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Abstract 

 

In this paper we present our first step solution towards 

global challenge of safety, productivity, profitability and 

energy-efficiency in mining. Our solution (intelligent 

excavator) provides complete monitoring solution for 

excavators that relies on deep neural networks to produce 

accurate, actionable data for mine. Our solution helps 

mines to increase shovel efficiency, reduce unexpected 

downtime cost, enable planned maintenance. We use a 

multi-frame convolutional LSTM-based object detection 

approach to accumulate valuable information across 

video frames without significant computational overhead. 

Our experiments on dataset captured in several mines 

across the world show that we can detect objects of 

interest with accuracy of more than 90% on 10 FPS. 

Furthermore, we show that our approach generalizes well 

to mining sites and equipment types not encountered in 

our training set. Finally, our work on detecting the types 

of objects encountered in a mining equipment could be 

used as a first step in developing a perception module that 

could provide autonomous excavators with the required 

knowledge of their environment in order to make optimal 

decisions. 
 

1. Introduction 

The Mine Safety and Health Administration (MSHA) 
notes that in 2017, nearly 40 percent of the mining 
fatalities and more than 30 percent of injuries involved 
mobile equipment [1]. Beyond safety, the need to improve 
efficiency remains a vital mining industry need. 
Surprisingly, worldwide mining operations are as much as 
28 percent less productive today than a decade ago, 
according to McKinsey research. The results from 
McKinsey’s new MineLens Productivity Index (MPI) [2], 
which adjusts for declining ore grades and mine cost 
inflation, show that the pronounced decline in productivity 
is evident across different commodities and is seen in most 
mining companies and geographies. The decline in 
productivity happens despite significant advances in 

technology over the last decades, which is a motivation for 
larger technological innovation in this area. Another 
primary technology focus is in the area of fuel/power 
consumption and emissions. The global mining industry 
consumes nearly 11% of the world’s power. Improving 
energy efficiency and reducing greenhouse gas (GHG) 
emissions are priorities for the mining industry [3]. All 
these factors should be considered as well as never-ending 
increasing global demand for metals and minerals. 

Our long-term vision to address concerns about safety, 
productivity, profitability and energy-efficiency in mining 
is moving towards automation. Autonomous excavators 
are expected to play a pivotal role to reach this goal. 
Shovels and excavators are typically the first kind of 
equipment to be used in the material handling process and, 
as a result, any changes in productivity in this first stage 
can have a domino effect on downstream processes and 
efficiency.  The promise of autonomous shovels is to 
provide a degree of efficiency so that mines can better 
handle the productivity demand placed upon them. 
Autonomous shovels working in conjunction with 
autonomous trucks, can potentially form a vastly improved 
milieu.  

In this paper, we present intelligent shovels; our first 
step solution towards autonomous shovels which provides 
complete monitoring solution for shovels and excavators 
that relies on deep neural networks to produce accurate, 
and actionable data. Heavy equipment such as mining 
shovels and excavators are used to load material ore from 
a mine into a haul truck or onto a conveyor for 
transportation to a processing location. Loading operations 
generally involve at least some element of danger as the 
payload being transferred may be heavy and could cause 
severe injury to operators involved in the loading 
operation. Moreover, an operator has a very limited field 
of view and is not able to see the contents of the bucket 
from the cabin. Accordingly, there exists a need to provide 
efficient monitoring of loading operations by involved 
operators to ensure that safe loading practices are 
followed, and that any loading equipment malfunction or 
damage is quickly identified [4]. Additionally, the payload 
may include undesired materials such as a detached tooth 
or large rocks (boulder) that should not be loaded.  Such 
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undesirable materials in the payload may potentially cause 
equipment damage during loading or during later 
processing of the payload.  There remains a need for 
systems and methods and for monitoring loading 
operations to ensure safe and/or efficient operation of the 
involved equipment [5].  Intelligent shovels solution 
features a rugged camera that overlooks the shovel bucket, 
and an in-cab monitor that provides real-time status 
updates as well as a remote monitoring portal. A set of 
human-labeled video frames are used as training inputs to 
train a deep neural network architecture to perform 
multiple object detection. The neural network when 
combined with post processing, provides a comprehensive 
monitoring solution capable of missing tooth detection [6], 
tooth wear monitoring [7], fragmentation analysis [8] and 
foreign object detection which are elements of intelligent 
shovel solution. 

