This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

DSChnet: Replicating Lidar Point Clouds with Deep Sensor Cloning

Paden Tomasello* Sammy Sidhu Anting Shen Matthew W. Moskewicz
Nobie Redmon Gayatri Joshi Romi Phadte Paras Jain Forrest Iandola
DeepScale, Inc.
Mountain View, CA, USA
paden@deepscale.ai
Abstract paper, we propose a method called Deep Sensor Cloning,

Convolutional neural networks (CNNs) have become in-
creasingly popular for solving a variety of computer vision
tasks, ranging from image classification to image segmen-
tation. Recently, autonomous vehicles have created a de-
mand for depth information, which is often obtained us-
ing hardware sensors such as Light detection and rang-
ing (LIDAR). Although it can provide precise distance mea-
surements, most LIDARs are still far too expensive to sell
in mass-produced consumer vehicles, which has motivated
methods to generate depth information from commodity au-
tomotive sensors like cameras.

In this paper, we propose an approach called Deep Sen-
sor Cloning (DSC). The idea is to use Convolutional Neural
Networks in conjunction with inexpensive sensors to repli-
cate the 3D point-clouds that are created by expensive LI-
DARs. To accomplish this, we develop a new dataset (DSC-
data) and a new family of CNN architectures (DSCnets).
While previous tasks such as KITTI depth prediction use in-
terpolated RGB-D images as ground-truth for training, we
instead use DSCrets to directly predict LIDAR point-clouds.
When we compare the output of our models to a $75,000
LIDAR, we find that our most accurate DSCnet achieves a
relative error of 5.77% using a single camera and 4.69%
using stereo cameras.

1. Introduction and Related Work
1.1. Introduction

Convolutional neural networks have become quintessen-
tial for solving a variety of computer vision tasks such as
classification [8], semantic segmentation [9], and depth pre-
diction [2]. Most previous attempts of using CNNs for
depth prediction attempt to predict depth for each pixel of
the image, and the ground truth comes from either a virtual
dataset as ShapeNet [1], or a dataset that interpolates miss-
ing values from a LIDAR as in the KITTI dataset [4]. In this

which directly regresses on the output of LIDAR using a
variety of sensor inputs.

1.2. Motivation

The promise of autonomous vehicles has inspired nu-
merous advancements in both perception systems and
automotive sensors. Perception systems create three-
dimensional representation of their environment, so au-
tonomous vehicles can safely and effectively navigate and
control themselves. Any effective perception system must
provide accurate depth information, which has traditionally
been obtained using a sensor like radar or LIDAR. Radars,
which are already in mass-produced vehicles, only provide
coarse depth measurements for objects like cars or motor-
cycles. While this may be sufficient for adaptive cruise con-
trol or emergency braking, full autonomy will require more
fine grained depth information. LIDAR provides perception
systems with precise distance measurements of its environ-
ment in the form of a three-dimensional point cloud. Given
these advantages, LIDAR (particularly Velodyne HDL-32
and HDL-64) is now used in prototype autonomous vehi-
cles developed by Uber, Zoox, and Cruise Automation.

While accomplishing the task of depth prediction well
these Velodyne LIDARSs are very expensive, which means
that LIDAR is now a barrier of entry for autonomous vehi-
cles to the mass market, because of their cost, power con-
sumption, and complexity. For example, Velodyne’s HDL-
64 LIDAR, a model similar to the one used in DARPA
Grand Challenge, consumes 60W of power and is estimated
to cost $75,000, limiting their use to vehicles in robo-taxi
services. Velodyne’s cheapest model the VLP-16 contains
i of the number lasers as the HDL-64, and is still estimated
to cost $8,000, a price still too expensive for all but the most
expensive consumer vehicles. When trading notes with oth-
ers who have done field work in autonomous driving, we
have heard criticism that the Velodyne VLP-16 and HDL-64
LIDARSs rely on precisely calibrated internal components,
which can make them prone to be less accurate or break

