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Abstract

We present a system to extract surface orientation and

albedos from a single shot image using three differently col-

ored illumination sources. Photometric stereo allows one to

extract local surface information such as normals or gradi-

ents. Traditionally, the local orientations and albedos are

computed using serveral acquisitions of the same viewing

angle and under varying illumination directions. In appli-

cations with moving objects, where the acquisition- as well

as processing speed are essential, such setups are poorly

suited. We propose a single shot decomposition using three

differently colored light sources under defined illumination

directions. To allow for a fast and regularized inference, we

built a split U-shaped convolutional neural network, which

takes a single shot input and estimates both the surface ori-

entation and albedo simultaneously.

1. Introduction

Estimating physical properties such as the local surface

orientation and albedo of a scene from a single image is a

challenging problem. We propose a method to infer such

underlying parameters for real world data with defined illu-

mination directions and colored (RGB) light sources using a

split U-shaped convolutional neural network (split U-Net).

Photometric stereo (PS) methods as presented in [1] re-

cover surface orientation and allow the reconstruction of

high frequency surface details. Such data can be used to

partly reconstruct depth information [2], up to the bas-relief

transform [3].

A method to find the most likely surface orientation and

reflectance under unknown illuminations from a single im-

age was previously demonstrated in [4]. Later, a refined

method for three calibrated (RGB) monochromatic direc-

tional light sources was shown in [5]. Surface orientations

and reflections were recovered based on assumptions such

as a piece-wise constant texture and a finite set of distinct

albedo values. Learning frameworks for photometric stereo

were presented in [6, 7, 8], where images captured under

different illumination directions were utilized to predict a

normal map. U-shaped networks were previously used in

various ways, including the analysis of image stacks in the

form of light field data [9].

In our work, we use shape and reflection priors under

known light configurations to extract the albedo, surface

orientations and subsequentially depth data from a single

shot image. We designed and used a split U-Net for the task

of inferring such data while regularizing the output. The

network is trained on real datasets, which are not strictly

Lambertian. Contrary to previous contributions, we de-

signed and trained a novel split U-Net for which we used

ground truth (GT) data, calculated by illuminating the ob-

ject from multiple (32) directions.

2. Photometric Stereo

On a discretized surface with the size of M ×N pixels

with Lambertian reflectance, the surface normals Ni,j ∈
R

3, for all pixel locations (i, j) ∈ M × N , and the

albedo ρi,j ∈ R are reconstructed under defined illumina-

tion sources L ∈ R
n×3. The observed n intensities are

defined as Ei,j ∈ R
n. The following tensors hold vectors

in each pixel location and are denoted with bold characters:

Mi,j = ρi,jNi,j , (1)

Mi,j = (Mi,j,x,Mi,j,y,Mi,j,z), (2)

Ni,j = (Ni,j,x, Ni,j,y, Ni,j,z), (3)

Ei,j = (Ei,j,1, ..., Ei,j,n). (4)

Normals and albedos are recovered from observed inten-

sities by using the following least squares (LS) formulation:

min
Mi,j

1

2
||L ·Mi,j −Ei,j ||

2. (5)

The length of the vector Mi,j is defined by the albedo

ρi,j , as per definition normals are unit vectors:

√

N2

i,j,x +N2

i,j,y +N2

i,j,z = 1, (6)

ρi,j =
√

M2

i,j,x +M2

i,j,y +M2

i,j,z. (7)



Figure 1: Structure of our proposed split U-Net with pin-

hole connections. The encoder is represented on the left and

the decoder on the right.

Decomposing and analyzing single images from acquisi-

tions with three colored (RGB) light sources to extract vari-

able albedos and surface normals is a challenging problem.

The reflectance analysis over our colored channels allows

ambiguous interpretations, as specific radiance values can

stem from the shape / scaling, light source transformations

or texture changes of the object.

3. Network Architecture

We present a split U-Net, which takes a single image as

input and jointly estimates the albedo as well as the sur-

face normal, as shown in Fig. 1. This network architecture

allows a fast inference due to the data compression, while

enabling a detailed reconstruction on fine scales. The im-

age was taken under three colored illuminations in a single

shot, matching the sensitivity peeks in the camera sensor.

