
Predicting City Poverty Using Satellite Imagery

Simone Piaggesi∗† Laetitia Gauvin∗ Michele Tizzoni∗ Natalia Adler‡ Stefaan Verhulst§

Andrew Young§ Rihannan Price¶ Leo Ferres‖ Ciro Cattuto∗ André Panisson∗

Abstract

Reliable data about socio-economic conditions of indi-

viduals, such as health indexes, consumption expenditures

and wealth assets, remain scarce for most countries. Tradi-

tional methods to collect such data include on site surveys

that can be expensive and labour intensive. On the other

hand, remote sensing data, such as high-resolution satellite

imagery, are becoming largely available. To circumvent the

lack of socio-economic data at high granularity, computer

vision has already been applied successfully to raw satellite

imagery sampled from resource poor countries.

In this work we apply a similar approach to the metropoli-

tan areas of five different cities in North and South Amer-

ica, starting from pre-trained convolutional models used for

poverty mapping in developing regions. Applying a trans-

fer learning process we estimate household income from

visual satellite features. The urban environment we con-

sider is characterized by different features with respect to

the resource-poor training environment, such as the high

heterogeneity in population density. By leveraging both of-

ficial and crowd-sourced data at city scale, we show the

feasibility of estimating the socio-economic conditions of

different neighborhoods from satellite data.

1. Introduction

For years, estimating economic growth and development

to assess human well-being has been a central issue for in-

ternational research and policy [3, 11]. Accurate data about

human development primarily come from surveys and cen-

suses. Collecting socioeconomic information can be hard-

working, expensive and might suffer from reporting errors.
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In the last years, the huge amount of remote sensing data,

combined with recent developments in machine learning

techniques, led to methods for estimating socio-economic

indicators from geospatial data, such as nightlights [1, 17]

and satellite imagery [26]. In particular, such methods have

been used to overcome the limitations or lack of develop-

ment data and to estimate poverty at large scale in develop-

ing countries [22, 9, 16].

In this work we apply a machine learning approach sim-

ilar to the one developed by Jean et al. [16] for predict-

ing economic outcomes in 5 African countries from satel-

lite imagery, to the smaller scale of a urban environment. In

particular, we explore the feasibility of predicting house-

hold income at various municipality levels in a city. To

this aim, we examined the Metropolitan Area of Santiago

in Chile and other five big cities in the USA: Los Ange-

les, Philadelphia, Boston, Chicago, and Houston. Our work

tackles three main research questions:

1. Is it possible to extend machine learning methods, pre-

viously applied to resource poor settings, to estimate

poverty levels in a city of a developed country?

2. Given different aggregation levels in a city – usually

corresponding to different administrative subdivisions

– can a model trained on a lower spatial resolution

yield information about a more granular aggregation

level?

3. What is the out-of-sample predictive power of such a

model, when tested on a new city?

Our main findings related to the above questions are:

• Starting from pre-trained deep computer vision mod-

els we show the feasibility of predicting household in-

come in a city through a regression task, with best re-

sults on settings with only urban areas. We show that

in this framework there is no need to fine tune exist-

ing models or to leverage on proxy variables (such as

night-time lights data) to achieve good performances.

• Just considering municipalities in which the regressor

is better predictive about the target, we can also im-

prove the estimation in more fine-grained levels of ag-

gregation.
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• Testing our regression model on a new city, never seen

before by the algorithm, results in a good performance

if compared to a null model.

2. Related Literature

In the last decade the development of new machine learn-

ing techniques, such as Deep Learning [19] and Convolu-

tional Neural Networks [18], has allowed to extraordinar-

ily improve many Computer Vision applications [25, 7, 12].

Recently, deep learning has been used in combination with

remote sensing data for various tasks, such as Scene Clas-

sification [21, 20, 4], Urban Planning [2] and Crop Yield

Prediction [27]. A recent application concerns the estima-

tion of socioeconomic indicators, such as assets, consump-

tion and wealth indexes, from satellite imagery. In [16] the

authors proposed a transfer learning process, where night-

lights intensities are used as an intermediate proxy [1] to

map poverty in five African countries. Other works have

used similar transfer learning approaches to estimate other

variables [14], with different proxies [23] or deep models

[6]. Also, other studies [24, 8, 15] have trained a deep neu-

ral network to predict poverty from satellite images without

proxies, or used other types of remote sensing data for the

same task [10]. All the latter models were trained and tested

in resource poor settings (Africa, India, Bangladesh, and Sri

Lanka) mainly considering their rural areas. To our knowl-

edge no previous work has shown the application of similar

techniques to the urban areas of a developed country.