Manufacturer Model # of Lasers Data Rate (pts/sec) Power (Watts) Cost (USD)
Velodyne VLS-128 128 9,600,000 Unknown Unknown
Velodyne HDL-64 64 1,300,000 60 $75,000
Velodyne HDL-32 32 700,000 12 $30,000
Velodyne VLP-16 16 300,000 8 $8,000

Robosense RS-LIDAR-32 32 640,000 13.5 $16,800
Ouster OS-1 64 1,310,720 Unknown $12,000
Ibeo Lux 4-8 Unknown 7-10 $10,000-20,000
Ibeo Scala 4 Unknown 7 $600

Table 1: Comparison of some of the LIDAR sensors that can be purchased today. In most cases, the number of lasers is the
vertical resolution; for example, a 4-laser LIDAR has just 4 pixels of vertical resolution. And, the Data Rate is equivalent to

framerate * resolution.

Thanks to Woodside Capital Partners for this table.

from standard wear and tear.

More and more companies are developing LIDAR prod-
ucts, and a comparison of some currently-available LIDAR
devices is shown in Table 1 '. As can be seen in this ta-
ble, there is a tradeoff between between price and resolu-
tion. The Ibeo Scala LIDAR has a price-point low enough
for certain mass-produced vehicles, but its resolution is not
high enough to support advanced autonomous capabilities.
In Section 2.3, we present a method to fuse data from a low-
cost, low-resolution LIDAR with camera images, to clone a
high-cost, high-resolution LIDAR at a fraction of its price.

There are numerous companies attempting to improve
the LIDAR hardware, including Luminar, Quanergy, and
Innoviz, which are not shown in Table | because (a) they
have not announced their sensor’s specifications, and/or (b)
because their sensors are not available for purchase yet. In
the future, some of these attempts may produce a durable
and high-resolution LIDAR that is cheap enough for the
mass market. At the moment however, there does not appear
to be a solution which provides the detail needed for an ad-
vanced perception system, at a cost needed for mass-market
production. As the industry waits for further development,
deep learning has recently provided alternative methods to
predict the depth from various cheaper sensors.

1.3. Related Work

Depth estimation creates a dense depth map, or an RGB-
D image, given no explicit input information about depth.
From the 1980s until around 2014, the most widely dis-
cussed (and probably most widely used) approach for depth
estimation from cameras was stereo-matching [11] [17].
Stereo-matching identifies point-correspondences across
two cameras and then uses relative position of the two

'LIDAR information was obtained through http://www.
woodsidecap.com/wp-content/uploads/2018/04/Yole_
WCP-LiDAR-Report_April-2018-FINAL.pdf

cameras to reconstruct the depth of each point in the im-
age. However, the principal weakness of stereo-matching
is the robustness of the point-correspondence algorithms.
While better feature engineering (e.g. the invention of
SIFT features in 1999 [10, 18]) has led to incremental im-
provements in the accuracy of point-correspondence algo-
rithms, stereo algorithms still frequently fail to find point-
correspondences in numerous situations, such as featureless
walls, vegetation, scenes with significant scale changes, and
so on [5]. In 2014, Eigen et al. published one of the first in
a series of papers on using convolutional neural networks
to directly regress depth from an single input image, dis-
missing notions that stereo disparity is essential for depth
prediction [2]. Since 2014, further innovations in CNN
architecture and loss-functions have yielded additional im-
provements in depth estimation [12, 22, 19].

A key challenge for depth estimation tasks is collecting
the training and evaluation data. Two popular datasets used
for depth estimation are KITTI Depth and Make3D, which
provide synchronized camera images and dense depth-maps
that are derived from interpolating sparse LIDAR point-
clouds [2, 16]. ShapeNet is a dataset that uses simulation
to generate 3D imagery, with ground-truth 3D information
stored in voxels [1]. We compare and contrast these datasets
in Table 2. Notably, none of these allow researchers to train
a CNN to clone a real sensor; rather, each of these datasets
provides ground-truth based on (a) sensor data that is post-
processed with interpolation that hallucinates that data that
doesn’t exist, or (b) simulation of an imaginary sensor. In
contrast to this, our dataset presented in Section 2.2 enables
CNN:s to be trained to directly clone a $75,000 LIDAR sen-
Sofr.