2. Materials 

Figure 1 shows some of the images captured by our 
cameras installed on three main types of excavators that 
are in operation in different mining sites across the world. 
As it can be seen, in terms of visual features, there are 
differences between these excavator types. Aside from the 
difference in aspect ratios of the buckets, in Cable 
excavators the camera tends to be installed much further 
from the bucket than in hydraulic shovels, which causes 
both the bucket and the objects inside of it to look much 
smaller in images. Consequently, to be practical, any 
object detection models for the task of bucket monitoring 
must be able to capture the variation of visual features that 
is present across shovel types.  

There are several objects of interest in frames such as 
these that must be accurately detected and localized in 
order to monitor shovel’s operation. These can be 
classified into 3 categories: 

A. Sacrificial Ground Engaging Tool (GET) which 

often includes hardened metal teeth and adapters for 
digging into the material.   
B. Specific areas of the bucket’s surface used for 
differentiating empty vs. full buckets.   
C. Type of the material inside of the buckets.  
 
In a shovel or excavator, sacrificial components are the 

parts that engage the ground causing them to wear down 
over time during normal operation and, also, partially or 
completely break on occasion. Bucket’s teeth and adaptors 
are among the most important sacrificial components that 
can cause severe safety concerns when they break as they 
end up stuck in the crusher. Aside from causing the entire 
production line to stop for days and losing millions of 
dollars, dislodging these broken pieces from the crusher is 
a dangerous task (due to the inertial forces involved) and 
has led to injuries in the past. By detecting these events 
(i.e. broken or missing sacrificial parts) in real-time, we 
can stop the trucks (containing the broken pieces) before 
they get to subsequent production line stages and cause 
damage. 

Understanding the real-world sizes of the shovel 
components and the material inside of it are of high 
importance to a mine’s operation and safety. On one hand, 
if we know that a component has been worn down it can be 
replaced before it breaks, thus avoiding the safety concerns 
associated with broken pieces. In addition, scheduling the 
replacement of several components together will 
dramatically reduce shovel down-time. On the other hand, 
understanding the sizes of the objects inside of the bucket, 
helps us avoid dropping large boulders into the trucks 
which damages the trucks and causes safety concerns, as 
well as, help the mine optimize their blasting operations to 
yield particles of correct sizes. We compare the detected 
width of the bucket in pixels with its actual physical width 
in order to calculate a conversion factor that we use to 
know the real sizes of all the other objects in the frame, 

      

   
(a) (b) (c) (d) (e) (f) 

 
  Figure 1. Samples of bucket images and labels for different shovel type (Hydraulic, Bucyrus, and P&H) typically encountered in a 

mining operation. The first row shows the actual frames, while the second row shows the rectangular bounding boxes labeled by 
humans to denote different objects. Yellow rectangles show the bucket, purple rectangles show the material inside of the bucket, 
and orange rectangles show empty buckets. Empty Hydraulic Bucket (a), Full Hydraulic Bucket (b), Empty Bucyrus Bucket (c), 
Full Bucyrus Bucket (d), Empty P&H Bucket (d), Full P&H Bucket (e).  
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including the sizes of the rocks inside the bucket.  
The detection of the bucket’s surface features also 