The split U-Net consists of an encoder path and a decoder

path. We split the network at bottleneck (between encoder

and decoder) and separate the decoder, which allows the

network to achieve a more specialized inference for both

independend sub-problems. Pinhole connections are estab-

lished between the encoder and the decoder at each level.

3.1. Loss Function

A loss function is specified in order to minimize the dif-

ference between the network output (N , ρ) and our GT

data (N̂ , ρ̂), respectively. It is defined as the sum of three

loss functions, namely the albedo loss LA, the cosine dis-

tance LN between the normals and LU , which enforces unit

length normal vectors.

L =
1

MN

M
∑

i

N
∑

j

(LAi,j
+ LNi,j

+ LUi,j
) (8)

LAi,j
= (ρi,j − ρ̂i,j)

2 (9)

LNi,j
=

(

1−
〈Ni,j , N̂i,j〉

||Ni,j ||||N̂i,j ||

)2

(10)

LUi,j
= (||Ni,j || − 1)2 (11)

[MSE]
ρ

RGB U-Net (ours)

N ρ

3L-PS (ref. method)

N

3
2

L
-P

S

G
T

train 0.00096 0.00146 0.08933 0.00312

validation 0.00118 0.00102 0.09093 0.00390

test 0.00148 0.00353 0.06832 0.00371

Table 1: Quantitative evaluation of the distance to the pho-

tometric stereo GT (32L-PS) to our RGB U-Net results

(bold) in comparison to the reference method using 3 light

sources (3L-PS) and a LS algorithm.

The loss function L was optimized with the Adam opti-

mizer [10] with an initial learning rate of l = 10−4 with

a decay rate of 10−1 each 1000 iterations.

4. Dataset

A light dome with 32 illumination sources was used to

acquire our dataset, the system was previously described

in [11]. The GT (N̂ , ρ̂) was calculated using all available

illumination sources (32L-PS). We created our network in-

put images using three illumination sources with an angular

distance of 120◦ to each other, well aligned to the data used

to calculate the GT. We composed one RGB photometric

image using three light sources by constructing the R, G

and B channel from the first, second and third acquired im-

age under white light respectively. In the training set 78

samples are used, 20 samples in the validation set and 28

samples in the test set.

5. Evaluation

To evaluate our split U-Net, which estimates the albedo

and surface normals from a one-shot image with three col-

ored illumination sources (RGB U-Net), we compare it to

our GT data computed as described in Sec. 2. We gener-

ated this GT data using 32 illumination sources (GT 32L-

PS). Additionally, we compare the prediction by our neural

network (RGB U-Net) with a least squares (LS) estimation

using the same 3 illumination sources (3L-PS). Further than

learning the albedo and surface normals, the CNN acts as a

regularizer. This becomes obvious in areas containing noise

and outliers, which are especially present in dark regions,

e.g. on the background plane of our samples (see Fig. 2).

We performed quantitative evaluations of the distance

between our GT (32L-PS) to the train, validation and test

data respectively. As shown in Tab. 1, the mean squared er-

ror (MSE) of our trained network (RGB U-Net) is closer to

the ground truth data (32L-PS) than the LS result using the

same input (3L-PS).
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Figure 2: Examples of input images are shown in the first row. The first two samples were seen during the training, the last

two were in the test set. The corresponding ground truth data (calculated using 32 illuminations) is shown in the second row.

The third row demonstrates the LS reference approach and the result estimated by our network is shown in fourth row.

6. Conclusions

We presented a system to estimate suface normals and

albedos from single shot images using colored illumination

sources (Fig. 2, row 1). The labels for our training data were

obtained by a standard strobing approach using additional

light sources (32) to estimate a precise GT (row 2). The

quadratic energy function was optimized using a LS solver.

Seeing only 3 light sources at the input, our system could

estimate a more reliable surface structure (row 4) than the

comparison LS reference algorithm (row 3). Using the pro-

posed split U-Net allows a fast inference, which is crucial

for industrial applications.
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