3. Data

3.1. Economic Variables

In this work, we focus on the household income as the

main economic indicator to be predicted. Data about this

indicator comes from different sources, depending on the

city under study, and the same indicator has to be available

at different levels of granularity for validation. The follow-

ing cities were selected, due to data availability:

Santiago, Chile The household income is obtained from

the EOD (Encuesta Origen Destino de Viajes), a mo-

bility survey realized from July 2012 to November

2013 by assignment of the Chilean Ministry of Trans-

port and Telecommunications1. The survey refers to

a random sample of 18,264 households coming from

the Santiago Metropolitan Area, for a total of 60,054

people involved. Household income information is av-

eraged at the municipality-level of comunas, but also

at a more fine-grained city subdivision, called zonas.

USA cities Households income data are available from

1http://www.sectra.gob.cl/encuestas movilidad/

encuestas movilidad.htm

Census Reporter2, a website through which the United

States Census Bureau provides socio-economic and

demographic data on the population of the United

States. The geographic levels we considered include

the ZIP codes and the more fine grained census tracts.

In the following, we will refer to the different levels of

aggregation (comunas, zonas, ZIP codes or census tracts)

with the term clusters.

3.2. Satellite Imagery

Santiago, Chile Satellite images are downloaded as a mo-

saic of 34 big tiles from the DigitalGlobe web plat-

form3, to entirely cover the area of the city. Tiles are

a mixture of pansharpened and natural color RGB im-

ages, taken during daytime between September 2017

and February 2018, with 50 cm resolution and maxi-

mum cloud coverage of 3%. We generated a grid of

not overlapping images from the mosaic of tiles cov-

ering the city area. The grid has a 1km step and each

image is cropped from the original mosaic and resized

to 400 x 400 pixels.

USA cities Satellite images are downloaded using the

Google Static Maps API, each of them with 400 x 400

pixels at zoom level 16, resulting in images with a res-

olution of 2.5 m/pixel (1km2 area per image) not over-

lapping each other.

Table 1 provides a summary of the geographic elements

and the different spatial resolutions considered in our study.

A description of the resolution scales that we are covering is

reported in Fig. 1, with the distribution of the surfaces areas

of the geospatial elements for each aggregation level.

3.3. Urban Areas Boundaries

Shapes and boundaries of urban areas of each city are ob-

tained from official45 sources and then merged with Open-

StreetMap6 (OSM) crowd-sourced data to have a more com-

prehensive description of the urban landscape. From OSM

map elements, we selected urban spaces joining those with

the tag key landuse with possible values: residential,

commercial, retail, recreation ground, construction, col-

lege, university, public, allotments, churchyard, depot.

4. Methods

4.1. Convolutional Features Extraction

To estimate socio-economic indicators from satellite im-

agery, we leverage the transfer learning approach intro-

2https://censusreporter.org/topics/income/
3https://services.digitalglobe.com/
4http://www.rulamahue.cl/mapoteca/presentaciones/

chile regiones.html
5https://www.census.gov/geo/maps-data/data/cbf/cbf ua.html
6http://download.geofabrik.de/
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Geographic Level Santiago Geographic Level Los Angeles Philadelphia Boston Chicago Houston

Images 12444 Images 16774 19528 14766 31042 37353

Zonas 588 Census Tracts 1772 1334 907 1829 1061

Comunas 52 ZIP Codes 290 359 282 403 237

Table 1: Number of satellite images and geospatial clusters for each city.
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Figure 1: Distribution of different cluster-level areas for the

considered cities.

duced and elaborated by [26, 16]. Such approach consists

in using a Convolutional Neural Network (CNN), trained

on a nighttime light intensity prediction task, as a feature

extractor that maps from each input image to a vector rep-

resentation, which incorporates nightlights features. Such

features are proved to be a good proxy for economic devel-

opment [17, 1], and can be used at the bottom of a linear

regression model to predict wealth-related indicators.

