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Abstract

The global population at risk of mosquito-borne dis-
eases such as dengue, yellow fever, chikungunya and Zika
is expanding. Infectious disease models commonly incor-
porate environmental measures like temperature and pre-
cipitation. Given increasing availability of high-resolution
satellite imagery, here we consider including landscape fea-
tures from satellite imagery into infectious disease predic-
tion models. To do so, we implement a Convolutional Neu-
ral Network (CNN) model trained on Imagenet data and
labelled landscape features in satellite data from London.
We then incorporate landscape features from satellite im-
age data from Pakistan, labelled using the CNN, in a well-
known Susceptible-Infectious-Recovered epidemic model,
alongside dengue case data from 2012-2016 in Pakistan.
We study improvement of the prediction model for each of
the individual landscape features, and assess the feasibility
of using image labels from a different place. We find that
incorporating satellite-derived landscape features can im-
prove prediction of outbreaks, which is important for proac-
tive and strategic surveillance and control programmes.

1. Introduction

Vector-borne diseases cause more than 700,000 deaths
every year globally. Mosquitoes are the best known disease
vector, others include ticks, flies, and fleas [29]. Dengue
virus is the most ubiquitous mosquito-transmitted disease,
and is transmitted primarily by Aedes aegypti mosquitoes,
a vector which also transmits Zika, chikungunya and yellow
fever [22]. The virus disproportionately affects urban areas
in developing countries, which often have limited resources
for containment and intervention activities [8].

Spatial patterns of land use and land cover play an impor-
tant role in infectious disease dynamics. For example, land-
scape alterations, such as residential developments or agri-
cultural land use, may result in higher contact rates between
humans and disease vectors [23]. Other types of land cover
may relate to disease prevalence as they can create favor-
able conditions for vectors and/or hosts. On the other hand,
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human-induced landscape alterations may induce habitat
loss, species extinction, altered nutrient dynamics, invasive
species colonization, and other ecosystem processes leading
to a change in disease incidence rates [11].

Remote sensing data is frequently utilized for land
use/land cover classification. Organizations such as the
National Oceanic and Atmospheric Administration and the
U.S. Geological Survey also publish landcover data, which
generally use a mix of spectral change for classification, au-
tomated and expert classification of satellite data [28]. The
resolution of such data varies, but typically can range from
~10’s to 100’s of meters [2]. Moreover, landscape fea-
tures in relation to disease incidence, have generally been
related to disease through regression models, and do not ac-
count for underlying non-linear relationships between en-
vironmental features and disease incidence, nor the partial
nature of the observations.

More recently, studies using Google Maps images take
advantage of higher resolution data from satellites such as
DigitalGlobe (0.15-1.24m resolution). Such publicly avail-
able remote sensing data has recently been harnessed for
many social applications. From monitoring wheat fungus in
crops [17], to predicting poverty [12], crop yields [26] and
correlating with obesity [14]. The higher resolution poten-
tially provides the opportunity to distinguish more specific
landscape features, such as boundaries of homes and roads,
and presence of individual trees, which can have a potential
impact on the transmission of diseases.

In this paper, we present a deep learning model for ac-
quisition of deep landscape features from high-dimensional
satellite imagery, and also demonstrate integration of these
deep features in an infectious disease prediction model and
assess their performance for improving infectious disease
prediction. To overcome the lack of training data on Pak-
istan images, we use a transfer learning approach. We also
assess the added value of each landscape feature. Finally,
given the expected limitation(s) of using training data from
another location, we study how the transfer performs in ur-
ban versus rural regions of the Pakistani cities. Our results
show that landscape features derived from automatically
learned features improve prediction of dengue case data

44



(even with transferring information from landscape features
from another location). This work serves as a valuable
proof of concept for integration of new data sources into
infectious disease modeling, and directions for future work.
Given that the satellite data is freely-available, this work is
easily scalable, which is especially relevant for places af-
fected by vector borne diseases.