1.4. Key Contributions

Unlike the previous approaches, we present a solution
called Deep Sensor Cloning (DSC), which regresses the

Inference Data

Ground Truth (GT) Training Data

Name Inference Sensors Sensors Data Type Coordinate Interpolation? # of samples
Kitti Depth [4] Cameras HDL-64 Depth Map Cartesian Yes 93,000
Make3D [16] Mono Camera custom LIDAR Depth Map Cartesian Yes 400
ShapeNet [1] Simulation Simulation Voxels Cartesian No 53,000
DSCdata (ours) Cameras and Scala HDL-64 PCDM Polar No 78,968
Table 2: Comparison of depth datasets. DSCdata will be explained in Section 2.2.
depth output of the LIDAR directly. In the process of de- D .
epth Prediction Depth GT
veloping and evaluating DSC, we have made the following P E
key contributions:
1. A novel method of regressing depth using a Point Spirse L2
Cloud as a Dense Matrix (PCDM) output format 05§
2. A template for leveraging sensor fusion in CNNs
3. A new set of metrics for evaluating depth estimation in
the context of autonomous driving
[I—
The rest of this paper is organized as follows. In Sec- 0] Logisti ?® LIDAR
tion 2, we present our approach to collecting and represent- CNN R OgIstc I
ing multi-sensor data, and we introduce the DSCnet fam- Backbone 5 egression 0 i

ily of CNN architectures. Next, Section 3 describes our
approach for training and evaluating our CNNs. Then, in
Section 4, we present qualitative and quantitative results on
how well our CNNs can predict depth using only low-cost
sensors. We conclude in Section 5.

2. Approach

In this section, we explain our approach for using deep
neural networks to ingest data from inexpensive sensors and
output a point-cloud that is similar to what is produced by a
$75,000 Velodyne LIDAR. To do this, we develop a custom
data format (called a PCDM), create a new dataset (called
DSCdata), design a new family of CNNs (called DSCnets),
and propose a loss function (called Sparse L2 Loss). We
devote the rest of this section to explaining these concepts.

2.1. PCDM Data Format

Traditional datasets utilizing LIDAR such as KITTI [4],
store LIDAR point-cloud data in a cartesian coordinate sys-
tem, where each point in the scan is represent as a triplet of
(X, y, z). This format can be difficult to use in neural net-
works, since it is both sparse and three dimensional. Voxel-
Net uses this format as an input to a 3D object detector by
dividing the point cloud in 3D voxels and then transforming
each voxel using a voxel feature encoding [23]. While this
showed promising results using a sparse input to a CNN,
sparse outputs present new and different challenges. To
overcome to challenges, We created a novel format for stor-
ing point-cloud we call Point Cloud as a Dense Matrix, or
PCDM.

Return Prediction Return GT
(a) Training using the PCDM format.

Model Output Cartesian Projection

Depth
Prediction

Return Generated
Classifier Point Cloud

(b) Point-cloud reconstruction.

Figure 1: Training and inference methodology using the
PCDM format.

The PCDM format is composed of a “Depth” matrix and
a “Return” matrix. In the “Depth” matrix, each column cor-
responds to an angular position of the LIDAR, and each
row corresponds to a azimuth positioning of a laser, and

the value at each point is the measured distance from the
LIDAR.

A LIDAR will not usually have a distance measurement
for all locations in its scan, because an object may be too
far away, or not have enough reflectance for the LIDAR
to receive any reflected signal. For any of scan that does
not have a return, the LIDAR will mark its distance as 0.
If we simply tried to regress on the sparse “Depth” matrix,
CNNs would have difficulty learning the difference between
a small distance measurement and a non-return scan. In or-
der to encode this additional information, we create a sepa-
rate “Return” matrix, which stores a binary value represent-
ing whether the LIDAR had a return or not. As can be scene
in Figure 1a, when we train our CNN, we mask the gradi-
ents for any pixels that do not have a LIDAR return, so the
network can ignore any non-returns.

