
Supplementary Material
DSC: Dense-Sparse Convolution for Vectorized Inference of

Convolutional Neural Networks

Alexander Frickenstein
BMW Group

Autonomous Driving
alexander.frickenstein@bmw.de

Manoj Rohit Vemparala
BMW Group

Autonomous Driving
manoj-rohit.vemparala@bmw.de

Christian Unger
BMW Group

Autonomous Driving
christian.unger@bmw.de

Fatih Ayar
Technical University Munich

Electrical and Computer Engineering
fatih.ayar@tum.de

Walter Stechele
Technical University Munich

Electrical and Computer Engineering
walter.stechele@tum.de

S.1. Dense-Sparse Algorithm
The Dense-Sparse Convolution reduces the computational complexity of the convolutional layer by leveraging the Wino-

grad minimal filtering algorithm and compression rate obtained from pruning. The overall algorithm is well demonstrated
by Algorithm 1. The lines 1 to 7 separate the filter into sparse and dense, respectively. The storage format for sparse filter is
used according to the CSR format. The sparse and dense output features are accumulated as finally result in line 23.

For sparse matrices, the direct sparse convolution is implemented. Weights are stored in the CSR format. The array Data
stores remaining non zero elements, col indices stores columns indexed of each element and row pointer stores the
number of elements in each row. Afterwards, convolution can be implemented as expressed in Algorithm 2.

S.2. Using SIMD Intrinsics
Data level parallelism is leveraged by SIMD instructions. SIMD instructions are Instruction Set Architecture (ISA) exten-

sions which inform hardware to group data into vectors. SIMD instructions increase the arithmetic intensity of operations.
Namely, more operations can be implemented with the same amount of data fetching. Similarly, since the single instruction
is applied to multiple data, the total number of instructions to be fetched is diminished. However, the implementation of
SIMD instructions requires low-level software knowledge and parallelism in the algorithm. Both, ARM NEON and Intel
SSE extensions, provide vectorized arithmetic operations on 128-bit wide registers. SSE registers can store/load or multi-
ply/add 8 full-precision float or 32 8-bit integer (int8) numbers. Even though the registers are mostly parallel in terms of
basic operations, they might differ especially for low precision operations. Intel has an intrinsic operation, multiplying 8-bit
unsigned and 8-bit signed numbers into an intermediate 16-bit signed number and then, adds adjacent pairs horizontally.
In order to activate SIMD intrinsics, the code snippet in Algorithm 3 can be compiled as to activate SIMD intrinsics, i.e
g++ -msse3 foo.c

In low-level programming executions are performed in the register level. Load and store operations should be hard-coded,
which is different from high-level C/C++ coding. In order to be able to use a specific SIMD extensions, the corresponding
header file should be added into the code and the corresponding compiler flag should be activated. For example, the code
snippet given below fits four single precision inputs a and weights b into a 128-bit SIMD registers. The element-wise
multiplication result is stored in C code.

Even though data vectorization can be implemented by low-level programming, modern compilers are also improved
to provide auto-vectorization. In addition to the vectorization, other code optimization methods such as loop unrolling,
inlining, pipelining can be performed by compilers. However, compiler optimizations do not guarantee vectorization for
each instruction. Therefore, a better data level parallelism can be achieved by using low-level intrinsics. Furthermore, the

1



Algorithm 1 Dense-Sparse Convolutions.
Require: threshold to separate filter

1: for filter do
2: if number of nonzero elements [filter] <threshold then
3: sparse filters← filter
4: else
5: dense filters← filter
6: end if
7: end for
8: CSR format← sparse filters
9: filter format(data, num filters, index)← dense filters

————–Sparse Filters
10: sparse output← direct sparse convolution(Algortihm2)

————–Dense Filters
11: for c in channels do
12: ĝ ← GgGT {Winograd transform of the input}
13: end for
14: for n in out channels do
15: temp = 0
16: for i in num fiters[n] do
17: for j in index do
18: temp+ = ĝ � (BT dB)
19: end for
20: end for
21: dense output← AT [temp]A
22: end for

————Summation
23: output← sparse output+ dense output

Algorithm 2 Direct sparse convolution.
Require: Input feature,

Weights stored in CSR format as Data, col indices, row pointer,
Ensure: Output feature

for i in row pointer do
for j in range(row pointer[i],row pointer[i+1]) do

coeff ← Data[j]
index← col indices[j]
output← output+ coeff × input[index]

end for
end for

structure of the algorithm can be shaped, based on vector implementation, in such way that a vectorized algorithm can boost
the performance when it is implemented with the proper vector instructions.

S.3. Exploiting Thread Level Parallelism
After hitting the power wall in the semiconductor industry, the computational performance of CPUs has been increased

by distributing computing over multiple cores on the same chip. This has two implementation aspects. The first aspect is
that multicore design enables running different programs on different cores concurrently. The second aspect is that a single
program can be divided into multiple branches. Multiple cores are placed into the same silicon die where each of the cores
has their private L1 cache, whereas the L2 cache is shared.