To perform the forward pass from raw satellite images to

visual features we have considered three CNN models:

• ResNet50. Residual Network model [13] with 50-

layers and initialized with ImageNet weights.

• VGGF. The 8-layers model [5] also considered in [26]

with ImageNet weights.

• VGGF+nightlights. The fully convolutional vari-

ant of the previouos one, fine-tuned with nightlights

intensity labels on some African countries (Uganda,

Tanzania, Nigeria, Malawi).

In essence, we compared a model fine-tuned on the nigh-

lights prediction task with other two models (VGGF and

ResNet50) just pre-trained on the ImageNet dataset, with

the aim of quantifying the goodness of fit when using gen-

eral features not related with night-time lights.

For each tile, we extract vector representations from the

top layer of the model, before the softmax classifier. The

size of our images is the same respect to the input of the

VGGF fine-tuned model, while the pre-trained neural net-

works take as input 224x224 pixels images. In this case,

we averaged the feature vectors extracted from the four

224x224 overlapping quadrants of each image to get vec-

tor representations. In addition, each image is rotated by

multiples of 90 degrees and flipped horizontally/vertically

before the mapping, to obtain an augmented dataset.

Satellite Data

CNN

Dataset Preparation

 .                    .           .
 .                    .           .
 .                    .           .

𝒙i                 𝑦ti        𝑦zi 
 .                    .           .
 .                    .           .
 .                    .           .

𝐗             𝑌t      𝑌zExtracted Visual 
Features

satellite images
comunas
zonas

Figure 2: Diagram with the collected datasets, feature ex-

traction and data preparation processes for the experiments.

The feature vector xi is obtained from a CNN model using a

satellite image as input. yti and yzi are the socio-economic

variables extracted from two different levels of census area

boundaries, associated to the original satellite image.

The diagram on Fig. 2 shows the collected datasets, fea-

ture extraction and data preparation processes. For each

city, satellite images are divided in a grid and each tile is

associated to socio-economic variables at different levels of

census area boundaries. A vector representation for each

tile is extracted with different CNN models, as explained
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above. For each experiment in Section 5, a different part of

this dataset is used as training and validation sets.

4.2. Regression for Spatial Prediction

As observed in previous applied computer vision works,

visual features can be used to estimate socio-economic indi-

cators. Here we test the prediction of the household income

variable on multiple aggregation levels in different cities.

To explore how features inferred from the urban envi-

ronment influence the final estimations, we can train and

validate our models on different subsets of images, belong-

ing or not to urban areas. In this section every image is

assigned to an urban area if its center falls inside the shape

of the area, but we have observed that assigning to urban

regions also images with marginal overlaps with the latter

(less restrictive statement respect the one above) does not

change considerably final the results. Urban boundaries are

obtained following the methodology explained in Sec. 3.

We perform each experiment with a Ridge Regression

model, using image vector representations as predictor vari-

ables and income values as target. Hyperparameters are es-

timated with a 10-fold cross-validation, using as metric the

determination coefficient R2 and evaluating it on different

validation sets (specified in each experiment).

We distinguish two different cases of prediction:

Image-level Estimation We use features of image-level

embeddings as set of predictors and assign to this the

target value up-sampled to an individual resolution

level (comunas, zonas, ZIP code or census tract). The

absence of superimposition among images prevents the

information leaking between training and test sets in

the learning process. Because of the fine-grained prop-

erty of the set of images, in this case it is possible to

tune the model on points that belong or not to urban ar-

eas. Then, we can investigate how much the presence

of urban areas may influence the final performance of

the model, but also see if a global training improves

the estimation only in urban spaces.

Cluster-level Estimation For each cluster we use as pre-

dictor variables the average of image-level embeddings

computed on the images which are part of the cluster

itself. This is the same approach used in previous pub-

lished works. As done by [16], we neglect spatial clus-

ters with less than 10 images for the regression task.

5. Experiments

5.1. Income Prediction within Cities

The first experiment concerns the income estimation at

the level of a single city, to understand two significant as-

pects: which convolutional model yields more informative

features from images, and what is the importance of the

level of urbanization in terms of regression performance.