facilitates real-time pose estimation (position and 
orientation) of the bucket with respect to the fixed camera 
frame. Landmarks on the bucket provide object points (3D 
points of landmark corners) and axis points (3D points to 
construct axes) to solve the Perspective N-point (PNP) 
problem [9] and resolve a transformation matrix (rotation 
and translation) between the camera and landmark 
coordinate frames. This transformation not only corrects 
for distortion artifacts as a result of bucket pose to resolve 
actual feature geometry for GET components and their 
wear characteristics with time, but also facilitates an 
inverse kinematics solution to compute joint variables of 
the shovel with respect to the bucket’s position and 
orientation [10]. Real-time tracking of the shovel’s 
kinematic configuration is critical for several control 
functions such as collision avoidance and end-effector 
wrench monitoring for estimates of payload and cutting 
resistance between material and teeth - all of which are 
crucial to the mine’s safety and efficiency. Augmenting 
this technique with sensor fusion from measured joint 
kinematics using an Extended Kalman Filter (EKF) 
improves robustness with a state estimator even when 
certain landmark features are temporarily occluded [11]. In 
general, vision-based pose estimation is highly 
advantageous in that sensors are compatible with a wide 
variety of shovel types and are non-invasive, making them 
relatively easy to install. 

Finally, effective classification of the material inside of 
the bucket is important for optimizing mine blasting 
process and significantly saving time and cost. Also, for 
both safety and efficiency reasons it is important to detect 
any foreign objects in the bucket such as pieces of broken 
metal or plastic, etc. and, also, larger than normal 
boulders. If not detected in time, these objects damage 
other equipment, stop the production line, and in many 
cases cause severe safety concerns. 

3. Related Work 

Despite the large body of research that has been done on 
developing the prerequisite technologies needed to achieve 
autonomous vehicles, little work has been done on 
autonomous excavators specifically. As a result, while a 
lot of the research done on autonomous driving could be 
leveraged for autonomous excavators as well, we have 
focused on the missing technologies that are specific to the 
task of autonomous excavators.  

In terms of high-definition maps, which are among the 
most crucial components for autonomous vehicles [12], 
autonomous excavators have lower resolution and 
accuracy requirements. This is because unlike other 
vehicles that must travel large distances across different 

regions, excavators are usually confined to a mine site. 
However, when it comes to Perception, autonomous 
excavators have different requirements than other vehicles.  
Perception refers to any software and machine learning 
modules that is responsible for acquiring raw sensor data 
from on vehicle sensors such as cameras, lidar, and radar, 
and converting this raw data into complete scene 
understanding for the autonomous vehicle [13]. Compared 
to autonomous cars, excavators need to detect a much 
smaller category of objects (only the categories of objects 
that are present on a mining site). They can also (in most 
cases) spend more computational time on detection 
algorithms, since they operate at lower speeds than an 
autonomous car. However, autonomous excavators need to 
differentiate objects that are visually much more like each 
other (i.e. rocks vs. fine dirt vs. mud, etc.) to know 
whether they are digging the right type of material. In 
addition, heavy dust, extreme weather, extremely low 
contrast that are present in most mining sites, makes 
detection using visual features more difficult than most 
driving conditions. 

Due to interruptions in internet connectivity, limited 
bandwidth on mining sites and strict timing requirements 
for detecting safety critical objects, all mission critical 
applications need to run on our ruggedized industrial 
embedded system. The embedded system operates in 
temperature range of -40 to 55 degrees Celsius, random 
vibration profile of 3 Grms in frequency range of 5 to 500 
Hz, and half a sinusoid shock profile of 30G with 10ms 
duration. The embedded systems have 32 GB of RAM, a 
quad core Intel CPU with a base clock cycle of 2.80 GHz, 
a 4 GB Nvidia GTX1050Ti GPU.   Consequently, we not 
only require a model that is very fast at inference-time but 
also one with a small memory foot print. 

Additionally, single frames contain many artifacts of 
low contrast, intermittent occlusion due to dust, extremely 
low contrast, low brightness which all contribute to 
difficulty in object detection. 

