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Abstract

Advances in computer vision are improving the ability to

accurately extract structured information from frequent and

high-resolution satellite imagery, shedding light on global

challenges and furthering Sustainable Development Goals.

While these advances, along with increased availability of

high capacity computational resources, result in improved

models, lack of diverse training data significantly limits ap-

plications of these models to certain geographical regions.

We review state-of-the-art models for road detection using

satellite imagery, and compare predictions of two models

(one trained in Las Vegas, USA and another in Khartoum,

Sudan) in Khartoum. This comparison shows the need for

regionally trained models using local training data. Finally,

we outline a roadmap to use transfer learning and regional

models in cities that do not have human verified labels.

1. Introduction

Accurate and up-to-date road maps are essential for sev-

eral impactful applications globally. In particular, the lack

of good maps in parts of the developing world results in in-

efficient resource allocation for urban planning and disaster

response operations, as well as public health efforts such as

vaccination campaigns.

High-resolution satellite imagery is a valuable source of

data for detecting and mapping features such as roads and

building footprints. Moreover, the frequent revisits of satel-

lites help capture and record sudden changes that occur after

major events or longer developments that occur over time.

However, foundational mapping of these features is still a

largely manual process of labeling and validating. Open

crowdsourcing platforms such as OpenStreetMap (OSM)

regularly compile labels from users globally, and organiza-

tions like the Humanitarian OSM Team mobilize volunteers

for urgent situations, such as after natural disasters, to map

these features using pre- and post-event satellite imagery.

Such efforts are effective: since 2014, over 41,000 contrib-

utors have labeled 13 million kilometers of roads [15], and

the OSM community started updating roads within 48 hours

of the 2010 Haiti earthquake, ultimately producing the de-

fault map for other organizations [10]. However, crowd-

sourcing alone is not scalable: millions of kilometers of

roads remain unmapped [15], and even with 5,300 mappers

tracing 30,000 kilometers of roads in Puerto Rico after Hur-

ricane Maria, it took a month to deliver the map of roads

and buildings [25].

Computer vision and deep learning techniques can help

provide faster updates over larger areas than solely crowd-

sourced or ground-based methods, especially in dynamic

situations. Development Seed’s team produced a machine

learning model that accelerated professional human map-

ping of the electricity grid in Pakistan by a factor of around

15 to 20 [26]. However, the lack of geographically diverse

training data is a barrier to applying these techniques in

many developing countries, and two of the most popular

public image datasets for pretraining models “exhibit an ob-

servable amerocentric and eurocentric representation bias,”

with better predictions for images in the West [20].

Spatial patterns of cities and towns, and consequently

roads, as well as road types and pavements, are diverse

globally. This results in a low prediction accuracy for mod-

els trained in one region and used in another region. Even

within a country, differences exist, and Development Seed’s

model trained in one part of Pakistan made more errors on

terrain types underrepresented in the training data [5].

In this study, we present how a model trained on labels

from Las Vegas, USA fails to predict roads in Khartoum,

Sudan. We then use human verified labels in Khartoum

from the SpaceNet dataset [18], and build a road detection

algorithm for Khartoum with hyperparameter tuning. We

analyze the results of both models in Khartoum and dis-

cuss potential factors influencing performance. Lastly, we

present the next steps required to fine-tune this model for

road prediction in another city in Africa using transfer learn-

ing. The ultimate goal of this work is to accurately predict

road segments in regions that lack human verified labels.
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2. Previous Work

Automatically detecting roads in aerial imagery is chal-

lenging due to tree occlusions, building shadows, and varied

atmospheric and ground conditions that can cause disconti-

nuities in predictions, limiting their applicability for routing

problems. The use of convolutional neural networks trained

on large datasets to capture more spatial context of road net-

works dates back to Mnih and Hinton in 2010 [17], and in

the last several years, better models [27] and datasets [24]

have been introduced for road detection, as well as novel

metrics and approaches that optimize for connectivity.