Table 2 shows the results for the municipality of Santiago,

for briefness we omit outcomes for all the other cities be-

cause they are equally demonstrative. We can observe that

globally the pre-trained ResNet50 model performs better

at every considered resolutions, besides the VGGF model

fine-tuned on nightlights has low performances in any task

(meaning that this model is not reliable if not applied to

the original data space where it is fine-tuned). For this evi-

dence, we perform all the other experiments presented with

satellite features extracted with the ResNet50 model.

Table 3 illustrates the analysis of urban areas, using only

the ResNet50 features (having observed that it is the best

model among all those considered). Here, features are

image-level and we compute the regression score in two val-

idation sets: a first one with all the images and a second one

including only those related to urban spaces. We can ob-

serve that in most cases the regressor can better explain the

variance of the target in urban neighborhoods. Fig. 3 dis-

plays the spatial heatmaps comparing the true income dis-

tribution with the predicted one in the city of Santiago.

Actual Log Income Predicted Log Income

12.5 13.0 13.5 14.0 14.5

Figure 3: Spatial representations for the image-level pre-

diction task performed in Santiago. Visual features are ex-

tracted with the ResNet50 model, the target variable is the

zonas-level household income. Left: Distribution of real

values. Right: Distribution of predicted values.

5.2. Inference of Higher Resolution Estimates

In Table 3 we have seen that we can estimate the dis-

tribution of the household income, taking individual image

features as input, at a more fine-grained resolution with re-

spect to the target itself (each image is 1km2). In this sec-

tion we investigate more in depth this aspect, asking if with

a training step on the more coarse-grained level the regres-

sion model can also assess the distribution of the target at a

more fine-grained level.

To this aim, we consider two sets of aggregation levels T

and Z of the same geographical area (suppose T to be more
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Santiago

Features Level Target Level Train.-Val. ResNet50 VGGF VGGF+nightlights

All Areas 0.477 0.484 0.356

Zonas Zonas Urban Areas 0.591 0.523 0.433

All Areas 0.643 0.598 0.553

Comunas Comunas Urban Areas 0.737 0.711 0.623

All - All 0.454 0.408 0.258

Images Zonas All - Urban 0.520 0.506 0.314

Urban - Urban 0.584 0.542 0.358

All - All 0.667 0.613 0.342

Images Comunas All - Urban 0.691 0.625 0.429

Urban - Urban 0.772 0.713 0.503

Table 2: Image-level and cluster-level (zonas and comunas) cross validation performance, measured with R2 scores, of

the household income regression task in Santiago. Here we compare features coming from different convolutional models

(ResNet50, VGGF, VGGF+nightlighs). The ResNet50 features outperform the others in almost all tasks. Training and/or

validation sets are coupled with different neighborhoods of the city (urban areas or not).

Validation set

City Target Level All Urban

Zonas 0.454 0.520

Santiago Comunas 0.667 0.691

Census Tracts 0.657 0.569

Los Angeles ZIP Codes 0.569 0.458

Census Tracts 0.360 0.460

Philadelphia ZIP Codes 0.358 0.443

Census Tracts 0.384 0.374

Boston ZIP Codes 0.367 0.399

Census Tracts 0.301 0.361

Chicago ZIP Codes 0.309 0.382

Census Tracts 0.250 0.327

Houston ZIP Codes 0.266 0.340

Table 3: Image-level cross validation performance, mea-

sured with R2 scores, with different environments in the

validation set. The training set includes image-level fea-

tures extracted with the ResNet50 model, from both urban

and rural areas. We observe that the validation score is

higher on urban areas, regardless of the granularity level

of the target.

granular than Z). In our case, T is a set of census tracts (or

zonas in Santiago), and Z is a set of ZIP codes (comunas in

Santiago). Our framework consists in two sets of labelled

features LT = {(xt, yt), t ∈ T} and LZ = {(xz, yz), z ∈
Z}, representing two training sets at different spatial scales.

After training a regression model to learn a mapping on the

higher scale Z

xz 7→ yz = fZ(xz)

we want to show that the function fZ is also predictive of

City score baseline

Santiago 0.411 0.483

Los Angeles 0.531 0.618

Philadelphia 0.631 0.684

Boston 0.523 0.626

Chicago 0.447 0.706

Houston 0.506 0.614

Table 4: Cross-validation performance for the cluster-level

income prediction task, when the the Ridge Regression is

trained to predict ZIP codes-level (or comunas) target val-

ues, but validated on census tracts-level (or zonas) set of

target values. Scores are compared with a baseline com-

puted assigning to each census tract (or zona) the target of

the corresponding ZIP code (or comuna).

the target on the lower scale T . To do so, we define a base-

line on this task, which assigns to each t ∈ T the target yzt ,

where zt ∈ Z is the cluster which spatially contains t.