4. Methods 

Figure 2 shows the overall architecture of our multi-
frame object detection model. We propose a multi-frame 
Long Short-Term Memory (LSTM-) based approach in 
order to accumulate valuable information across frames, 
make object detection more robust without any significant 
computational overhead. We formulate a problem by 
learning a function F(I) = F(L(s)) = F(L(Y(I))) where L 
represents LSTM, Y represents YOLO [14], and s and I 
are sequences of feature maps and images respectively. 
We use single-shot object detector YOLO-v2 [15] as our 
main backbone which operates on each frame. YOLO 
architecture predicts a tensor of shape SxSx5*BxC, where 
S is the number of the grid cells, B is the number of 

28



4 
 

bounding box predictors and C is the number of classes. 
Following work on real-time video object detection of 
Bottleneck-LSTM [16] with an architecture of 
Convolutional LSTM [17] and SSD [18] which uses 
MobileNet [19] as a main single-frame backbone for 
feeding into LSTM layers, we use a similar method but 
with YOLO backbone, since Bottleneck-LSTM is 
dedicated to mobile devices running CPUs. In our 
experiments YOLO showed to be twice faster than SSD on 
a Nvidia GTX1050Ti GPU and a 640x480 input image. 
Instead of taking the last prediction layer of YOLO, we 
feed second last layer before activation into LSTM.  

Information from the feature maps of YOLO is 
propagated and aggregated in Convolutional LSTM which 
models both spatial and temporal information. Last output 
layer would predict the output tensor of the same size as 
YOLO backbone, which would then be decoded into 

bounding box representation. 
Single-frame YOLO detector is first trained on the 

whole training set, then we build a full model with 
Convolutional LSTM and continue training until 
convergence. For training of YOLO batch size of 16 is 
used while for training the full model we used batch size of 
2 due to limitations in the GPU memory.  

Our final model is a LSTM with YOLO which was 
trained on sequences of 10 steps and can operate online for 
each incoming frame. Empirically, we learned that a 
sequence length of 10 (which corresponds to 1 second), at 
training time, gives us enough temporal information 
without sacrificing accuracy similar to experiments done in 
[16]. Furthermore, in the original LSTM paper the same 
sequence length was used during training as well.  Due to 
the relatively slow movement between individual frames 
we use every third frame, thus reducing the frame rate 
from 30 to 10 fps which also allows us to have larger 
temporal receptive field. We use Adam optimizer [20] 
with learning rate=0.001 and its standard hyperparameters. 
The model is implemented in Keras and Tensorflow [21]. 
We utilize multi-scale training with data augmentation and 
at test-time our input resolution is 640x480. Anchor boxes 
are selected with k-means, however since we have 
imbalance of object instances and significantly varying 
sizes of bounding boxes, we run k-means twice on smaller 
and larger size objects, and then combine the anchor 
boxes. 

5. Experiments and Results 

Figure 3 shows the results of our multi-frame prediction 
on different shovels types. For each shovel type, our 
training dataset contained about 3000 annotated images. 
We used a fixed validation set of 250 images (not seen 
during training) for our hyper-parameter optimization. In 
order to get a complete picture of our model 
generalization, we have evaluated our approach on 4 
different test sets each containing 250 images:  

Test Set A: Contains examples, not seen during training 
or validation, that are from the same mining sites and 
bucket types present in the training set. We use our 

     
(a) (b) (c) (d) (e) (f) 

 
Figure 3. Predicted bounding boxes for different shovel types using our multi-frame object detection model. Dark blue bounding 
boxes capture the bucket, green bounding boxes detect teeth and teeth-line objects, red bounding boxes show fine material inside of 
the bucket, and light blue bounding boxes detect empty buckets. Empty Hydraulic Bucket (a), Full Hydraulic Bucket (b), Empty 
Bucyrus Bucket (c), Full Bucyrus Bucket (d), Empty P&H Bucket (e), Full P&H Bucket (d).  