In addition to using the “Return” ground truth to block
the gradient, we also create a classifier head for a network
to try to replicate its values. By doing so, we can create re-
alistic LIDAR point clouds by masking our depth prediction
by our “Return” classifier, as can be seen in Figure 1b.

2.2. DSC Dataset

Now that we have defined data format, we describe how
we collected a new dataset called DSCdata. In designing
this dataset, our goal is to accurately represent two sets of
hardware:

e Expensive Sensors: Hardware that can be deployed
on an expensive (but small) group of cars that are used
for data-collection and R&D.

o Inexpensive Sensors: Hardware that can be deployed
on millions of reasonably low-cost cars that are used
every day by consumers and fleet-operators.

In DSCdata, the sole “expensive sensor” is a Velodyne
HDL-64 LIDAR (Figure 2a). With a price of $75,000, the
HDL-64 is the one of the most expensive LIDARs in Ta-
ble 1. While autonomous R&D vehicles often have other
sensors such as cameras and radars, the LIDAR is often the
go-to sensor for depth sensing. Given that our goal in this
paper is to produce depth estimates (in the form of point-
clouds), we think it is reasonable to use the HDL-64 as the
sole “expensive sensor” for the purposes of this paper.

In DSCdata, we have also have a set of three “inexpen-
sive sensors.” Two of these sensors are cameras, which we
have mounted side-by-side on the roof of the car. The third
“inexpensive” sensor is an Ibeo Scala LIDAR (Figure 2b).
While the $75,000 Velodyne HDL-64 is too expensive to be
deployed on mass-produced cars, the sub-$1000 Ibeo Scala
LIDAR has been deployed on mass-produced vehicles such

as the Audi A8. 2 Note that, while the Scala and HDL-64
are both LIDARs, the Scala has 1—16 the vertical resolution of
the HDL-64, and the Scala’s vertical field of view is almost
an order-of-magnitude narrower than the HDL-64’s vertical
field of view.> In Figure 3, we show how these and other
sensors are integrated onto our data-collection car.

— >

(a) Velodyne HDL-64 (b) Tbeo Scala
Figure 2: LIDAR sensors mounted on our data collec-
tion vehicle. Left: Velodyne HDL-64 LIDAR which costs
$75,000. Right Ibeo Scala Lidar which is priced at $1000.
Note that the Velodyne has 16x more vertical resolution
than the Scala.

(a) Front view

(b) Side view

Figure 3: Our data collection vehicle.

2.2.1 Data Capture Implementation

We synchronized our sensors using a triggering system,
which captures an image when the Velodyne LIDAR was
pointed toward the front of the vehicle. We then collected
the Velodyne LIDAR data samples from the previous 180
degrees, and next 180 degrees, and we transformed them
into a PCDM using the strategy mentioned in Section 2.1.
In our training procedure, we crop the PCDM so that all
points are included in the field of field of our input images.
Further, we capture the most-recent full scan from the inex-
pensive Scala LIDAR.

2.3. DSCnet Model Architectures

In contrast to traditional stereo vision algorithms, we
propose a family of Deep Sensor Cloning models (called

2Information obtained through https://www.businesswire.
com/news/home/20180705005220/en/Global-In-
vehicle-LiDAR-Industry-Outlook-2022-Expected

3The HDL-64 as a 26.9-degree vertical field-of-view, and the Scala has
only a 3.2-degree vertical field-of-view.