2. Related Work

Landscape features, collected at various spatial and tem-
poral resolutions, have been used in the past to identify dis-
ease risk. Studies which either use pre-labelled landcover
maps, primitive image segmentation or classification ap-
proaches to label satellite imagery include Vanwambeke et.
al, who analyzed how changes in landscape features such as
forests, orchards and dam construction changes amount of
malaria and dengue spreading mosquitoes in Thailand. The
study uses coarse-grained Landstat data collected at a res-
olution of 30m [24]. Another work by Vanwambeke et. al
also using low resolution satellite imagery data, studied the
relationship between abundance of Aedes and Anopheles
larvae, and 5 land cover features: forest, irrigated fields, or-
chards, peri-urban housing and villages [25]. Nakhapakorn
et. al classified low resolution satellite imagery data from
Landsat, into 4 classes: build-up, water, agriculture and
forest areas using Maximum Likelihood Classification, and
identified the percentage of dengue incidence occurring in
each class in a province in Thailand [15]. These studies of-
ten rely on pre-labelled maps, which hinders scalability of
the approach. Moreover, given the localized nature of dis-
ease activity, there is a need to resolve landscape features
such as individual houses, trees and roads, which require a
higher resolution than those described above, but can poten-
tially impact the spread of disease. In addition, these studies
have modelled the coarse-grained landscape features as part
of linear models which often do not account for the underly-
ing dynamics of disease, as opposed to disease transmission
models which aim to capture such dynamics.

Some studies have used vegetation metrics, such as en-
hanced vegetation index (EVI) and normalized difference
vegetation index (NDVI), extracted from satellite images,
to model dengue incidence [13, 6]. While these aggregated
metrics have shown to correlate with dengue risk, in the ab-
sence of data on individual spectral bands, it is difficult to
measure non-vegetation landscape features such as building
and water bodies from them. Similarly, nightlight imagery
has been used as a proxy of changes in populations to model
measles in Niger [5]. This study does not use any frame-
work to first extract features from the nightlight images, and
instead directly uses averaged pixel intensity values.

More recently, studies have started using deep learning
frameworks to classify satellite images for disease and re-
lated predictions. The high dimensional output of a VGG

neural network, as individual features, was used to predict
the prevalence of obesity in a neighborhood [14]. Satellite
imagery data has also been used to predict poverty levels
in five countries in Africa. The study uses a VGG archi-
tecture to infer representation of nightlight images, from
corresponding daylight images, and use them to predict
poverty [12]. While these studies perform well, the lack of
knowledge about which landscape features are represented
through the high dimensional output of a neural network,
makes it difficult to assess the relationship between individ-
ual landscape features and the problem under consideration.

3. Datasets

Here we use publicly available high resolution satellite
imagery data from Google Maps API. Using boundaries for
the cities of Lahore and Rawalpindi in Pakistan, we down-
load satellite imagery data at a zoom level of 17 with each
image scaled to a factor of 2 (n =8,632 images 6,476 for
Lahore, 2,156 for Rawalpindi). Each downloaded image is
of native resolution 1280 by 1280 pixels.

Given the absence of semantic segmentation maps for
the city of Pakistan, we use labeled data from the Kag-
gle DSTL (Defence Science and Technology Labora-
tory) competition (https://www.kaggle.com/c/dstl-satellite-
imagery-feature-detection) for training purposes. The
datasets consists of 25 images of resolution 3600 by 3600.
The dataset also contains segmentation maps (pixel-wise la-
bels) for 10 labeled classes corresponding to each image.
We selected landscape classes for which there is some prior
knowledge regarding mechanistic relevance to vector-borne
disease spread. Roads, buildings and crops were included
given that the movement of individuals and urbanicity in
a location impacts dengue transmission [27]. Addition-
ally, trees and water bodies like standing water and water-
ways provide good breeding sites for dengue transmitting
mosquitoes [1] and hence were also included.

