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Abstract

Semantic segmentation algorithms that can robustly seg-

ment objects across multiple camera viewpoints are crucial

for assuring navigation and safety in emerging applications

such as autonomous driving. Existing algorithms treat each

image in isolation, but autonomous vehicles often revisit the

same locations. We propose leveraging this a priori knowl-

edge to improve semantic segmentation of images from se-

quential driving datasets. We examine several methods to

fuse these temporal scene priors, and introduce a prior fu-

sion network that is able to learn how to transfer this in-

formation. Our model improves the accuracy of dynamic

object classes from 69.1% to 73.3%, and static classes from

88.2% to 89.1%.

1. Introduction

An autonomous vehicle is typically outfitted with several

sensor modalities which can be used for mapping the envi-

ronment [1] through which it drives (e.g Google self-driving

cars continuously map the campus and streets of Mountain

View, CA) [2]. A priori knowledge of a given area can be

derived from data collected created during previous traver-

sal through an intersection. These scene priors, in the form

of temporal video frames, can be incorporated into scene

understanding algorithms to improve the semantic segmen-

tation of the scene. Earlier frames captured from a moving

vehicle, within a time window of the current scene, often

share a high degree of visual coherence (especially for ob-

jects in the distance) which can be leveraged in scene un-

derstanding algorithms. As seen in Figure 1, the image on

the left provides a strong prior spatially: the scene need not

have the exact appearance to be useful as the fundamen-

tal layout of the road, sidewalk and buildings represent a

strong structural prior. Both recorded and live video (e.g.

data previous to the current scene) provide a rich temporal

prior and are a source of often unleveraged data that can

enhance scene understanding.

Modeling a prior is a challenging task. Some objects,

such as cars and pedestrians, are mobile and are not in the

same location between frames (or time steps). The appear-

ance of the scene can shift slightly, depending on the speed

of the objects. Therefore, it can be difficult to discern which

semantic labels to propagate from the prior to accurately

inform the current scene. Naive approaches for selection,

such as estimating the motion shift between frames, are

more useful for static scenes. Here we use a learned mod-

ule to determine from raw driving data how to propagate

information from the prior.

Figure 1. Scene Prior. The image on the left is a temporal prior

(one second previous) to the image on the right (representing the

current scene).

There are existing video-based approaches for semantic

segmentation. Some are limited to only segmenting a lim-

ited number of objects per scene[3] or require the use of op-

tical flow networks [4] into the overall architecture, thereby

increasing the complexity and processing time of the net-

work. We show in our preliminary approach that we are

able to do full scene segmentation with multiple frames us-

ing a low complexity model. This method could potentially

be adapted to other semantic segmentation frameworks.

2. Methodology

2.1. Prior Fusion Network Architecture

We use a fully-convolutional encoder-decoder architec-

ture for semantic labeling, motivated by SegNet [5]. These

models feature a bottleneck stage, where the input image

in projected to a lower dimensional representation. We hy-

pothesize that this bottleneck representation could serve as

the location for incorporating prior knowledge before the
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decoder network expands the representation. We define a

scene prior as an image of a given location which has been

captured at an earlier time step (such as frames preceding

the current frame). For our experiments, we use a prior that

was captured one second earlier. Early experiments showed

that using a frame too far in the past to be more detrimen-

tal than helpful as the differences in the scenes (both struc-

turally and visually) were too high.

We tested three architectures:

• Baseline. Our baseline is a fully convolutional net-

work with eight layers. The encoder has 64-128-256-

512 features, and the decoder has 512-256-128-64 fea-

tures. This baseline had no access to the temporal

prior.
• Embedding Prior. In this approach, both the prior

x0 and the image x1 are passed through an encoder

(Figure 2, top). To fuse the representations, we use a

weighted sum with a tanh activation function (module

A in Figure 2), an idea borrowed from recurrent neural

networks [6].
• Decoder Prior. This model is similar to the embed-

ding prior, except the prior is applied to the decoder,

and the features fused at each level of the decoder.

Importantly, the weights for the encoder-decoder are

shared between the prior network and the image network,

so the only difference in parameter count between the three

models above are small contributions from the A modules.

In early experiments, we also tested a naive approach of

concatenating the bottleneck representations, but the model

performed poorly, so we exclude this model.

Figure 2. Network Architectures. A compact encoder-decoder

network architecture is used with the addition embedding-level

(top network architecture) and decoder-level (bottom network ar-

chitecture) prior fusion. Prior features are combined using tanh

activation functions, similar to those in recurrent networks.

Global Class IoU

(1) Baseline (no prior) 87.3 62.8 54.7

(2) Embedding Prior 88.0 60.5 53.7

(3) Decoder Prior 88.4 63.1 55.5

Table 1. Semantic Segmentation Evaluation. Performance of

three semantic segmentation network variants on the CamVid test

set, evaluated using global pixel accuracy, class accuracy and in-

tersection over union. For model descriptions, see Section 2.

