
Supplementary material
ARTHuS: Adaptive Real-Time Human Segmentation in Sports

through Online Distillation

A. Cioppa1,∗, A. Deliège1,∗, M. Istasse2, C. De Vleeschouwer2 and M. Van Droogenbroeck1

1University of Liège, 2University of Louvain, Belgium
∗These authors contributed equally

{anthony.cioppa,adrien.deliege}@uliege.be

Code and video available at https://drive.google.com/drive/folders/1FFdZYel3s8tL5YgLc6EQyZObRg2AMpDo?usp=sharing

A. Description of the datasets
In this section, we provide further details about the

datasets used for training, validating and testing the offline
distillation process that produces the networks Spretrained of
Section 3.2.

We use the main camera stream for both the soccer and
basketball videos. This camera has a wide angle of view
and is shown most of the time on television because it usu-
ally provides an excellent overview of the ongoing match.
Hence, this camera is often used for sports analysis. Fig-
ure 4 of the main paper shows four examples of images
taken from this camera.

Regarding the soccer dataset, we use the following eight
matches from the UEFA Euro 2016 competition: 1. Ger-
many vs Slovakia; 2. Belgium vs Wales; 3. Croatia vs Por-
tugal; 4. France vs Ireland; 5. Northern Ireland vs Wales; 6.
Poland vs Portugal; 7. Switzerland vs Poland; 8. Hungary
vs Belgium. We also use one match from the 2013 Belgian
Jupiler Pro League, FC Bruges vs Anderlecht, in order to
test the networks on a match from a different competition,
for the reasons detailed in the paper.

Regarding the basketball dataset, we use the following
eight matches from the 2019 LNB Jeep Elite competition:
1. Bourg-en-bresse vs Cholet; 2. Le Portel vs Monaco;
3. Lyon-Villeurbanne vs Cholet; 4. Le Mans vs Châlons-
Reims; 5. Gravelines-Dunkerque vs Le Portel; 6. Lan-
derneau vs Montpellier; 7. Dijon vs Strasbourg; 8. Cholet
vs Boulazac.

B. Obtaining Spretrained

The two video datasets are used for training two separate
instances of Spretrained, one for each sport, by usual offline
knowledge distillation. We collect a set X of images by
selecting one frame every four seconds in each video and

compute their corresponding approximated ground truth
T (X ) using the teacher network T . We split the dataset
into three sets: a training setDtrain = (Xtrain, T (Xtrain)) con-
taining the images subsampled from the first six matches, a
validation set Dval = (Xval, T (Xval)) containing the images
of the seventh match and a test set Dtest = (Xtest, T (Xtest))
containing the images of the eighth match. Spretrained is
trained on Dtrain using the Adam optimizer with a batch
size of 1, the weighted cross entropy loss (see pytorch.org)
and a learning rate of 10−4. We stop its training when its
performances on Dval, computed after each epoch, start de-
creasing. The good performances of Spretrained on an unseen
game, assessed on Dtest, confirmed that Spretrained could be
used as such for the experiments reported in the paper.

C. About the networks
This section provides some details about the implemen-

tations of the networks used in the paper.

TinyNet [1] This network is the real-time segmenta-
tion network used for most of the experiments of the pa-
per. We adapted the original implementation available
at https://orbi.uliege.be/handle/2268/222427 from Tensor-
Flow to PyTorch. In our work, we train it on fine-grained
segmentation masks (provided by T ) rather than on rect-
angular blobs (manually annotated). The achitecture of the
network can be found in Figure 1. One way to speed up the
inference time, is to compute the segmentation on batches
of images rather than one image at a time, authorizing a
small delay of on the output stream. Let us note that real-
time inference is still possible with batches of size 1.