 

 
 
Figure 2 High-level architecture of our multi-frame object 
detection approach using YOLO backbone. 
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performance on this test set as a baseline.  
Test Set B: Contains examples of mining sites that were 

not represented in our training or validation sets but 
include excavators with bucket types that were observed in 
our training set. We use this test set to quantify the 
recognizability of our solution across different mining 
sites. This is important because mines in different 
locations can have vastly different natural and artificial 
lighting conditions, camera lens qualities, and dust/ 
shadow issues.  

Test Set C: Contains examples of bucket types that were 
not represented in our training or validation sets, but from 
mining sites that we observed during training. This is 
perhaps one of the most important indicators of the overall 
performance of our object detection solution because 
different bucket types with largely different visual features 
can be installed on the same excavator type. Since it is not 
desirable to limit mining sites to use a specific bucket type 
for their excavators, ant practical bucket monitoring 
solution must generalize well to previously unseen bucket 
types.  

Test Set D: Contains difficult examples that were not 
included in our training or validation sets. These include 
frames that capture conditions with lots of dust, different 
shadows, low lighting, too much lighting (i.e. glare), dirty 
camera lenses, or low contrast situations. These frames 
were selected from the ones that our previous solutions 
performed specially poorly on or are selected by human 
experts because they contained above conditions. We use 
this test set to get a measure for our worst-case-scenario 
performance in terms of the worst imaging conditions that 
might be encountered in different operations. 

In terms of evaluation metrics, we used the mean 

average precision (mAP) at different intersection over 
union (IoU) thresholds. We used the following 
thresholds:(0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 
0.95). At each threshold, a true positive happens when 
there is a single object that matches the ground truth with 
and IoU above the thresholds; a false positive happens 
when the predicted object had no associated ground truth 
objects; while a false negative happens when there is no 
prediction for a given ground truth object. We then 
compare each prediction to all ground truth objects in 
order to calculate a precision value.  

Then, for each class of objects and for each image, we 
take the mean of our precision values at each threshold. 
The final score returned for each class is then the mean 
taken over the individual average precisions of all the 
images in the dataset. Finally, we take the mean of scores 
for each class in order to report a final score value for the 
entire model that represents the mean precision values at 
all intervals, for all classes, and all images. 

Table 1 shows the results of our experiments on each of 
the data sets above using our single frame detection stage. 
As you can see in the second row (of table 1), our models 
generalize very well to new mining sites that might, 
potentially, have different amount of dust, lighting 
conditions, or camera qualities. As you can see in the third 
row of Table 1, except for bucket patterns, most of the 
objects perform well on bucket types not previously seen 
during training or validation. These results can be 
attributed to the fact the largest difference between the 
visual appearances of different bucket types is in the 
patterns on the bucket’s surface. Finally, the last row of 
Table 1, shows the effects of bad imaging conditions (i.e. 
dusty, shadowy, images taken in low lighting or low 

Test Set 
All Classes Teeth Buckets Teeth-line 

Surface 
Patterns 

Material 
Inside 

A: new examples 0.926 0.899 0.935 0.957 0.881 0.956 
B: new mining sites 0.920 0.890 0.938 0.953 0.883 0.939 
C: new bucket types 0.890 0.874 0.908 0.944 0.773 0.950 

D: new hard examples 0.856 0.849 0.791 0.915 0.819 0.904 

 
Table 1 Shows the results of our single-frame object detection model on 4 different test sets. All reported numbers are Mean Average 
Precision of the Intersection Ober Unions of predictions at 10 different thresholds.  