Confirmed dengue incidence data from both cities was
received from the Punjab Information Technology Board.
Details of confirmed dengue incidence from all public hos-
pitals in Pakistan’s Punjab province are aggregated in a cen-
tralized server. The dataset consisted of 10,888 cases re-
ported in the cities of Rawalpindi (n=7,890 between Jan-
uary 1, 2014 and December 31, 2017) and Lahore (n=2,998
between January 1, 2012 and December 31, 2017). City-
wide daily mean temperature and precipitation were ob-
tained from the Pakistan Meteorological Department [3].
High resolution population data was retrieved from World-
Pop [4], and previously published work [21].
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Figure 1. Pipeline of the multi-step methodology used in the study.

4. Methods
4.1. Overview

We use a multi-step approach to understand if the addi-
tion of landscape features improves the prediction of dengue
transmission in the cities of Lahore and Rawalpindi in Pak-
istan. To achieve this, we first use a deep learning approach
to create segmentation maps for the six landscape classes,
from satellite images from both cities. Given the local-
ized nature of dengue transmission, it is helpful to model
the transmission of dengue at a sub-city spatial resolution
in each city. Hence the segmentation maps of each land-
scape class, extracted from the deep learning approach, are
aggregated at a sub-city spatial unit level in each city to
identify the percentage of a spatial unit covered by a par-
ticular landscape class. The landscape features are then in-
cluded in a common time series disease modelling frame-
work that accounts for population mixing, disease specific
properties and exogenous parameters and the processes un-
derlying relations between those factors and disease inci-
dence [7, 13]. In addition to the extracted landscape fea-
tures, weather parameters and population density, which are
commonly used, are included to model the transmission of
dengue and predict disease incidence over time. Figure 1
shows the pipeline of the multi-step approach used here.

4.2. Semantic Segmentation

4.2.1 Architecture

To generate segmentation maps (pixel-wise labels) of indi-
viduals landscape features from satellite imagery, we use
a U-Net architecture, a class of CNN, given they tend to
perform well for semantic segmentation tasks with limited
training data [19]. The architecture consists of a series of
successive convolutional and maximum pooling layers, fol-
lowed by a series of convolutional and up-convolutional lay-
ers (Figure 2). The encoder extracts features, while the de-
coder reconstructs dense representation of pixel-wise classi-
fication using the extracted features from the encoder. Skip
connections, present in a U-net architecture from the en-
coder to decoder, allow incorporation of both global and
local features present inside an image in the final output to
improve the pixel-wise classification [19].

Given that both the encoder of U-Net and VGG neu-
ral networks consist of a series of convolutional and max
pooling layers, and given the lack of a large training dataset
available to train the neural network from scratch, we use a
VGG16 neural network, trained on ImageNet data, as the
encoder of the architecture. A similar methodology, but
with VGG11 architecture as an encoder has been described
elsewhere [10]. ImageNet data consists of millions of la-
belled images from over a thousand categories [20], and
networks trained on this dataset are known to be good ex-
tractors of visual features such as edges and corners [12].
The fully connected layers at the end of the VGG16 archi-
tecture are discarded, given they represent the decoder part
of the VGG architecture. The remaining convolutional lay-
ers are then used as a pre-trained encoder. The decoder,
to complement this pre-trained encoder, is then constructed
with randomly initialized weights.

4.2.2 Training, optimization and prediction

We train separate networks for each landscape feature,
given that landscape classes in the training dataset are not
mutually exclusive [9]. We use an input dimension of 256
by 256 by 3 pixels to the network, where the third dimen-
sion represent the red green blue (RGB) band of an image.
The input size is chosen to ensure that the network does
not cause memory issues when training and is compara-
ble to that used in other work harnessing similar features
from satellite imagery [30]. In addition the size is chosen
as a multiple of 1024 to ensure that the images, to be pre-
dicted, can be subset into non-overlapping sub images with-
out padding white spaces on boundary images [19]. The
output of the network is 256 by 256 by 1 representing the
probability of each pixel belonging to a particular landscape
class for which the model is trained. We use an Adam op-
timizer with the default learning rate of 0.001 and optimize
the loss function C, which is defined as: C = B — log(J),
where B is the binary entropy between predicted and actual
segmentation maps and J is the Jaccard similarity index be-
tween predicted and actual segmentation maps.