The DeepGlobe 2018 Satellite Image Understanding

Challenge, which had a workshop co-located with CVPR

2018 and aimed to bridge computer vision research and re-

mote sensing analysis, included a track on road extraction,

which was formulated as a binary classification of pixels

(i.e. semantic segmentation). The high-resolution data, cap-

tured at a ground sampling distance of 50 cm/pixel, covers a

diverse sample of climates and topologies in urban and rural

areas of Thailand, Indonesia, and India. For a different track

on land cover classification, the DeepGlobe challenge fea-

tured the first public dataset of sub-meter imagery primarily

from rural areas. The last track, on building detection, used

data from the SpaceNet corpus, which hosts large swaths of

labeled satellite imagery from Rio de Janeiro, Las Vegas,

Paris, Shanghai, and Khartoum on Amazon Web Services

(AWS) for free, and was the first challenge to include sig-

nificant amounts of data from Asia and Africa [9].

The organizers of DeepGlobe, consisting of researchers

from organizations like Facebook, DigitalGlobe, and the

MIT Media Lab, ran baselines like those used in [10].

Those deep architectures included variants of VGG [21],

U-Net [19], ResNet [13], and SegNet [3] (see Figure 1).

In the process of tackling the problem that 75% of the

world’s roads lack adequate street addressing systems by

creating a generative algorithm, Facebook researchers first

created binary predictions of roads from three channel satel-

lite images. A version of DeepLab [7] had higher preci-

sion and recall than SegNet, but showed signs of overfit-

ting. The DeepGlobe dataset is larger and more diverse,

and the organizers achieved the best baseline with a mod-

ified version of DeepLab with a ResNet18 backbone and

Focal Loss [14]. The DeepGlobe road extraction challenge

used a pixel-based Intersection over Union (IOU) score be-

tween the predicted and ground truth binary masks as their

metric, and their baseline model achieved an IoU score of

0.545. The winner of the track reached a score of 0.6577

using a LinkNet with a pretrained encoder and dilated con-

volution [28].

The SpaceNet challenge on road extraction featured

the same imagery as its building challenge: Level

2A atmospherically-corrected data from the DigitalGlobe

WorldView-3 satellite in a continuous image strip, collected

Figure 1. Comparison of NN Models. An example (a) satellite im-

age and (b) ground truth; and road predictions using (c) VGG; (d)

U-Net; (e) ResNet50; (f) ResNet101; (g) SegNet; and (h) DeepLab

(source: [10]).

at 30 cm resolution pan-sharpened, in 3-band and 8-band

GeoTiffs. Multispectral remote sensing data contributes to

the richness of earth imagery, but AI models trained on

everyday images do not handle the non-visible spectrum,

though work on moving beyond RGB is ongoing [1].

Unlike the DeepGlobe challenge, SpaceNet introduced

a novel metric called Average Path Length Similarity

(APLS) [22], which captures the difference between the

predicted and ground truth graphs and penalizes disconti-

nuity severely. The ground truth road centerlines were fully

labeled and validated by experts, and annotated with road

type, surface type, bridge, and lane number. The importance

of label quality for connectivity was demonstrated by an

experiment that showed that a model trained on SpaceNet

achieved an APLS of 0.71 on Las Vegas, higher than the

APLS of 0.59 from the model trained on OpenStreetMap1.

SpaceNet’s baseline algorithm [23] trained a U-Net to

predict binary masks that were converted to graphs, which

were post-processed for better connectivity, yielding an

APLS of 0.49 [11]. The top 5 competitors followed a sim-

ilar process [23], with the winner training an ensemble of

segmentation models for a global road model that achieved

an APLS of 0.6663 [11]. The highest performing city was

Las Vegas, which received an APLS of 0.7977 for the win-

ning model, and the lowest performing city was Khartoum,

with an APLS of 0.60932, as dirt roads are challenging to

detect and often confused with dirt paths [23] (see Figure 2).