Our purpose consists in training the regression model

with cluster-level features on the lower resolution level (i.e.

the set Z), but maximizing the validation score on the higher

one (i.e. the set T ). From Table 4 we can argue that this pro-

cedure does not improve the baseline.

We can go beyond, validating only on areas in which the

model predictions are better. To do so, firstly we sorted the

lower level clusters according to a local regression loss (the

squared error between the actual target and the predicted

one), and secondly we introduced an additional hyperpa-

rameter q (optimized during the cross-validation) which

tunes the fraction of clusters taken into account for the val-

idation.

In this way, we can also estimate the number of ele-
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City q score@q baseline@q

Santiago 0.35 (39%) 0.484 0.481

Los Angeles 0.1 (0%) 0.548 0.616

Philadelphia 0.25 (28%) 0.628 0.617

Boston 0.1 (0%) 0.645 0.761

Chicago 0.2 (0%) 0.454 0.598

Houston 0.4 (39%) 0.578 0.542

Table 5: Cross-validation performance for the cluster-level income prediction task, when the the Ridge Regression is trained

as in Table 4, but validated on census tracts (or zonas) belonging to the fraction q of best predicted ZIP codes (or comunas).

The choice of the hyperparameter q is optimized during the cross-validation, between values from 0.1 and 0.5 with step 0.05.

In parentheses are shown corresponding percentages of higher-level clusters (census tracts or zonas) for which the prediction

is improved respect to the baseline by the regression model. Baseline values are different respect to Table 4 because are

evaluated on a different subset of clusters.

Our Model Null Model

City Target Level All Urban All Urban

Census Tracts 0.435 0.424 -0.038 -0.032

Los Angeles ZIP Codes 0.362 0.349 -0.070 -0.084

Census Tracts 0.256 0.295 -0.201 -0.186

Philadelphia ZIP Codes 0.402 0.442 0.025 0.036

Census Tracts 0.028 0.029 -0.977 -0.985

Boston ZIP Codes 0.172 0.185 -0.586 -0.541

Census Tracts 0.193 0.262 -0.013 -0.015

Chicago ZIP Codes 0.172 0.400 0.008 0.019

Census Tracts 0.255 0.298 -0.037 -0.031

Houston ZIP Codes 0.226 0.327 -0.178 -0.141

Table 6: Performance of the cluster-level household income prediction task, in R2 scores, when for each test city the model

is trained only on the others. We performed also 500 experiments with a null model, reporting the average of the scores for

each city.

ments of the higher resolution level T for which we can

improve the estimation with respect to the baseline. Table 5

shows that such approach gets positive results for a signifi-

cant fraction of census tracts (or zonas in Santiago).

5.3. Income Predicition Among Cities

The last experiment is related to the application of a

leave-one-out approach for the household income predic-

tion, i.e. using information gained on a training set of mul-

tiple cities to estimate the economic variable in a new city

that has never been seen by the algorithm. In this section,

we apply this method only to the set of US cities, since they

share the same aggregation levels. Results are shown for

the cluster-level task in Table 6, and for each city is re-

ported the outcome from the model trained on the others.

To test the statistical significance of this method, we also

report scores when the prediction is performed by randomly

assigning cluster-level features among training cities, keep-

ing constant the number of clusters for each city. From

the scores discrepancy between our outcomes and the null

model we can figure out that our model’s out-of-sample pre-

dictive power does not derive from an accidental case.

6. Conclusions

In this work, we investigated the poverty prediction task

in the urban environment of two developed countries. We

showed that methods used for poverty mapping in resource

poor settings can be also applied in this context. Specifi-

cally, we have shown that a model pre-trained on the Im-

ageNet dataset can explain, about the target, a significant

fraction of the variance with no fine-tuning procedure or

proxies. Moreover, we showed that a regression model

trained with respect to a given aggregation of the target

can infer spatial properties of more granular resolution lev-

els. Finally, we demonstrated the predictive power of these

methods if applied to infer the target in new test cities.
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