To learn the weights of the decoder we use data from
the Kaggle DSTL competition. Pixels in each image in the
dataset are normalized using the combined mean and the
standard deviation of the pixels in the training dataset. The
images and corresponding pixel-wise labels in the dataset
are then partitioned into non-overlapping blocks of sub-
images of size equal to the input size of the network. The
network is then trained using the sub-images.

To generate pixel-wise labels for images in Lahore and
Rawalpindi, we first re-size all images from Google API in
our set to 1024 by 1024 pixels. Pixels in the images are
then normalized using the combined mean and the standard
deviation of pixels in the downloaded images from Google
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Figure 2. Architecture of U-net used for semantic segmentation. Dotted lines enclose the encoder and decoder. The encoder consists of 13
3x3 convolutions each followed by a rectified linear unit (ReLU), and 4 2x2 max pooling operations with strides of 2 to reduce the map size
by 2. Weights of all layers in the encoder are pre-trained on ImageNet dataset. The decoder consists of 4 3x3 convolutions each followed
by a rectified linear activation unit (ReLU) and 1 1x1 convolution. The decoder also consists of 4 3x3 transposed convolutions with strides
of 2 to upsample maps by 2. The upsampled maps are concatenated with skip connections from the encoder. The architecture has a final
softmax activation which predicts the probability of each pixel in the image belonging to the landscape class.

API, as opposed to images from the DSTL challenge. This
ensures that any differences, due to variation in exposure
or lightning, when capturing the DSTL and Google Maps
images, are minimized. Each image is then partitioned into
non-overlapping sub-images of the size of input of the net-
work, and predictions made using the pretrained models for
each landscape feature. Keras library in Python, with a Ten-
sorflow backend is used for semantic segmentation.

4.3. Timeseries Modelling

We model the dengue transmission using a timeseries
susceptible infected recovered (TSIR) model of viral inci-
dence which has been widely used in epidemiology to re-
construct dynamics of diseases [7, 13]. Each city is divided
into sub-city spatial units (towns) to model localized trans-
mission (n=10 spatial units in Lahore and n=14 spatial units
in Rawalpindi). Spatial units for the city of Lahore are the
sub-city resolution administrative boundaries, while for the
city of Rawalpindi we use boundaries as defined by Rehman
et al. [18] based on clusters of dengue incidence in the city.
These spatial units span a median area of 57 km? (min=24,
max= 437, n=10) for the city of Lahore and a median area of
37 km? (min=9, max= 84, n=14) for the city of Rawalpindi.
This spatial unit size balanced locality and density of cases
and is reasoned in other work [18].

Given that only the most recent satellite imagery data
was available, we model landscape features as time-
invariant in the dengue transmission model. We calculate
the proportion of area, in each spatial unit, covered by each
landscape feature. To achieve this, we first select the im-
ages belonging to each spatial unit using the boundaries of

the spatial units. The predicted pixel-wise labels of the se-
lected images are then used to calculate the ratio of total
number of pixels representing the presence of a landscape
feature, and the total number pixels in the selected images.
The entire modeling approach is described below suc-
cinctly, however we emphasize that such approaches, pa-
rameters chosen, etc. are the standard in infectious disease
modeling. Further details on incidence data and this mod-
elling approach including correction for under-reporting of
cases and discussion on accuracy of data, can be found in
Rehman et al.’s work [18] from where the specific dengue
TSIR modeling methodology has been adapted. The gen-
eral TSIR model, for each spatial unit, ¢, is defined via:

