantly

higher accuracy compared to those using LiDAR data only.

To process 20 cropped regions of 12m x 12m as shown

in Figure 5 the inference time is 124ms. Network out-

puts bounding boxes at 8Hz with GTX 1080 GPU and

hardware specified further above. From Table 2 it can be

observed that pre-processing, which involves cropping the

point cloud to a set of 20 regions of size 12m×12m and

converting them into height-map, is the computationally

most expensive task. Currently, we use Python and Numpy

for the Pre-processing tasks but parallelizing them on GPU

would greatly improve the inference time and is planned as

future work.



Figure 8. Results on 12m×12m cropped regions extracted from the KITTI dataset. For each cropped region network makes three pre-

dictions sequentially classifying and localizing the cars in the scene. It can be observed that the network is effective and capable of

attending/finding multiple Cars even in a highly cluttered environment. When there are less than three cars in the scene, the network

focuses outside the cropped region for the remaining number of predictions and appropriately classify them as negative detections.

Figure 9. Visualizations of Attentional PointNet results on KITTI dataset for the car category. (a),(b): our model’s ability to detect

multiple objects in cluttered environments; (c): successful discrimination between a car and van; (e),(f): some failure cases with false

positive detections and the orientation of the cars not accurately estimated.

6. Conclusions

Most existing methods for 3D object detection in large scale

point clouds either rely on hand-crafted feature representa-

tions or multi-sensor approaches. In this work, we present

a novel end to end trainable deep architecture Attentional-

PointNet for 3D object detection in the point cloud. The

network only uses 3D data from LiDAR and captures 3D

geometric information of the data effectively. To reduce the

search space for object detection we proposed to use At-

tention Mechanism with 3D point clouds and introduce a

new recurrent 3D Localization Network module. We con-

ducted experiments with the KITTI dataset and evaluated

our results for car category detection. We demonstrate our

network’s capability to sequentially attend/focus on the new

object in each iteration. For car detection on KITTI dataset,

Attentional PointNet shows comparable results with exist-

ing state-of-the-art LiDAR-based 3D detection methods and

surpasses many approaches in terms of inference time.
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