A noteworthy submission came from Bastani, who co-

authored RoadTracer and attempted to adapt it to the

SpaceNet challenge, but later switched to an approach simi-

lar to DeepRoadMapper, albeit without its post-processing3.

RoadTracer directly extracts road networks from aerial im-

agery, avoiding the noise introduced by the intermediary

segmentation, using an iterative CNN-based search start-

ing from a single known road location [4]. At a 5% error

1https://simplecore.intel.com/nervana/wp-

content/uploads/sites/53/2018/05/IntelAIDC2018_

Adam_Van_Etten_METROPOLIS_5_24.pdf
2https://github.com/SpaceNetChallenge/

RoadDetector
3https://github.com/SpaceNetChallenge/

RoadDetector/tree/master/fbastani-solution
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Figure 2. Results from the winning implementation for the roads

challenge. Top Left: A simple road network in a 400m 400m chip

from the test set in Las Vegas; the blue line is the ground truth, the

yellow line the proposal network, and the APLS score is 0.99. Top

Right: A complex road network in Las Vegas; in the center of the

graph network there is a disconnect where the divider is located.

Bottom Left: A complex network in Shanghai; there are several

missed streets in the center of the graph. Bottom Right: A low

scoring road network in Khartoum; the proposal network misses

several dirt roads, but performs well on the more established paved

road network (source: [11]).

rate, RoadTracer captures 45% more junctions across 15

cities, mostly from North America and Europe, but includ-

ing Tokyo. However, for SpaceNet data, the model strug-

gled where roads were close together, such as parking lots.

Bastani proceeded to implement DeepRoadMapper, out of

the Uber Advanced Technologies Group. Sensors mounted

on top of cars produce high definition but costly maps of

cities at a small scale, whereas regular satellite imagery

provides a more cost-effective, timely, and high coverage

source of data. Rather than using complex heuristics to

post-process segmentation results for connectivity, Deep-

RoadMapper frames the addition of missing connections

as a shortest path problem with an efficient solution, using

graph-theoretic notions similar to APLS. DeepRoadMapper

proved effective on the TorontoCity dataset, but both the

dataset and implementation are not publicly available [16].

Our focus lies in using the best open data and code to

train state-of-the-art models that can be easily implemented

and compared across standard metrics, in order to improve

mapping on difficult but important areas in the developing

world. Efforts have been made to predict road infrastruc-

ture quality in Africa [6], including work to classify the

quality of roads in chips of high-resolution imagery from

Kenya [6]. The generation of road maps, especially in

rural areas, was identified as a critical application of ma-

chine learning by East African organizations, according to

in-depth interviews with experts [8]. The challenges for

road detection include rapid change due to construction and

weather, the difficulty of identifying unpaved roads, and the

lack of regional labeled data. The authors therefore note

that “rapid frequent, satellite-imagery-based map making is

thus a high value use of computer vision in East Africa.”

3. Model and Training

DeepLab is a state-of-the-art deep learning model for

semantic image segmentation, with the best results on the

PASCAL VOC 2012 and Cityscapes datasets4, as well as

in a review of deep learning techniques applied to seman-

tic segmentation [12]. DeepLab uses atrous convolution,

also known as dilated convolution or convolution with up-

sampled filters, which enlarges the field of view of filters,

integrating more context without increasing parameters or

computation5. DeepLab also uses a Fully Connected Con-

ditional Random Field (CRF), which allows for combin-

ing information about pixel class scores and the interaction

between pixels, capturing long-range dependencies [12].

DeepLab-v3 introduced an encoder-decoder structure with

the ability to control the resolution of encoder features.