Si (t) o

Lt +1) = Bilt) 5 I (e (1)
where an interval of 2-weeks is used for ¢. I;(t), S;(t),
and N;(t) are the infected, susceptible and total population
during time step ¢ in spatial unit 7, o; is the mixing coef-
ficient in 4, and f;(¢) is the transmission rate during time
step t. The error term € is assumed to be an independent
and identically log-normally distributed random variable.
Weather parameters (bi-weekly mean temperature and num-
ber of rainfall days) and population density are commonly
incorporated in such models given they are known to affect
dengue transmission [31, 16]. Time invariant landscape fea-
tures, and time-variant weather parameters and population
density are modelled as part of the transmission rate. Equa-
tion 1 is rearranged as:

log(Bi(t)) + a; x log(1;(t)) =
log(I;(t 4+ 1)) + log(N;(t)) — log(S;(t)) — €

2
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Figure 3. Sample images of landscape features present in DSTL data (row 1) and Google Maps API data (row 2), and predicted segmentation
maps corresponding to the Google Maps API data (row 3). Landscape features from left to right: building, roads, trees, crops, waterway
and standing water. Higher intensity corresponds to a higher probability of a pixel belonging to a landscape class. Images shown are
constructed from varying number of sub-images of size 256 x 256 pixels to ensure individual landscape features are clearly visible.

and the transmission rate is substituted with:
log(B:(1) = Y OaLia+ > 0;B;(t —1;) + 0,Di(1)
a J
(3)

where [; are the delays in time steps which are added to
weather parameters j to account for vector life cycle. L; ,
is the percentage of area of spatial unit ¢ covered by land-
scape feature a. E;(t — ;) is the value of weather param-
eter j during time step (¢t — ;). D;(t) is the population
density in spatial unit ¢, which is known to also drive trans-
mission, 3;, and is computed by dividing the population of
the spatial unit with the area of the spatial unit. 0,, §; and
0, are parameters which relate landscape features, weather
and population density to .

We use a linear model to fit the relationship in equation
2 and then study how the fit varies for model with and with-
out the addition of landscape features. In addition, we also
study the fit of the model by incorporating each type of re-
solved landscape feature individually in the model.

5. Results

First, we use a transfer learning approach to generate
segmentation maps of six landscape features from the satel-
lite imagery data of the cities. The trained architectures for
landscape classes show good performance when predicting
the segmentation maps on the 20% held-out labelled data
from the DSTL challenge. Specifically, the architecture
provided a higher Jaccard similarity for buildings (0.628),
roads (0.660), trees (0.557), crops (0.813), and waterway
(0.618). Performance on standing water was lower (0.357).
The estimated Jaccard index values on the held out dataset

are slightly lower than those reported in a previous work
which uses DSTL data [9], but in our work we only use the
RGB bands to train the architectures, and not the additional
8 multi-spectral and 1 short-wave infrared bands as we will
be predicting on satellite image which only use RGB bands.

Though the encoder of the architectures were pre-trained
on ImageNet data, and decoder on DSTL challenge data
from London, our goal was to eventually make predictions
on data from Pakistan. Visually analyzing predicted seg-
mentation maps for satellite imagery data in cities of Pak-
istan (Figure 3) shows that despite using no labelled data
from Pakistan, the architectures were able to identify the
segmentation maps of buildings, roads and trees with a rea-
sonable quality. Results for waterways provided medium
quality. Identification of crops and standing water landscape
features on Pakistan data were not meaningful.

Epidemic model results which included proportion land-
scape features, derived from the satellite imagery, by area
result in time series of predicted dengue cases. For evalua-
tion we use the adjusted R? metric, which allows the com-
parison of the fit of various models while accounting for
the number of parameters being used in the model. The
base model trained only on weather parameters and popula-
tion density provide a good fit with the incidence of dengue,
with an adjusted R? value of 0.728 in Lahore and 0.774 in
Rawalpindi. Addition of the landscape features in the model
improved the fit (0.747 in Lahore and 0.808 in Rawalpindi).

