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Abstract

With one in four individuals afflicted with malnutrition,

computer vision may provide a way of introducing a new

level of automation in the nutrition field to reliably mon-

itor food and nutrient intake. In this study, we present a

novel approach to modeling the link between color and vi-

tamin A content using transmittance imaging of a puréed

foods dilution series in a computer vision powered nutrient

sensing system via a fine-tuned deep autoencoder network,

which in this case was trained to predict the relative concen-

tration of sweet potato purées. Experimental results show

the deep autoencoder network can achieve an accuracy of

80% across beginner (6 month) and intermediate (8 month)

commercially prepared puréed sweet potato samples. Pre-

diction errors may be explained by fundamental differences

in optical properties which are further discussed.

1. Introduction

Worldwide, approximately 590 million people are af-

flicted with dysphagia [1], placing these indviduals at in-

creased risk for malnutrition [7, 2]. Puréed foods can al-

low for safe ingestion however nutritional composition can

be highly variable from preparation method differences [2].

Recently established standards and guidelines assist with

assessing quality based on visual and mechanical tests [1]

however they involve time-intensive manual tasks. Image-

based assessment may enable a new layer of automation and

provide an objective tool for assessing puréed food quality

as they are well modeled as homogeneous media, and are

the most relevant to individuals living with dysphagia.

In this study, we focus here on our work on vitamin A, a

family of chromophores including carotenoids that are op-

tically active in the visible spectrum [4]. This builds on our

previous work predicting purée relative nutritional density

with deep learning in a small data set [5] and exploration

of nutrient-color link [6]. Here, we significantly expand our

preliminary vitamin A assessment results. The rest of this

paper is organized into: research methods and data acqui-

sition, high-level results and an in-depth discussion of vita-

min A composition in sweet potato and carrot. Finally, we

discuss future directions in the context of computer vision

powered biophotonics.

2. Methods

We have developed a two pronged end-to-end system

for tracking LTC resident food and fluid intake which co-

integrates machine learning and computer vision with bio-

photonic analysis. Figure 1 shows a graphical representa-

tion of the system architecture. Fine-grained, single nutri-

ent assessment is accomplished through biophotonic anal-

ysis and yields a CIELAB Gaussian distribution for each

flavor and dilution, and a % transmittance map comparing

highest (sweet potato) and lowest (carrot) vitamin A con-

tent. A five-tier dilution series relative to the initial concen-

tration for each of five commercially-prepared puréed foods

containing vitamin A: butternut squash, carrot, mango, and

6 and 8 month sweet potato. Thirty fullfield white normal-

ized transmittance images were acquired using 15 mL sam-

ples in petri dishes with a broadband tungsten-halogen light

source and front glass fabric diffuser under a glass loading

plate. Pixelwise spectral transmittance was computed using

white and dark normalization:

T (x, y) =
I(x, y)− Id(x, y)

Iw(x, y)− Id(x, y)

τ2

τ1
(1)

where I , Id, and Iw are the normal, dark, and white im-

ages respectively, and τ1, τ2 are the exposure times during

normal and white image acquisition respectively. To avoid

photon boundary artifacts, a 35×35 mm region in the cen-

ter of the sample was used to analyze the distribution of

pixel transmittance spectra. Color values were converted to

CIELAB color space, which accurately captures the under-

lying chemical structure (i.e., conjugated double bonds) of

carotenoid variants [4]. Images were processed using a pho-

ton migration model in a homogeneous purée mixture and

Beer-Lambert exponential decay of light attenuation [6]:

T =
I

I0
= exp(εH2O · cH2O · lH2O + εvitA · cvitA · lp) (2)



where T is transmittance, I0 and I are the incident

and transmitted illumination respectively. In the selected

purées, we assume that the dominant absorber is vitamin A.

For H2O and vitA, ε are the chromophore extinction coef-

ficients, c are the concentrations, and l are the mean photon

path length through each of water and the purée sample.

Coarse-grained bulk nutrient estimation was accom-

plished through predicting relative nutritional density using

a deep relative nutrient density autoencoder network (for

more detail see [5]). In this study, 400 RGB samples of

size 25 × 50 were extracted from the transmittance image

acquisitions of the purée samples. Using the transmittance

data, we fine-tuned our reflectance-mode pretrained sweet

potato network from [5] to a maximum of 400 epochs with

a combined random 80% (n=320) of transmittance samples

of 6 and 8 month sweet potato to form a general fine-tuned

“sweet potato” relative nutrient density network. To evalu-

ate the accuracy of the proposed deep autoencoder network,

we leveraged the remaining 20% of transmittance samples

and compute accuracy for each of: global sweet potato (e.g.,

6 month and 8 month combined), and individually for 6 and

8 month sweet potato. Five separate runs were performed.