Raster Vision, an open source Python framework for

deep learning on satellite imagery, has support for Tensor-

Flow’s implementation of DeepLab built in, as well as con-

figurations to support two network backbones: the faster

MobileNet-v2 and the more powerful Xception-656. Xcep-

tion has relatively fewer parameters than VGG and Incep-

tion for faster training and inference7. The Xception-65

backbone is pretrained on ImageNet, with some modifica-

tions8. The MobileNet-v2 backbone is pretrained on the

MS-COCO VOC 2012 augmented training set, with batch

normalization already fine-tuned and no atrous spatial pyra-

mid pooling or decoder modules for fast computation.

Raster Vision allows engineers to easily configure work-

flows for training models on large satellite images with

a single file, outputting a bundled file for easy inference.

The pipeline includes calculating dataset statistics, cre-

ating training chips, training, predicting, evaluating, and

bundling. In addition, the Raster Vision examples code in-

4https://paperswithcode.com/task/semantic-

segmentation
5http://liangchiehchen.com/projects/DeepLab.

html
6https://docs.rastervision.io/en/0.8/misc.html#

tensorflow-deeplab
7http://devseed.com/ml-grid-docs/methodology/2-

machine-learning/
8https://github.com/tensorflow/models/blob/

master/research/deeplab/g3doc/model_zoo.md
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Base Learning Rate Road F1 Score Overall F1 Score

0.0001 0.276 0.274

0.001 0.567 0.690

0.002 0.580 0.693

Table 1. MobileNet-v2 hyperparameter tuning in Khartoum

Class Precision Recall F1

Road 0.792 0.670 0.719

Background 0.883 0.761 0.778

Average 0.870 0.749 0.770

Table 2. Performance metrics for MobileNet-v2 in Khartoum

cludes a starting point for training SpaceNet models and

tuning hyperparameters, as well as a bundled model file for

Las Vegas (hereafter referred to as the Las Vegas model).

The Las Vegas model was trained with the default hyperpa-

rameters of the MobileNet-v2 backbone and a learning rate

of 0.001. In addition, other hyperparameters include a batch

size of 8, a total of 100,000 steps, a chip size of 300, and 9

training chips per scene of 1300x1300 pixels9.

We investigated the effect of network backbone for train-

ing a model using SpaceNet data in Khartoum, and for the

selected network backbone, the learning rate was tuned,

on a reduced number of steps (10,000 vs. 100,000) and

scenes (128 vs. 283). At the default learning rate of 0.001,

Xception-65 had a slightly higher F1 score for the road class

than MobileNet-v2 (0.584 vs. 0.566) and an even smaller

advantage for the overall F1 score. However, Xception-

65 had a much larger total loss than MobileNet-v2 (0.5881

vs. 0.2891). Future work will explore the costs of bringing

down the loss of Xception-65 to the level of MobileNet-v2,

if attainable.

Given the MobileNet-v2 backbone, learning rates were

tuned, and increasing the learning rate from 0.001 to 0.002

showed a slight improvement on the smaller experiment,

though the full training yielded the best metrics with a learn-

ing rate of 0.001 for MobileNet-v2 (see Tables 1 and 2).

We use the MobileNet-v2 with a learning rate of 0.001 as

the base model in Khartoum (hereafter referred to as the

Khartoum model) in the next section.

4. Discussion

The Las Vegas model is able to perform well on a variety

of example scenes from Las Vegas, with diverse road pat-

terns (Figure 3). Though a long building shadow in the top

right image of Figure 3 prevents the successful prediction

of a road, the model accurately predicts straight and curved

roads between rows of homes, as well as roads around larger

9https://github.com/azavea/raster-vision-

examples

Figure 3. Four sample predictions in Las Vegas from the model

trained in Las Vegas. Background shows the input imagery over-

layed with the shaded road predictions from the model and red

lines show the labels.

and smaller buildings. However, Khartoum data shows fun-

damentally different patterns, and the direct application of

the Las Vegas model on Khartoum fails dramatically (Fig-

ure 4).