Left Depth
Left Depth ﬂ Camera Regressor
] T Camera Regressor Y
Scala .l i
LIDAR p,
e, 1 U

Trunk D
‘ :[Right Valid

Valid Classifier

e i = Camera
Camera Classifier

(b) Stereo + Scala LIDAR

(a) Stereo Camera Model Model

Figure 4: Two examples of our DSCnet architectures

C K S Input Size Output Size
2 8 (33 (1,1) (576,768) (576, 768)
1 16 (5,5 @33 (576,768) (192,256)
2 16 (3,3) (1,1) (192,256) (192, 256)
1 32 (5,5 (3,1) (192,256) (64, 256)
2 32 (33 (1,1) (64,768 (64, 256)

Table 3: Image Resize Branch of DSCnet. C is the number
of input channels. K is the kernel size, S is the stride length

DSCnets), which do not require any information of the cam-
era intrinsics or extrinsics for registering with the LIDAR.
Rather, we allow the model to learn how to best leverage
multiple sensors using end-to-end training. We additionally
designed a sensor fusion template that allows us to quickly
experiment with various sensor configurations.

One of our goals in designing the DSCnet family of
CNNs was to enable ourselves to quickly experiment with
various input sensor sets, and we accomplished that as fol-
lows. For each sensor, we created an independent branch
of convolutions or deconvolution to both resize the data
and learn features that are relevant to that particular sen-
sor. Downstream of these sensor-specific networks, we add
a “Trunk”, which assumes an input of equal size to the Velo-
dyne LIDAR PCDM, 64 by 256 in our experiments. For
our experiements, our “Trunk” is a V-net architecture (in-
spired by [13]). Figure 4a shows an example of a model
which fuses images from a left and right camera, and Ta-
ble 3 shows the layer parameters of the camera’s “resize”
branch.

The benefit of this approach is that adding additional sen-
sors only requires creating a new branch into the concatena-
tion operator of the network. Additionally, it’s much easier
to compare sensor configuration, because the trunk network
backbone is held constant. An example architecture utiliz-
ing the Scala 4 Beam LIDAR is shown in Figure 4b, and Ta-
ble 4 shows the layer parameters of Scala “resize” branch.

As dicussed in Section 1.2, the Scala LIDAR is a much
cheaper but lower resolution LIDAR compared to Velodyne

C K S Input Size Output Size
2 64 (33) (L) (4,192) (4, 192)
1 128 (33) (1,3) (4,192) (4, 64)
2 128 (33) (1,1 (4, 64) (4, 64)
1 64 (33) (3,2) (4,64 (8, 128)
2 64 (33) (L,1) (8,128) (8, 128)
1 32 (33 (3.2) (8,128 (16, 256)
2 32 (33) (1,1) (16,256) (16,256)
1 16 (33) (3,1) (16,256) (32,256)
2 16 (33) (1,1) (32,256) (32,256)
1 16 (33 (3,1) (32,256) (64,256)
2 16 (33) (I,I) (64,256) (64,256)

Table 4: Scala LIDAR Resize Branch of DSCnet

HDL-64. Using this model, we can create a point-cloud
with the same resolution as the HDL-64, but at a fraction of
its cost.

2.4. Sparse L2 Loss

When training DSCnet, we use separate loss functions
for (a) regressing the distance measurements and (b) clas-
sifying the valid return in the PCDM. For the classifier, we
use a logistic regression loss. As mentioned above, we do
not backprop the gradient for scanned points that have no
return, so we utilize a modified Least Squares Error, which
we call Sparse L2 Loss. It is defined as:

1 n
L= N;((Di — f(X;) x Vy)

where D+ is Depth Ground Truth, f(X;) is depth predic-
tion, and V; is the “Return” mask, as described in section
2.1.

Finally, we block the gradient from the classifier one
layer before the loss function, so the trunk network is only
trained to predict distance. Empirically, we found this to be
sufficient to train the classifier head.

3. Training and Evaluation Methodology
3.1. Training Routine

Our DSCnet models was trained on 58853 training sam-
ples and evaluated on 20115 validation samples. We use a
stochastic gradient descent optimizer with a learning rate of
0.013, momentum of 0.9, and weight decay of 0.0005, and
decrease the learning rate by a factor of 0.2 every 60,000 it-
erations. We use a batch size of 48 and train across 3 Nvidia
Titan Xp GPUs.