Static Objs Dynamic Objs

(1) Baseline (no prior) 88.2 69.1

(2) Embedding Prior +0.7% +4.2%

(3) Decoder Prior +0.9% +3.8%

Table 2. Global Accuracy of Static and Dynamic Classes. Com-

parison of classes which are divided into static objects (e.g. build-

ings, roads, trees, etc.) and dynamic objects (e.g. pedestrians, car,

bicycles, etc.). The addition of a prior increases the accuracy of

both types of objects.

2.2. Dataset

Each model is trained using the CamVid road scene

dataset [7] which contains several driving sequences with

object class semantic labels, collected at various times of

the day. There are 367 train images and 233 test images.

Due to the small size of the dataset, models were initially

trained with 227 x 227 random image crops from the full

360 x 480 image as in [8], and then final models were fine-

tuned from these models using the full-sized images.

3. Experiments and Results

We measured performance of scene segmentation using

three standard metrics [9]: global accuracy, class accuracy

and intersection-over-union (IoU). Global accuracy is the

overall mean per-pixel labeling accuracy and class accuracy

is the mean class-wise accuracy. Intersection-over-union is

the average of the intersection of the prediction and ground

truth regions over the union of them. As shown in Table 1,

models that incorporate priors (Decoder Prior and Embed-

ding Prior) outperform the baseline across all three metrics

in many cases.

Prior fusion improves upon all metrics when done at the

decoder level over the baseline. The global accuracy of per-

pixel labeling increased both for fusion models (2) and (3)

for per-pixel labeling, more than 1% in the best performing

model. Embedding prior fusion contributes to an increase

in global accuracy but a decrease in class accuracy and IoU

(60.4% versus 62.81%), suggesting that only fusing at the

bottleneck layer, which has rich features but poor spatial

resolution, only benefits specific classes. In contrast, when

priors are fused at different feature resolutions throughout



Figure 3. Semantic Segmentation with Priors. Qualitative comparison of semantically labeled images for networks which use and do

not use priors. Results from the baseline model are shown in the fourth column and Decoder Prior (our best-performing model) in the last

column.

the decoder, both fine-grained and coarser feature classes

see a gain in class accuracy and IoU.

The performance improvement from incorporating pri-

ors is significantly enhanced when we examine dynamic

versus static objects. We divided the CamVid object classes

into static objects (e.g. buildings, roads, light posts, signs,

trees, etc.) and dynamic objects (e.g. pedestrians, cyclists,

cars, etc.). The global accuracy for both for is reported in

Table 2. Importantly, we observed that the priors had a sig-

nificant impact on the semantic segmentation of dynamic

objects (73.3% versus 69.1%), which tend to be of smaller

size and lower frequency than the static objects.

Overall, priors decrease the spurious semantic labeling

of pixels, which can be seen in Figure 3. Note that the prior

model (fifth column) reduces a lot of noise in the pixel la-

beling and improves the labelling for fine-grained feature

classes such as pedestrian and street sign, when compared

to the baseline model.

4. Discussion and Future Work

We have demonstrated that the addition of prior knowl-

edge to a deep convolutional network can increase the per-

formance of semantic segmentation, particularly for dy-

namic objects. We introduce a method using a learned fu-

sion module to incorporate prior information, and demon-

strate that fusing at multiple feature resolutions improves

performance. This general technique could be applied to

other models beyond the encoder-decoder model architec-

ture.

In future work, we plan to examine how multiple priors

across time steps could benefit semantic segmentation, as

well as applying perceptual loss approaches derived from

the prior image. Other representations of the scene, such as

scene graphs which encode semantic relationships between

objects in an image, could also be provided as prior knowl-

edge for the network to exploit.
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Nilanjan Ray. Recurrent fully convolutional networks for

video segmentation. In 2017 IEEE Winter Conference on Ap-

plications of Computer Vision, WACV, pages 29–36, 2017. 1

[4] David Nilsson and Cristian Sminchisescu. Semantic video

segmentation by gated recurrent flow propagation. In 2018

Computer Vision and Pattern Recognition. 1

[5] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 2017. 1

[6] Jeff Donahue et al. Long-term recurrent convolutional net-

works for visual recognition and description. IEEE Trans.

Pattern Anal. Mach. Intell. 2

[7] Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. Se-

mantic object classes in video: A high-definition ground truth

database. Pattern Recognition Letters, 2008. 2

[8] Simon Jégou et al. The one hundred layers tiramisu: Fully

convolutional densenets for semantic segmentation. In 2017

IEEE CVPR Workshops. 2

[9] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea,

Victor Villena-Martinez, and José Garcı́a Rodrı́guez. A review
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