Since the work is distributed among multiple cores, the theoretically achieved speedup is a multiple of the number of



Algorithm 3 Single precision floating-point MAC operation with intrinsics.
#include <immintrin.h>
int main(){

//initialize aligned memory in the stack
declspec(align(16)) float a[4] = 1.0, 2.0, 3.0 , 4.0;
declspec(align(16)) float b[4] = 1.0, 2.0, 3.0 , 4.0;
declspec(align(16)) float c[4] = 1.0, 2.0, 3.0 , 4.0;

//load data into vector registers
m128 vec a = mm load ps(a);
m128 vec b = mm load ps(b);
m128 vec c = mm load ps(b);

//vec c = vec a * vec b + vec c
//1.0+1.0*1.0, 2.0+2.0*2.0, 3.0+3.0*3.0, 4.0+4.0*4.0
vec c = mm fmadd ps(vec a,vec b,vec c);
//store vector back into the memory
mm store ps(vec c,c); //c=2.0, 6.0, 12.0, 20.0

return 0;
}

cores. However, due to the effort required for creating and merging threads, the theoretical speedup could never be reached.
Furthermore, in general, not all parts of the workload can be parallelized. Some parts should stay sequential as the effort
required for creating multiple branches exceeds the possible gain for small code snippets. The maximum acceleration by
distributed computing can be calculated as Amdahl’s law states:

Speedup =
1

1− p+ p
n

, (1)

where p represents the parallel region and n represents the number of processors. Eq. 1 gives the maximum of the
achievable speed-up. In practice, the obtained acceleration is even lower due to the effort spent on creating and merging
threads. Moreover, the communication latency between threads also hurts the performance.

In a multicore CPU, typically each core has its own L1 cache and registers, whereas L2 and L3 caches are commonly
shared. Thus, the communication between threads can be realized via shared variables through a common memory. That
being said, multiple cores have access to reading and writing on the same variable. Hence, an extra communication protocol
is not required. Although it is convenient to read variables from a shared memory, a cache coherency problem arises when
multiple threads write on the same memory location. Therefore, parallelization on shared memory platforms should be
implemented carefully in such a way that multiple threads never write on the same cache line simultaneously. That problem
is called false sharing. False sharing hurts the performance of multithreading significantly because the local cache of each
core must be updated from the main memory when a false sharing detected. In this section, we discuss the scalability of the
Dense-Sparse Convolution on various CPUs.

S.3.1. Low-End CPUs

Low-end CPUs are available for low to moderate performance computers, such as Raspberry Pi 3 (RPI3) or casual personal
computers. This kind of CPUs usually have 2-4 cores and 128-256 bit SIMD registers. Our Intel i5 CPU has two processors,
however, it can handle four threads due to its hyper-threading capability. The RPI3 has four cores and can also handle four
threads.

60% filter-wise sparsity is achieved on conv3.2 layer of VGG16. Scalability of filter-wise convolution is measured against
the scalability of dense convolution, as shown in Fig. 1. On the left, the implementation on RPi3 is illustrated. Filter-wise
convolution can scale better than dense convolution with up to 3 threads. However, the performance decreases for four-
threaded implementations. This is mainly due to the increasing power consumption of the RPi3. As the heat increases when
consuming high power, the RPi3 has a mechanism for protecting its SoC by reducing the operational frequency of the chip.
The other reason is that since the Operating System (OS) is running on one core when 4 threads are created, one of the threads
has to share the core with the OS. Since the work is distributed equally over the cores, the remaining three cores have to wait
for the slower one, reducing the overall performance.



Similarly, on the right side of Fig. 1, an implementation on the Intel CPU is shown. The Intel CPU has 2 cores but
can handle 4 threads due to hyper-threading. Since multiple threads in a single core can share the L1 cache, a significant
speed-up can be achieved by creating 2 threads. However, the third thread must be executed on a different core which has its
own L1 cache and the communication between threads must be realized through the L2 cache. Therefore, the performance
is either slightly increased or decreased between 2 and 3 threads. Even though the performance is remarkably influenced by
the hardware, our filter-wise convolution algorithm is as scalable as full dense convolution.

Figure 1. Scalability of Dense-Sparse Convolution on low-end CPUs. ARM-Cortex A53 (l). Intel i5-6300 (r)

S.3.2. High-End CPUs

High-end CPUs are preferred on servers or data centers where many independent operations are executed. Usually, they
have more than 8 cores and larger cache sizes. The Intel Xeon CPU has 22 cores and can generate 44 threads. Moreover, it
supports AVX512 SIMD extensions such that it has 512 bit wide SIMD registers. Therefore, the scalability is meassured of
the dense and filter-wise convolutions in terms of data-level and thread-level parallelism, as illustrated in Fig. 2.

On data-level parallelism, we can observe that the performance increases proportionally to the width of the SIMD registers.
That being said, the implementation with 256-bit SIMD registers is about 2× faster and 2× slower just as 512-bit registers. On
thread-level parallelism, we have observed that the filter-wise convolution can scale up to 30 cores, as full dense convolution.
After 30 threads, the performance drops mainly due to the saturation of the convolution operation. In other words, the
computation is distributed over lots of threads such that the overhead for creating a thread becomes significant compared to
the computation executed on the previous single thread.

In conclusion, whether it is a low-end or high-end CPU, our filter-wise sparse convolution algorithm can successfully be
parallelized over many cores. A similar performance could be expected on GPUs since they share a relatively comparable
architecture with multicore CPUs. Therefore, the advantages of pruning can be utilized even for fixed-hardware with regular
sparsity and the suitable algorithm.

Figure 2. Performance comparison with varying threads and SIMD register sizes.Intel Xeon Gold 6152.