ICNet [4] This well-known network, state-of-the-art
among real-time networks on the Cityscapes dataset [2], is

1

https://drive.google.com/drive/folders/1FFdZYel3s8tL5YgLc6EQyZObRg2AMpDo?usp=sharing
https://drive.google.com/drive/folders/1FFdZYel3s8tL5YgLc6EQyZObRg2AMpDo?usp=sharing
https://pytorch.org/docs/stable/nn.html#torch.nn.CrossEntropyLoss
https://orbi.uliege.be/handle/2268/222427


Convolution 

n_chan = 64 

stride = (2,2) 
kernel = (3,3) 

R
eLU

Batch N
orm

Convolution 

n_chan = 64 

stride = (1,1) 
kernel = (3,3) 

R
eLU

Batch N
orm

M
ax Pool

Convolution 

n_chan = 64 

stride = (1,1) 
kernel = (3,3) 

R
eLU

Batch N
orm

M
ax Pool

Convolution 

n_chan = 64 

stride = (1,1) 
kernel = (3,3) 

R
eLU

Batch N
orm

Convolution 

n_chan = 64 

stride = (1,1) 
kernel = (9,9) 

R
eLU

Batch N
orm

Convolution 

n_chan = 64 

stride = (1,1) 
kernel = (3,3) 

R
eLU

Batch N
orm

Addition

Convolution 

n_chan = 64 

stride = (1,1) 
kernel = (3,3) 

R
eLU

Batch N
orm

Avg Pool 
out_size = (3,2) 

R
eLU

C
onvolution

U
psam

pling

Avg Pool 
out_size = (5,3) 

R
eLU

C
onvolution

U
psam

pling

Avg Pool 
out_size = (9,8) 

R
eLU

C
onvolution

U
psam

pling
Avg Pool 

out_size = (1,1) 

R
eLU

U
psam

pling

Concatenation

Batch Norm

Convolution 

n_chan = 64 

stride = (1,1) 
kernel = (3,3) 

R
eLU

U
psam

pling

D
ropout

Convolution 

n_chan = 2 

stride = (1,1) 
kernel = (3,3) 

R
eLU

U
psam

pling

Convolution 

n_chan = 2 

stride = (1,1) 
kernel = (3,3) 

Softmax 

Figure 1. Architecture of the real-time segmentation network
TinyNet [1]. It is a lightweight version of PSPNet 101 with 100
times less parameters.

used for a comparison with TinyNet. We adapted the imple-
mentation available at https://github.com/hellochick/ICNet-
tensorflow from TensorFlow to PyTorch. By default, this
network outputs predictions for a large variety of classes.
Since we only have two classes of interest in this work, hu-
mans or background, we modified the last layer of the net-
work so that it outputs two numbers for each pixel, after
which a softmax is applied, as in TinyNet.

Mask R-CNN [3] This network is chosen as the
slow but effective “universal” teacher network T of
our experiments. We used the PyTorch implementation
available at https://github.com/facebookresearch/maskrcnn-
benchmark. This network outputs several bounding boxes
predictions with corresponding labels and segmentation
masks inside the boxes. In order to select only interest-
ing humans for our online training process, we keep the
segmentation masks provided inside the boxes whose label
corresponds to “human” and that intersect the field mask.

D. Additional experiments
D.1. Analysis of a “failure” case

It can be seen in Figures 3 and 6 of the paper that a drop
in F1 score occurs around 15 − 20 minutes in the soccer
test match and 20-25 minutes in the basketball match. We
further comment this “failure” case in this section, as one
might interpret it as a possible limitation of ARTHuS.

By looking at the soccer video at that moment, it can
be seen that an unusual scene occurs, which shows a re-
mote part of the field where bear-looking mascots walk and
photographs, staff members and spectators sit, as depicted
in Figure 2. Fortunately, it appears that Sseg still perfectly
segments the player and the referees, which are the only hu-
mans that are of interest in this scene. Hence, the drop in
performances can be explained by the large number of false
positives and false negatives related to the mascots and the
other people external to the game on the bottom and right
side of the frame, which we added in the corrected masks
(and for which T is also confused). If we evaluate the F1

score without taking them into account, it goes back up to
the same levels of performance as those achieved for the rest
of the match. For the baskeball video, the scene is a time-
out, in which the players are grouped together and discuss
strategies, as can be seen in Figure 2, which is a difficult
case to handle for Mask R-CNN (similarly to Figure 5 of
the paper).

