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Abstract

Video data is inherently multimodal and sequential.

Therefore, deep learning models need to aggregate all

data modalities while capturing the most relevant spatio-

temporal information from a given video. This pa-

per presents a multimodal deep learning framework for

video classification using a Residual Attention-based Fu-

sion (RAF) method. Specifically, this framework extracts

spatio-temporal features from each modality using residual

attention-based bidirectional Long Short-Term Memory and

fuses the information using a weighted Support Vector Ma-

chine to handle the imbalanced data. Experimental results

on a natural disaster video dataset show that our approach

improves upon the state-of-the-art by 5% and 8% regarding

F1 and MAP metrics, respectively. Most remarkably, our

proposed residual attention model reaches a 0.95 F1-score

and 0.92 MAP for this dataset.

1. Introduction

Multimodal data analytics has recently attracted signif-

icant attention in the deep learning and computer vision

community. One of the useful yet challenging tasks in deep

learning is video content analysis and understanding [7].

Since video data includes visual, audio, metadata and text

description, it can provide a great opportunity in the mul-

timodal deep learning area. One of the main challenges in

video processing is how to integrate the information from

multiple data modalities to effectively gain insight from

the video. To tackle this challenge, many researchers have

proposed various data fusion techniques using deep learn-

ing [3]. It is also important to automatically learn the sig-

nificance of each data modality during the fusion step in-

stead of simply concatenating them. Besides, due to the

spatio-temporal nature of video, it is imperative to take both

static and temporal information into account. To overcome

these challenges, this paper presents a new framework using

Convolutional Neural Networks (CNNs) and Long short-

term memory (LSTM) for multimodal spatio-temporal fea-

ture extraction and fusion.

In deep learning research, “Attention” mechanism [9]

has been introduced and used in recent years for various

sequence-based tasks such as machine translation [2]. It

also shows promising results in visual data analytics such

as image classification [5]. In this paper, attention is used

and followed by temporal layers to not only allow the net-

work to pay attention to the parts of the video sequences

that are required, but also diminishing the irrelevant infor-

mation or noise. This is similar to human perception which

concentrates on only a subset of the whole information it

receives. We also incorporate the shortcut path or residual

mapping [4] to the attention-based recurrent layers to fur-

ther enhance the performance of the video classification.

This work is an extension of our previous work on mul-

timodal deep learning for natural disaster management [7].

Specifically, in this work, we investigate the importance of

residual connection and attention mechanism in LSTM for

multimodal data fusion. In particular, we proposed residual

attention for multimodal temporal feature extraction and fu-

sion. The experimental results illustrate the significance of

the residual attention connection in LSTM. Finally, we uti-

lized a Weighted Support Vector Machine (WSVM) for the

imbalanced video classification.

2. Proposed Framework

The proposed framework starts with static multimodal

feature extraction followed by temporal feature analysis and

fusion modules as explained below.

For static multimodal feature extraction, the state-of-the-

art pre-trained models are employed for each data modal-

ity. For visual data, the last pooling layer of the Inception-

V3 [8] is used to extract the features from video frames us-

ing transfer learning. Audio features are extracted using the

last convolutional layer of SoundNet [1] which utilizes the

natural synchronization between visual and audio data. Fi-

nally, text features are automatically obtained using GloVe

[6]. After each feature set is generated, they are combined

using the proposed spatio-temporal RAF module.

Figure 1 shows various residual attention mechanisms



used in this work for spatio-temporal feature extraction

from each data modality. The proposed spatio-temporal fea-

ture extraction module generates the input for the fusion

module. The fused feature set is constructed by stacking

several Residual Attention Bi-directional LSTM (RABL)

blocks. Each RABL block takes the output of the previous

block as the input and then passes it to the first bidirectional

LSTM (BiLSTM) layer. Let c
(i)
t be the ith temporal feature

vector generated by the BiLSTM at time step t. The atten-

tion layer constructs a context vector ht for c
(i)
t at time step

t by assigning the attention weights a
(i)
t . The context vector

can be calculated as:

ht =

M∑

i=1

a
(i)
t c

(i)
t (1)

where M is the total number of features. The hidden state

ht from the first BiLSTM layer is fed into an activation

function to generate the relevant score s
(i)
t :

s
(i)
t = tanh(Wht + b) (2)

where s
(i)
t is the relevant score for feature i in time step t.