3.2. Evaluation Metrics

A number of metrics have been established in the re-
search community to evaluate the correctness of depth-
estimation algorithms. These metrics include:

1. Relative absolute error (percent): % > y %
2
2. Relative squared error (percent): + Y. y (y;f;)

3. Root mean squared error of inverse depth [1/km]:
VEZ IR - AP

4. Scale invariant logarithmic error [1/km]: % Zl df —
=+ >, ali)2 where d; = logy; — log y;*

where y is the predicted distance, and yx* is the distance
ground truth.

In Table 6, we show a snapshot of the current state-of-
the-art results on the leaderboard for the KITTI Depth chal-
lenge [2]. Out of the metrics shown on Table 6, we find
Absolute Relative Error (absErrorRel) to be particularly in-
tuitive. When driving a car, when we encounter an object
that is 1 meter away, we care far more about 1-meter error
than we do for an object that is 100 meters away. The ab-
sErrorRel metric takes this into account — a 1 meter error
on a 100-meter-away object is worth the same absErrorRel
penalty as a 0.01-meter error on a I-meter-away object.

We have also added a few new metrics to our evaluation
that are not included in the KITTI leaderboard. In particular,
since we are training DSCnet to mimic the sparsity pattern
of an expensive Velodyne LIDAR, we report the accuracy
of our return-classifier (see Section 2.4). Further, for our
experiments in the next section, we will report the model’s
resource utilization in terms of computation (GFLOP per
inference) and parameter file size (in megabytes).

Name Diin Diaz FOV
Parking Assist 0 10 44

Adaptive Cruise Control 0 100 11.06
Collision Detection 0 30 27.66

Table 5: Automotive Metric Zones. D,,;, and D, are
the minimum and maximum distances in meters. FOV is
the horizontal field of view in degress.

3.3. Metric Zones

In autonomous driving applications, some areas are more
critical than others to have accurate depth information. In
adaptive cruise control for example, the distance measure-
ments directly in front of the vehicle are much more im-
portant than those to the side. In order to create a better
evaluation our models, we designed metric zones for a few

different autonomous vehicle applications, and calculated
the above metrics for each of these zones. The metric zones
are defined in Table 5.

4. Results
4.1. Quantitative Results

In Table 6, we show results from various input sensor
configurations across our evaluation metrics on the DSC-
data test set. As can be seen, with only a monocular camera
as input, DSCnet achieves under 6% absolute relative error.
Also, with each additional input, our model improves across
all evaluation metrics other than the return classifier error.
This result is particularly exciting because of the minimal
amount of effort required to incorporate new sensors.

4.1.1 Automotive Metric Zones

As discussed in Section 3.3, we also evaluated our models
using metrics designed for automotive use cases in Table
7. As can be seen, our models achieved significantly lower
relative error in each of the automotive metric zones when
compared error across the entire point cloud. This result
shows areas that are both far away and in the vehicle’s pe-
riphery account for the majority of the error.

4.1.2 DSCnet-lite

As we mentioned earlier in the paper, CNNs have yielded a
dramatic improvement of the state-of-the-art error-rate on a
variety of computer vision tasks including image classifica-
tion, object detection, semantic segmentation, and depth es-
timation. However, CNNs often require far more resources
(e.g. computation, memory, time, and energy) than previ-
ous computer vision methods. This is of particular con-
cern when deploying CNNs on embedded platforms such
as smartphones, security cameras, and low-cost automotive-
grade processors. To mitigate this issue, researchers have
developed resource-efficient CNNs such as SqueezeNet [7]
and MobileNet [6] for image classification; YOLO [15] and
SqueezeDet [21] for object detection; and ENet [14] and
SqueezeNet-based models [20] for semantic segmentation.
But, resource-efficient CNNs for depth estimation is a rel-
atively untapped field. To begin to address this opportu-
nity, we have created a resource-efficient version of DSCnet
called DSCnet-lite.