Therefore, we can say that the drops in performances are
due to unusual scenes coupled with the evaluation method
itself, rather than an actual struggle of Sseg to segment the
interesting humans of the scene.

D.2. ARTHuS when Spretrained already generalizes
well

As mentionned, Spretrained is trained on six matches from
the Euro 2016 competition in the case of soccer. It is inter-
esting to check if this network generalizes well to another
game of the same competition and to examine the effect of
training it online with ARTHuS. To do so, we evaluate the
online training with TinyNet and report the performances
on the eighth match of the soccer dataset in Figure 3. As
can be seen, all curves reach about the same performances

https://github.com/hellochick/ICNet-tensorflow
https://github.com/hellochick/ICNet-tensorflow
https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark


Figure 2. Frame taken around the 20-th minute of the soccer test
match (top) and the 24-th minute of the basketball test match (bot-
tom), used to analyze the slight drops in the F1 score at these mo-
ments. They can be explained by the unusual nature of the scene,
which involves mascots and spectators close to the field in the case
of soccer and a time-out in the case of basketball, and the evalu-
ation method itself, since the humans of interest in this scene, i.e.
the player and the referees, are still correctly segmented by Sseg.

with a slight advantage for those produced by ARTHuS af-
ter 15 minutes. This indicates that, even when the network
generalizes well, there is an interest in retraining it online
since the performances can only increase during the match.

D.3. Tuning of the learning rate

As for any gradient-based learning algorithm, the learn-
ing rate may influence the results. Hereafter, we compare
the results obtained with two learning rates when TinyNet
is retrained online from a pre-trained network. As can be
seen in Figure 4, a higher learning rate rapidly leads to bet-
ter performances but also involves much more drops of per-
formances throughout the match. This is why we use the
lower learning rate of 10−5 in the experiments of the paper.

D.4. Other camera views

We also tested our method on another camera view. In
this section, we show the result on one of the close-up cam-
eras. This type of camera shows the players from a close-
up point of view, which results in much bigger silhouettes
compared to the main camera. Figure 5 shows the result of
our method when trained from scratch after 20 minutes of

Figure 3. Evolution of the performances of several variants of dis-
tilled models through their F1 score, computed with respect to
the masks provided by T , for a soccer match that is taken from
the same competition as the training set. All curves reach ap-
proximately the same performances, with a slight advantage for
adaptive networks produced by ARTHuS when initialized from
Spretrained.

Figure 4. Comparison of two different learning rates for ARTHuS
when the network is trained online from a pre-trained network. A
higher learning rate allows to reach better performances rapidly
but is more prone to accidental drops of performances.

online training time. As can be seen, the players are still
correctly segmented, which indicates that our method can
be applied as is with different camera views. This is an
encouraging result about the robustness of our method to
various sports scenes. It also implies that there might be
no need to manually annotate any frames, regardless of the
camera, in order to have a working multi-camera system for
human segmentation in sports.

References

[1] A. Cioppa, A. Deliège, and M. Van Droogenbroeck. A
bottom-up approach based on semantics for the inter-
pretation of the main camera stream in soccer games. In
Int. Workshop on Comput. Vision in Sports (CVsports),
in conjunction with CVPR, pages 1846–1855, Salt Lake



Figure 5. Results of our method on another soccer camera obtained
with TinyNet trained from scratch.

City, UT, USA, June 2018.
[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-

zweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The cityscapes dataset for semantic urban
scene understanding. In IEEE Int. Conf. Comput. Vi-
sion and Pattern Recogn. (CVPR), pages 3213–3223,
Las Vegas, NV, USA, June 2016.

[3] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask
R-CNN. CoRR, abs/1703.06870, 2018.

[4] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. ICNet for
real-time semantic segmentation on high-resolution im-
ages. In Eur. Conf. Comput. Vision (ECCV), volume
11207 of Lecture Notes Comp. Sci., pages 418–434,
2018.


	. Description of the datasets
	. Obtaining Spretrained
	. About the networks
	. Additional experiments
	. Analysis of a ``failure'' case
	. ARTHuS when Spretrained already generalizes well
	. Tuning of the learning rate
	. Other camera views


