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This supplementary document is organized as follows:

Sec. 1 illustrates the light field datasets we use for the benchmark evaluation, including thumbnails of the central views
within HCI and EPFL datasets. Besides, the EPFL dataset suffers from the vignetting effect even after the camera rectification.
So we make a further rectification.

Sec. 2 gives a brief introduction on all the evaluated light field SR methods.

Sec. 3 shows additional experimental results. Two evaluation metrics, i.e., SSIM [7] for reconstruction accuracy and Ma’s
metric [4] for perceptual quality together with more visual comparisons are provided.

1. Dataset Details

Fig. 1 shows the thumbnails of the central view images within each dataset. For each dataset, the thumbnails are arranged
in the way that each column is a subgroup for training and testing LFCNN [9] with the K-fold cross validation strategy.

Additionally, to illustrate the vignetting effect of the EPFL dataset, we take one scene as an example and place the whole
light field together to form a 15 x 15 image array. As shown in Fig. 2(a), the calibrated light field still suffers from vignetting
especially at the side views. To avoid the influence of vignetting, we only use the central 9 x 9 views (marked with a red
rectangle) from the original light field for evaluation.

However, even the intensities of the central 9 x 9 views are not consistent. So we further conduct a simple intensity
rectification procedure. Specifically, for each sub-aperture image I, we match its average intensity to that of the central
view image I cnrq;- The rectified sub-aperture image is obtained by
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The average intensity of each view with respect to angular coordinates before and after our rectification are shown in
Fig. 2(b).

2. Framework of the Evaluated Methods

For a quick and easy understanding, Figs. 3, 4, 5 and 6 describe the main frameworks along with brief introductions for
our evaluated light field SR methods PRO [3], GB [6], RR [1] and LFCNN [9], respectively. For more details, please refer to
the original papers listed in references.

3. Additional Experimental Results

In addition to the PSNR and VGG metrics discussed in the paper, we further use SSIM [7] and Ma’s metric [4] for
evaluation. The average values of SSIM and Ma’s metric of the super-resolved central views are shown in Fig. 7 and Fig. 8§,
respectively. The mean and standard deviation values in terms of these two metrics over all sub-aperture images are listed in
Table 1. We also show more visual results in Fig. 9. As we can see, all these quantitative and qualitative comparison results
are consistent with those we analyzed in the paper.
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(b) EPFL dataset [5]

Figure 1. Thumbnails of the central view images within each dataset.
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Table 1. Mean and standard deviation values of SSIM and Ma’s metric (displayed in gray) on all sub-aperture images.
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(a) An example of the vignetting e

ffect on the original light field.
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(b) Average intensity w.r.t angular coordinates before and after our rectification.

Figure 2. Illustration of the vignetting effect and our rectification.
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Figure 3. Framework for PRO [3]. The input light field is projected to the central view with the guidance of scene depth. This step leads to
an image with a much denser sampling. Then a non-uniform interpolation is used to get an HR result.
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Figure 4. Framework for GB [6]. The fidelity term enforces the consistency between HR and LR light fields while the warping matrix
enhances a certain LR view with other views by a rough warping. A graph-based regularizer is further used to constraint the solution space.
These terms form a quadratic objective function and can be solved with the proximal point algorithm.

uoneziwndo

LR patch-volume dictionary L Training Phase | Test Phase LR patch-volume input
e £l e
J”’ SSNNA

'HR patch-volume dictionary H

TS EpH

Figure 5. Framework for RR [1]. PCA is used to reduce the dimensions of patch-volumes and Multivariable Ridge Regression is used to
linearly project the LR subspace to the HR subspace. In addition, a block matching based algorithm is proposed to align the patches before

generating a patch-volume.
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Figure 6. Framework for the spatial network of LFCNN [9]. A 4-tuple of LR sub-aperture images are first upsampled by Bicubic inter-
polation and then fed into a restoration CNN (here we replace the original shallow network with a deep residual CNN VDSR [2]). Four

super-resolved views are the output.
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Figure 7. The average SSIM values [7] (the higher, the better) of the super-resolved central view images for six selected methods over two
datasets and under four degradation models.
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Figure 8. The average values of Ma’s metric [4] (the higher, the better) of the super-resolved central view images for six selected methods
over two datasets and under four degradation models.



Figure 9. Visual comparisons of super-resolved central view images (cropped for a better visualization) through different methods together
with the ground truth (GT) under Gaussian downsampling with the scale factor of 3. The first two scenes are from the HCI synthetic dataset
and the last two scenes are from the EPFL real-world dataset.