For brevity, we omit the precise dimensions of DSCnet-
lite. But, in order to reduce the number of parameters
and floating point operations, one of the techniques behind
DSChnet-lite is to replace dense convolutions with depthwise
separable convolutions, similar to [6].

We show a quantitative evaluation of DSCnet-lite in Ta-
ble 6. Going from DSCnet to DSCnet-lite, we have re-
duced the computational cost by 4.9x (to 2.3 GFLOP per

Dataset CNN Model absErrorRel | sqErrorRel | iRMSE| SILog Return GFLOP Parameter
Input Clas- Size
sifier (MB)
Error
KITTI DORN [3]| Mono 8.78 2.23 12.98 11.77 N/A N/A N/A
Depth camera
DSCdata | DSCnet Mono 5.77 4.16 8.04 11.22 4.79 8.79 82.21
camera
DSCdata | DSCnet Stereo 4.69 291 6.90 9.21 4.54 11.26 82.36
camera
DSCdata | DSCnet Stereo + | 4.37 2.77 6.86 8.89 4.61 12.62 85.24
Scala
DSCdata | DSCnet- | Stereo 6.42 6.51 11.31 14.44 5.50 2.30 1.83
lite Camera
Table 6: DSCnet results with different sets of input sensors
Dataset CNN Model Input Parking Collision Adaptive Overall
Assist Detection Cruise
Control
DSCdata | DSCnet Mono camera 3.49 4.47 5.29 5.77
DSCdata | DSCnet Stereo camera 3.00 3.61 4.30 4.69
DSCdata | DSCnet Stereo + Scala 2.99 3.52 4.13 4.37

Table 7: Relative Error (absErrorRel) for DSCnet in the automotive metric zones

inference), and we have reduced the quantity of parame-
ters by 45x (to 1.83 MB). This yields a modest increase in
the error-rate (from 4.6% absolute relative error for DSCnet
to 6.4% absolute relative error in DSCnet-lite). With our
own CNN framework running on a garden-variety 4-core
ARM A72 processor (found in millions of smartphones to-
day) and without using any type of GPU or accelerator, we
can routinely run CNN inference at 12.5 GFLOP/s, which
implies that we should be able to run DSCnet-lite at over 5
inferences-per-second* on a generic smartphone processor.
Further, many of today’s server GPUs are able to run CNN’s
at much more than 1 TFLOP/s, but if we conservatively en-
vision the case of running on a GPU at 1 TFLOP/s, we could
do over 400 inferences-per-second with DSCnet-lite.

4.2. Qualitative Results

In Figure 5, we visualize the generated point-cloud from
our of our DSCnet model (using two cameras and Scala data
as inputs to DSCnet).

In Examples 1 and 2, you can see that DSCnet’s gener-
ated point cloud looks similar to the ground truth LIDAR,
and the model is able to distinguish the depths of objects
such as cars, trees and traffic light poles and signs, as well
as the ground plane.

Example 3 shows our depth prediction near the begin-
ning of a construction site. While our DSCnet model per-
forms well on both the cars and the ground plane, DSC-

4We say inferences-per-second instead of frames-per-second, because
we are talking about two-camera input in this example.

net does not correctly predict the depth of the orange traffic
cones along the right side of the road.

In Examples 4 and 5, we visualize DSCnet results for
predicting depth on the highway. In both examples, DSCnet
is able to perceive the rough depth for the cars in front of the
ego vehicle, as well as the road boundaries.

5. Conclusion

Expensive sensors such as Velodyne HDL-64 LIDAR are
commonly used in autonomous vehicle research. However,
due principally to their high cost, these expensive LIDARs
are difficult to deploy in mass-market vehicles that are man-
ufactured in the millions of units per year. In this work,
we have created a family of neural network architectures
called DSCnet, which can be trained to “clone” expensive
LIDAR while using only low-cost sensors as input. We de-
fined new metric zones for calculating distance predictions
for the use of autonomous driving, and showed our DSC-
net models could help perform certain perception tasks at a
fraction of the price. While LIDAR may still be needed for
fully-autonomous driving, we feel that DSCnets running on
low-cost sensors can provide high-quality real-time 3D data
for semi-automation, or as a backup solution to systems re-
lying on LIDAR. Finally, we are interested to see how the
emerging research field of Deep Sensor Cloning will impact
the cost, quality, and reliability of autonomous vehicles and
other applications.

