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Abstract

Evolutionary deep intelligence has recently shown great

promise for producing small, powerful deep neural network

models via the synthesis of increasingly efficient architec-

tures over successive generations. Despite recent research

showing the efficacy of multi-parent evolutionary synthesis,

little has been done to directly assess architectural similar-

ity between networks during the synthesis process for im-

proved parent network selection. In this work, we present a

preliminary study into quantifying architectural similarity

via the percentage overlap of architectural clusters. Results

show that networks synthesized using architectural align-

ment (via gene tagging) maintain higher architectural sim-

ilarities within each generation, potentially restricting the

search space of highly efficient network architectures.

1. Introduction

The use of deep neural networks (DNNs) [1, 7] has be-

come ubiquitous over the last few years due to their demon-

strated efficacy in many challenging application areas, in-

cluding image classification [6, 12], pose estimation [13, 9],

and speech recognition [5, 14]. However, the modelling ac-

curacy of high-performance DNNs is a result of increased

model size and complexity, rendering them impractical for

real-world scenarios with limited computational and mem-

ory resources. As a result, methods for reducing the com-

putational requirements of DNNs while maintaining perfor-

mance accuracy are highly desirable.

One such method is evolutionary deep intelligence [10].

Inspired by nature, Shafiee et al. proposed a biologically-

motivated method for synthesizing increasingly efficient

and compact network architectures over successive gener-

ations from existing high-performance DNNs. While the

seminal papers in evolutionary deep intelligence [10, 11]

formulated the synthesis process as asexual evolutionary

synthesis, recent work [4, 2] has investigated the use of

sexual evolutionary synthesis to produce populations of in-

creasingly compact DNNs at each generations.

Most recently, Chung et al. [3] conducted an initial study

into mitigating architectural mismatch during sexual evolu-

tionary synthesis via a gene tagging system. While results

showed no notable difference in performance accuracy, it

raises an interesting question: how can we assess the archi-

tectural similarity of DNNs in a meaningful and useful way?

In this work, we present a preliminary study exploring

the quantification of network architectural similarity in pop-

ulations of evolutionary synthesized neural networks via

percentage overlap of architectural clusters. Architectural

similarity is explored within the context of multi-parent sex-

ual evolutionary synthesis, and will allow for the develop-

ment of improved similarity-based mating policies during

the evolutionary synthesis of highly efficient networks.

2. Methods

In this paper, we investigate the quantification of archi-

tectural similarity using generations of networks synthe-

sized via multi-parent evolutionary synthesis with and with-

out gene tagging [3].

2.1. m-Parent Evolutionary Synthesis

Let the network architecture be formulated as H(N,S),
where N is the set of possible neurons and S denotes the set

of possible synapses in the network. Each neuron nj ∈ N

is connected to neuron nk ∈ N via a set of synapses s̄ ⊂ S,

such that the synaptic connectivity sj ∈ S has an asso-

ciated wj ∈ W to denote the connection’s strength. In

the seminal evolutionary deep intelligence paper [11], the

synthesis probability P (Hg|Hg−1,Rg) of a new network

at generation g is approximated by the synaptic probability

P (Sg|Wg−1, Rg) to emulate heredity through the genera-

tions of networks. P (Hg|Hg−1,Rg) is also conditional on

an environmental factor model Rg to imitate natural selec-

tion via simulated environmental resources.

Extending on [10, 11], Chung et al. [4] generalized the

synthesis process multi-parent (m-parent) evolutionary syn-

thesis where a newly synthesized network Hg(i) can be de-

pendent on a subset of all previously synthesized networks

HGi
, with Gi corresponding to the set of previous networks
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on which Hg(i) is dependent and g(i) representing the gen-

eration number corresponding to the ith network.

The synthesis probability combining the probabilities of

m parent networks HGi
is represented by some cluster-

level mating function Mc(·) and some synapse-level mat-

ing function Ms(·):

P (Hg(i)|HGi
,Rg(i)) =

∏

C∈C

[

P (sg(i),C |Mc(WHGi
),Rc

g(i))·

∏

j∈C

P (sg(i),j |Ms(wHGi
,j),R

s
g(i))

]

.

(1)

2.2. Architecture Alignment via Gene Tagging

To encourage like-with-like mating during evolutionary

synthesis, Chung et al. [3] recently introduced a gene tag-

ging system to enforce structural alignment, i.e., only mat-

ing architectural clusters originating from the same loca-

tion in the ancestor network. As such, the cluster-level and

synapse-level mating functions are formulated as follows:

Mc(WHGi
) =

∏

k∈Kc

αc,kWHk
(2)

Ms(wHGi
,j) =

∏

k∈Kc

αs,kwHk,j (3)

where Kc is the subset of parent networks with existing ar-

chitectural clusters corresponding to a single gene tagged

cluster c ∈ C, C is the set of clusters that exists in Hg(i),

and W and w are the gene tagged synaptic strengths.