W and b are the weight and bias parameters that are learned

by the model. tanh() is the hyperbolic tangent function

(activation function). The attention module then generates

the attention weight a
(i)
t :

a
(i)
t =

exp(w
(i)
t s

(i)
t )

∑M

j=1 exp(w
(j)
t s

(j)
t )

(3)

where w
(i)
t is the learned model weight for feature i in time

step t. The denominator calculates the sum of the product of

the weight and the relevant score of all features in time step

t. The residual unit is formed by creating shortcuts between

each BiLSTM and attention layer. It helps the network min-

imize information loss by combining the learned non-linear

mapping F (x) with the identity mapping x:

Y = F (x) + x (4)

where x and Y are the input and output of the residual

block. In this work, we investigate different combinations

of the attention and residual components in BiLSTM. Fig-

ure 1 shows these combinations including a late attention

module (applying attention after a series of residual BiL-

STM), a fully residual attention module (applying residual

attention components after each BiLSTM), and finally a late

residual attention component (applying residual attention

after the final BiLSTM layer). The outputs of the resid-

ual attention modules for each modality are then fed into a

fully connected layer to generate the final features, which

are concatenated as the joint representation:

vc,t = [Wv,tcv,t,Wa,tca,t,Wk,tck,t] (5)
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Figure 1: The residual attention modules. (a) late attention;

(b) fully residual attention; (c) late residual attention.

where vc,t is the joint representation vector at time step t.

Wv,t, Wa,t and Wk,t are the learned weight parameters for

visual, audio and text features at time step t, respectively.

The weight for each feature in the joint vector is learned

automatically using a Weighted SVM that compensates the

class imbalance problem by penalizing the misclassification

of instances that belong to the minority classes.

3. Experimental Analysis

In this work, a natural disaster video dataset [7] contain-

ing 1540 video clips and seven concepts (shown in Figure 2)

is used for evaluation purposes. The performance met-

rics include micro F1 and Mean Average Precision (MAP)

which are the proper metrics for imbalanced data classi-

fication. Table 1 shows the performance comparison be-

tween the baselines and our proposed framework. The first

three rows show the performance results of single models in

which only one modality is used for video classification. It

can be seen from the table that the audio model provides less

information than the visual and textual models. On the other

hand, the textual model performs better than all of the other

single modality models regarding the F1 score and MAP.

The next model is the early fusion model that combines

static features from all data modalities and then applies sev-

eral BiLSTM layers which are followed by a dense layer for

classification, while the late fusion model concatenates the

BiLSTM features before applying the classification layer.

The results show the superiority of late fusion compared to

the early fusion model. Finally, the last three rows show the

performance of the proposed RAF techniques (please refer

to Figure 1 for the details of each method). It can be seen
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Figure 2: Dataset samples. (a) flood; (b) damage; (c) emergency response; (d) demo; (e) victim; (f) briefing; (g) human relief.

Table 1: Evaluation results on the disaster test dataset

Model F1 MAP

Audio model 0.502 0.420

Visual model 0.677 0.602

Textual model 0.779 0.695

Early fusion 0.812 0.735

Late fusion 0.902 0.841

Proposed framework

(late attention)
0.933 0.891

Proposed framework

(fully residual attention)
0.947 0.910

Proposed framework

(late residual attention)
0.953 0.920
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Figure 3: Micro F1 comparison of different proposed resid-

ual attention fusions for each disaster class

that the proposed technique improves both F1 and MAP be-

tween 0.3-0.5 and 0.5-0.8, respectively, compared to the

best previous results (late fusion). In particular, the late

residual attention outperforms the late attention and fully

residual attention regarding the F1 and MAP scores. The

detailed comparison results between the RAF methods are

shown in Figure 3. This figure shows the F1 score for each

proposed fusion method separated by each disaster class.

Although late attention performs better for two concepts

(e.g., “damage” and “victim”) compared to the residual at-

tention methods, it performs poorly on other concepts (e.g.,

“demo” and “human relief”). It can be concluded that resid-

ual attention connections are helpful in multimodal tempo-

ral data analysis.

4. Conclusion

This paper studies the impact of residual attention con-

nections in BiLSTM for multimodal deep learning. For this

purpose, a disaster video dataset including audio, image

frames, and text is utilized to evaluate the proposed mul-

timodal fusion technique. The experimental results demon-

strate the significance of the residual attention connections

when concentrating on specific times and modalities for

video classification.
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