3. Results and Discussion

First, we discuss visual and biophotonic trends observed

and use this to reinforce our discussion and interpretation

of our proposed fine-tuned deep autoencoder network. An-

alyzing the CIELAB space of the biophotonics transmit-

tance data, we observed a trend observed with higher values

of Vitamin A nearer to the origin with lower values arch-

ing upward and to the right (Figure 1, Biophotonic Anal-

ysis left pane). This is congruent with the visual appear-

ance of the purées; within a flavor the more highly con-

centrated purée samples were darker and between flavors,

there was an observable color difference. With the excep-

tion of carrots, the redder or more orange purées had higher

% Daily Value (%DV) amounts of vitamin A. One observa-

tion was while sweet potato had the highest %DV of vitamin

A (%DVvitA), carrot, with the lowest %DVvitA appeared

more red. Perhaps one reason for this observation is that

the optical activity of vitamin A can be further broken down

into contributions from β- and α-carotene. When consid-

ered together, it would seem carrot has more carotenoid

absorbers present. Since carotenoids absorb in the blue-

green range, perhaps a larger relative amount of red spectra

are getting transmitted, which may account for the higher

% transmittance in carrot compared to sweet potato as de-

picted in Figure 1 (iii). An additional observation was that

while the nutritional composition for beginner baby food

(sp6) and intermediate baby food (sp8) were similar, visu-

ally they appeared different; sp6 was slightly redder and

lighter than its sp8 counterpart and is shown in Figure 1

(ii) and (iii) implying there were some nutritional difference

Table 1. Summary of sweet potato dilution prediction network ac-

curacy

Network Run sp6+sp8 sp6 only sp8 only

1503191536 79% 68% 92%

1503191538 80% 79% 81%

1503191540 75% 69% 81%

1503191542 79% 74% 83%

1503191544 78% 76% 79%

Average (µ± σ): 78% ± 2% 73% ± 5% 83% ± 5%

Max: 80% 79% 92%

perhaps not accounted for within the nutritional label.

Given there were visible differences between flavours,

we wanted to explore whether it was possible to develop

a generalizable deep autoencoder network for predicting

relative nutritional density related to vitamin A concentra-

tion. Table 1 shows results using a fine tuned sweet potato

deep network. For the combined testing on sp6 and sp8,

we achieved a maximum top-1 prediction accuracy of 80%,

with each the accuracy of sp6 and sp8 of 79%, and 81%,

respectively. One potential contributing factor to errors is

the overlap between classes based on visual and CIELAB

similarity. For example, in Figure 1 (ii) there are three

white ovals near the intercept which correspond to sp8100%,

sp880%, and sp860% and these three overlap with the lower

most green oval which belongs to sp6100%. With more data

for fine-tuning, this approach can be expanded to additional

flavours as well given that all except for carrot followed a

similar trend but shifted up the arch.

Moving forward, only considering vitamin A con-

tent as contributing to photon absorption events is likely

over-simplified especially when additional nutritional con-

stituents may affect incident photon absorption (e.g.,

chlorophyll, iron) and scattering (e.g., fat, starch) events.

Additionally, actual values of vitamin A in the purée may

differ from its raw counterpart due to vitamin A’s ther-

mosensitivity and oxidation susceptibility during process-

ing [3]. Exploring computer vision based techniques on

how to distinguish between contributions from biophotonic

absorbers and scatterers may further enhance our ability to

interpret nutritional quantity and quality. Next steps include

the integration and data fusion from these two co-processes

and expansion to additional nutrients and across a larger

sample of food items.

4. Conclusion

We presented our two pronged purée analysis system

comprised of biophotonic, single nutrient analysis and bulk

nutrient analysis via a deep autonecoder network with a

global sweet potato relative dilution prediction accuracy of

80%. Building on this work provides an opportunity to in-

form many quality inspection to fraud identification appli-

cations. (Funding: Canada Research Chairs; NSERC)



Figure 1. Two pronged purée system analysis comprised of coarse-grained bulk nutrient estimation (top) and single nutrient assessment

through biophotonic analysis for fine-grained nutritional assessment (bottom). (i) Deep Autoencoder Network architecture for relative

nutrient density estimation. (ii) L-normalized a*b* plots of each puree dilution series in 15 mL samples. % transmittance maps (iii) and

plots (iv) across R channel in highest (sp8 and sp6) and lowest (car) vit A containing samples at 20% relative dilution.
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prepared puréed food concentrations. Journal of Food Engi-

neering, 223:220–235, 2018.

[6] K. J. Pfisterer, R. Amelard, and A. Wong. Differential color

space analysis for investigating nutrient content in a puréed
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