2.3. Architectural Cluster Overlap

To investigate the quantification of architectural similar-

ity in the context of multi-parent sexual evolutionary syn-

thesis, the percentage overlap of architectural clusters be-

tween two networks is formulated as the proportion of in-

tersecting clusters:

%overlapAB =
CA ∩ CB

CA

, (4)

where CA and CB represent the sets of architectural clusters

that exist in the two networks being compared.

Percentage overlap of architectural clusters is an intuitive

representation of network architecture similarity made vi-

able in the context of multi-parent evolutionary synthesis by

leveraging the gene tagging system [3]. As such, gene tag-

ging (which allows for architectural alignment during evo-

lutionary synthesis) can similarly be used to calculate per-

centage overlap of existing architectural clusters originating

from the same location in the ancestor network. Percentage

overlap is indicative of network population diversity within

a generation, e.g., relatively low average percentage overlap

would indicate a generation of synthesized networks with

comparatively higher architectural variability.

3. Results

3.1. Experimental Setup

In this study, we used the network architectures synthe-

sized in [3] with the least aggressive environmental fac-

tor model (Rc
g(i), R

s
g(i) = 50) and trained on the MNIST

dataset [8]. Architectural similarity was assessed on the

first seven generations of networks (after which the perfor-

mance accuracy degraded to random guessing) synthesized

with and without gene tagging.

3.2. Experimental Results

Figure 1 shows the performance accuracy as a function

of storage size for the populations of synthesized networks

in the first seven generations, where the best synthesized

networks are closest to the top left, i.e., high performance

accuracy and low storage size. Networks synthesized using

gene tagging show a slightly slower progression in main-

taining performance accuracy while decreasing storage size

relative to networks synthesized without gene tagging.

Synthesizing networks with gene tagging and without

gene tagging both produced architectures that increase in

variability over successive generations; however, networks

synthesized with gene tagging diversify more slowly than

those without gene tagging (as shown in Table 1). Figure 1

and Table 1 also suggest that generations of networks ap-

proaching an optimal tradeoff between performance accu-

racy and storage size tend to also have the highest architec-

tural variability, e.g., in generations 3 and 4.

Lastly, it is worth noting that the increasing percent-

age overlap in generations 6 and 7 of networks synthesized

without gene tagging is a result of sparse, low-variability ar-

chitectures that can no longer represent the problem space

(i.e., performance accuracy of 10% on the 10-class MNIST

dataset, equivalent to random guessing). Similarly, the per-

centage overlap in generations 6 and 7 of networks synthe-

sized with gene tagging increases as the performance accu-

racy begins to rapidly decrease.

4. Discussion

We presented a preliminary study in assessing architec-

tural similarity between deep neural networks to improve

the sexual evolutionary synthesis process. Results show that

networks synthesized using gene tagging have less archi-

tectural variability than networks synthesized without gene

tagging, as quantified by relatively higher overlap percent-

ages of architectural clusters. This indicates that the use

of gene tagging is potentially restricting the exploration of

highly efficient network architectures in the search space.

Future work includes further investigation into quantities of

information, e.g., mutual information, as well as the devel-

opment of a custom similarity metric for optimal architec-

tural similarity during sexual evolutionary synthesis.
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Table 1. Average percentage overlap of architectural clusters in

network models for the first seven generations of 5-parent sexual

evolutionary synthesis. Note that the increasing percentage over-

lap in generations 6 and 7 of networks synthesized without gene

tagging is a result of sparse, low-variability architectures that can

no longer represent the problem space, while the unpredictability

of percentage overlap in generations 6 and 7 of networks synthe-

sized with gene tagging may be a result of some (but not all) net-

works having sparse, low-variability architectures.

Gen No. Gene Tagging No Gene Tagging

1 93.75% 93.71%
2 87.59% 78.11%
3 83.49% 68.84%
4 71.81% 66.64%
5 73.17% 68.44%
6 69.09% 82.74%
7 73.48% 91.05%

Figure 1. Performance accuracy as a function of storage size for

the first seven generations of 5-parent sexual evolutionary syn-

thesis for networks synthesized with gene tagging (diamond) and

without gene tagging (round). Plots best viewed in colour.
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