The Khartoum scene in Figure 4 on the left has one main

asphalt road, whereas the other scenes include grids, lines,

or more informal assortments of unpaved roads. In addition,

the lighting, color, and arrangement of the Khartoum scenes

is structurally different than those of Las Vegas, resulting

from geographic, historical, and cultural factors. Even the

regular grid in the third column cannot be detected by the

Las Vegas model.

However, the Khartoum model almost perfectly learns

the grid and still performs well on the less structured roads

in the second column. Whereas the Las Vegas model could

not reasonably predict roads in Khartoum, the Khartoum

model produced a much more reasonable starting point for

Khartoum and potentially other cities in Africa.

5. Conclusion

In this study we highlight state-of-the-art road detection

models using satellite imagery, and investigate their perfor-

mance in regions with limited human verified labels. In par-

ticular, we assess performance of a model in Sudan, which

is trained using data in the United States. Diversity of urban

texture results in very low prediction performance for such

a model. However, using a set of labels from the SpaceNet

dataset in Sudan, we train a model that is able to capture

the spatial pattern of roads and successfully predict on new

images.
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Figure 4. Prediction results in Khartoum for four different scenes. Top: input imagery, middle: prediction results (shaded) from the model

trained in Las Vegas overlayed with labels (red lines) on top of the input imagery, bottom: prediction results (shaded) from the model

trained in Khartoum overlayed with labels (red lines) on top of the input imagery.

In this study, we use the Raster Vision package, an open

source deep learning library in Python that is designed for

large scale training and predictions jobs using aerial im-

agery. Raster Vision has the experimental capacity to gener-

ate labels from vector tiles created from OSM data. OSM is

a global dataset of crowdsourced labels that has been used

in contests like ISPRS [2] and SpaceNet Buildings10. Fu-

ture work will involve training and fine-tuning models with

OSM data in other areas of interest; particularly, using the

Khartoum model as a base and retraining with OSM data.
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Beyond RGB: Very high resolution urban remote sensing

with multimodal deep networks. ISPRS Journal of Pho-

togrammetry and Remote Sensing, 140:20–32, jun 2018.

[2] Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre.
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A. Open Source Code for Transfer Learning

The inspiration for an open source exploration of deep

transfer learning in the developing world arose from good

initial results of a road detection model trained on the

SpaceNet dataset and fine-tuned in Dar es Salaam with

DigitalGlobe imagery and OpenStreetMap labels, for a

FOSS4G 2018 demo from Development Seed11. Training

data was prepared with Label Maker, which downloads and

tiles OpenStreetMap information and satellite imagery12.

The Pixel Decoder library trained a ResNet50 U-Net for

four checkpoints with combinations of dice and log loss13.

We also investigated the fast.ai library, to create a simi-

lar ResNet50 U-Net architecture for semantic segmentation.

Raster Vision provided a clearer pipeline for pre-training on

SpaceNet Khartoum and fine-tuning on Ghana OSM data.

11https://github.com/Geoyi/FOSS_4g_Pixel_decoder
12https://github.com/developmentseed/label-maker
13https://github.com/developmentseed/label-maker
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Raster Vision facilitates training a model on geospatial data

with the TensorFlow DeepLab backend using AWS Batch14.

Another library, RoboSat, works with Slippy Map tiles to

convert between geo-referenced data and fixed-size images.

RoboSat can turn segmentation probabilities and masks into

clean and simple geometries, even de-duping with OSM15.

Raster Vision’s segmentation can now generate polygons16.

APLS can be used with vectors, but we focus on precision,

recall, and F1 of rasters, comparing RoboSat’s ResNet50

U-Net with Lovasz loss to Raster Vision’s DeepLab model.

We hand-labeled part of a test scene in Ghana for validation.

14https://docs.rastervision.io/en/0.9/
15https://github.com/mapbox/robosat
16https://www.azavea.com/blog/2019/04/15/raster-

vision-0-9-release-candidate/
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