Test Set 
All Classes Teeth Buckets Teeth-line 

Surface 
Patterns 

Material 
Inside 

A: new examples 0.953 0.962 0.952 0.980 0.901 0.969 
B: new mining sites 0.949 0.962 0.962 0.972 0.972 0.952 
C: new bucket types 0.914 0.959 0.959 0.970 0.970 0.944 

D: new hard examples 0.883 0.913 0.913 0.940 0.941 0.900 

 
Table 2 Shows the results of our multi-frame object detection model on 4 different test sets. All reported numbers are Mean Average 
Precision of the Intersection Ober Unions of predictions at 10 different thresholds.  
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contrast, or with dirty camera lenses, etc.). As expected, all 
objects perform slightly worse than baseline. It is 
interesting to note that the adverse effect of imaging 
conditions on the performance of bucket patterns is less 
than the effects of observing a new type of object.  
   Table 2 shows the results of our experiments on each of 
the data sets above using our multi-frame detection stage.  
In these experiments, we used a model trained with 
sequences lengths of 10. As previously mentioned, we 
record our videos at 30fps; so, with a skip rate of 3 (i.e. 
skipping every 2 frames), each of our sequences contains 
the information corresponding to 1 second of video. 
During inference, we continuously append the hidden state 
of the current element to hidden state used for predicting 
the next frame. In other words, we do not batch our frames 
into sequence lengths of 10 during inference time.  

Table 2 shows that on all our test sets, majority of our 
objects perform better using multi-frame detection than 
they do with single frame detection. We observe the 
largest performance increase on teeth and teeth-line 
respectively. This is because these objects exist (and look 
similar) in most frames in any given sequence. Therefore, 
they benefit the most from combining the information of 
several frames. In addition, you can see in Table 2, that the 
objects that benefit the least form multi-frame detection 
are the material inside of bucket, and bucket pattern. This 
is intuitive since the consecutive frames in any given 
sequence differ in these objects the most.  

Figure 4 shows the results of our predictions on a 
sequence of frames encompassing a typical dig-carry-
dump cycle. As you can see, some frames will contain the 
full bucket and some will show an empty bucket (i.e. with 
bucket patterns visible), while it is possible that all the 
frames contain the teeth and the teeth-line.  
 Finally, it is interesting to note that the only place where 
using multi-frame prediction does not provide much 
advantage over single frame prediction is in the case of 
bucket pattern on our test set containing new bucket types. 
This could be attributed to the fact that our backbone (i.e. 
single frame prediction) does so poorly on predicting the 
patterns on buckets it has never seen before that even 
having access to multiple frames does not improve the 
performance. Furthermore, as mentioned above, in a given 
sequence, bucket patterns are among the objects with the 

largest variations. The bucket patterns not only go out of 
view when the bucket is digging or carrying material, but 
their appearance is also largely influenced by the 
orientation of the bucket with respect to the camera.  
 In terms of failure cases, the most common are mistakes 
in object detection due to bad imaging conditions or 
camera installations. Some of the false positives and false 
negatives in our detections could be solved by relying on 
the fact that we have access to multiple frames to make a 
reliable decision. However, when faced with poor imaging 
conditions that last for a relatively long time such as dusty 
conditions, dirty lens, or bad installation, one cannot rely 
on future frames to recover from our faulty predictions and 
could end up with wrong decisions. In future, we plan to 
develop solutions to detect these poor imaging conditions 
(i.e. classify an image as dusty or shadowy or taken at 
wrong camera position) to improve our decision-making 
logic.   
 

6. Conclusion 

We have proposed a multi-frame object detection 
solution in the scenario of autonomous mining shovels 
operation. Our approach runs in real-time and achieves 
near human-level accuracy on all objects. Currently, we 
are working on testing other categories such as foreign 
objects, boulders, lip-shrouds, wing-shrouds and produce 
longer term predictions. In future, we plan to utilize our 
real-time object detection to create a perception module 
capable of tracking various objects and incorporating this 
knowledge into a general understanding about the 
environment. This will enable us to create a decision-
making module that combines a given excavator’s 
perception of its environment with a high-definition map 
of its surrounding to autonomously guide its operation. 
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