To examine how the London training data generalized
to different types of Pakistan landscapes, we assessed the
goodness of fit in more versus less urban spatial units in
both cities, as this is a natural potential difference between
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Model Lahore Rawalpindi
all towns more urban less urban | all towns more urban less urban

Environment only 0.728 0.736 0.715 0.774 0.801 0.660
All landscape & environment 0.747 0.757 0.734 0.808 0.832 0.717
Building & environment 0.732 0.746 0.725 0.784 0.824 0.693
Road & environment 0.731 0.746 0.719 0.781 0.804 0.678
Trees & environment 0.730 0.742 0.725 0.785 0.813 0.678
Crops & environment 0.728 0.736 0.715 0.774 0.801 0.660
Waterway & environment 0.737 0.745 0.725 0.796 0.817 0.702
Standing water & environment | 0.730 0.736 0.723 0.778 0.808 0.663

Table 1. Adjusted R-squared values of model fit using only i) weather and population density (environment parameters), ii) one landscape
feature and environment parameters, and iii) all landscape features and environment parameters. The model fit values are shown across 1)
all towns, ii) more urban towns, and iii) less urban towns. Best model results in bold.

the two places. For each city, we identified spatial units
which have more areas covered by buildings compared to
the average area covered by buildings in the spatial units.
We found that the fit of model is better in more urban areas
as compared to less urban areas, across both cities. (0.757
as compared to 0.734 in Lahore and 0.832 as compared
to 0.717 in Rawalpindi). Incorporation of landscape fea-
tures individually showed varied improvement in the fit of
the model. Overall we find incorporation of buildings and
waterways to provide the most improvement in results, fol-
lowed by roads and trees. Incorporation of crops and stand-
ing water provided little or no improvement in the fit. Table
1 summarizes the results across all models in both cities.

6. Conclusion and Future Work

Despite differences in the types of roofs and color of
roads in London and cities in Pakistan, architectures trained
for buildings and roads were able to predict the segmenta-
tion maps for satellite data in Pakistan with a reasonable ac-
curacy (Figure 3). Predictions for trees were the most accu-
rate amongst all landscape features, given the consistency of
color and shape of trees across the datasets. Given the vari-
ation in waterways in both datasets, despite relatively high
Jaccard index for this feature, the trained architecture was
only able to identify approximate location of waterways and
not the exact outline on the Pakistan data. Results in Table
1 reflect not only the predictive power of the landscape fea-
tures, but also how correct the generated segmentation maps
were for the landscape features. Little to no improvement in
the adjusted R? value with the addition of crops and stand-
ing water in the model does not conclude that these features
are not predictive of dengue transmission. Lack of predic-
tive performance in the model when including standing wa-
ter feature can be attributed to the already low performance
of the architecture on the held out training data. In contrast,
the deep learning architecture trained for crops provided the
highest predictive performance on held out data, yet given
the lack of variation in shapes and color of crops in the train-

ing data, the architecture was not able to learn generaliz-
able features for transfer to the Pakistan data; when applied
to satellite imagery data from Pakistan, the model tended
to predict every image as entirely consisting of crops (ex-
ample subplot in Figure 3 consisting of all white pixels).
Amongst all landscape features, buildings provided both a
large improvement in the fit of the timeseries model and
segmentation maps which were reasonably accurate.

Results consistently showed that addition of landscape
features improved the fit of the model across both cities, and
in both rural and urban areas. Base models for the cities pro-
vided a better fit in urban areas as compared to rural areas as
dengue is more prevalent in urban areas. In addition models
for the city of Rawalpindi provided a better fit compared to
those for Lahore, given that the disease activity was higher
in Rawalpindi during the study time period.

While results demonstrate the utility of adding landscape
features in timeseries modelling of dengue, steps can be
taken to make the results more robust. First, using labelled
satellite imagery data from Pakistan, during training, can
help improve the prediction of segmentation maps. Doing
so can help answer more precise questions such as “how
can landscapes be changed to reduce disease incidence”.
Second, given the high spatial resolution of satellite im-
agery data, modelling the transmission of dengue at an even
higher resolution could potentially help identify more ro-
bust relationships between landscape features and disease
transmission. Also, we only used satellite images from one
time period in this study, based on availability. This may be
fair as several considered landscape features may not have
changed over the time period of the study. However for fea-
tures where there is expected differences, it may be useful
to resolve them with more temporal resolution. Finally, an
unsupervised approach, using the high dimensional output
of the neural network, as done in previous work [14, 12],
may identify unknown features which can potentially im-
pact disease transmission.
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