Example

DSChnet Output

HDL-64 Output

Input Image

Figure 5: Qualitative examples of DSCnet results compared to ground-truth data from a Velodyne HDL-64 LIDAR. In these

results, the inputs to DSCnet are stereo cameras and Scala data.

References

(1]

(2]

(3]

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. ShapeNet: An information-rich 3d model reposi-
tory. arXiv:1512.03012,2015. 1,2, 3

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. In NIPS, 2014. 1,2,6

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep Ordinal Regression
Network for Monocular Depth Estimation. In /IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),

(4]

(3]

(6]

(7]

2018. 7

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In /EEE
Conference on Computer Vision and Pattern Recognition,
2012. 1,3

Andrew Howard. Real-time stereo visual odometry for au-
tonomous ground vehicles. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2008. 2
Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications.
arXiv:1704.04861, 2017. 6

Forrest N. Iandola, Song Han, Matthew W. Moskewicz,

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(7]

(18]

(19]

(20]

(21]

(22]

(23]

Khalid Ashraf, William J. Dally, and Kurt Keutzer.
SqueezeNet: Alexnet-level accuracy with 50x fewer param-
eters and <0.5mb model size. arXiv:1602.07360, 2016. 6
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 2017. 1

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015. 1

David G. Lowe. Object recognition from local scale-
invariant features. In IEEE International Conference on
Computer Vision (ICCV), 1999. 2

Bruce D Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. In
IJCAIL 1981. 2

Roland Memisevic and Christian Conrad. Stereopsis via
deep learning. In NIPS, 2014. 2

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-net: Fully convolutional neural networks for volumetric
medical image segmentation. arXiv:1606.04797,2016. 5
Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Euge-
nio Culurciello. Enet: A deep neural network architecture for
real-time semantic segmentation. arXiv:1606.02147, 2016.
6

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick,
and Ali Farhadi. You only look once: Unified, real-time ob-
ject detection. arXiv:1506.02640, 2015. 6

Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3D:
Learning 3d scene structure from a single still image. /IEEE
Trans. Pattern Anal. Mach. Intell., 2009. 2, 3

Daniel Scharstein and Richard Szeliski. A taxonomy and
evaluation of dense two-frame stereo correspondence algo-
rithms. IJCV, 2002. 2

Stephen Se, David Lowe, and Jim Little. Vision-based mo-
bile robot localization and mapping using scale-invariant fea-
tures. In IEEE International Conference on Robotics and
Automation (ICRA), 2001. 2

Fabian H. Sinz, Joaquin Quifionero Candela, Gokhan H.
Bakir, Carl Edward Rasmussen, and Matthias O. Franz.
Learning depth from stereo. In Joint Pattern Recognition
Symposium, 2004. 2

Michael Treml, Jose Arjona-Medina, Thomas Unterthiner,
Rupesh Durgesh, Felix Friedmann, Peter Schuberth, An-
dreas Mayr, Martin Heusel, Markus Hofmarcher, Michael
Widrich, Ulrich Bodenhofer, Bernhard Nessler, and Sepp
Hochreiter. Speeding up semantic segmentation for au-
tonomous driving. In NIPS MLITS Workshop, 2016. 6
Bichen Wu, Forrest Iandola, Peter H. Jin, and Kurt Keutzer.
SqueezeDet: Unified, small, low power fully convolu-
tional neural networks for real-time object detection for au-
tonomous driving. arXiv:1612.01051, 2016. 6

Koichiro Yamaguchi, Tamir Hazan, David McAllester, and
Raquel Urtasun. Continuous markov random fields for ro-
bust stereo estimation. In ECCV, 2012. 2

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. arXiv:1711.06396,
2017. 3

