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In this supplementary material, we discuss more details
of our multi-level encoder-decoder framework (med) and
the network components. We also provide more image
restoration results.

1. Image Restoration Procedure
In Algorithm 1, we have given the general process for

image restoration. The function f prepares the network in-
put z by adding noise or resizing the corrupted image Î . The
network input z could also be generated randomly. Based
on the network input preparation methods, we have differ-
ent convergence times to the optimal solution [4].

In the multi-level encoder-decoder framework (Fig. 1),
the generator is denoted by G and the enhancer is repre-
sentation by E. The output of the image restoration is the
generator outputGθ∗(z) instead ofFθ∗(z) = Eθ∗ ◦Gθ∗(z).
The enhancer Eθ∗ is used to improvise the output of the im-
age restoration.

We have shown that the structure of network Fθ de-
pends upon the restoration task. For example, the network
without skip connection is preferable for region inpainting
(Fig. 10 of the manuscript) whereas for super-resolution the
network with skip connections is desirable (Fig. 11 of the
manuscript).

Figure 1: Pictorial representation of multi-level encoder-
decoder framework. An abstraction of the multi-level net-
work architectures where D is an operator to resize the ten-
sor at the intermediate layer.

1 ImageRestoration(corrupted image = Î)
/* prepare the network input z

from the corrupted image Î
using f */

2 z = f(Î)
/* Create a image restoration

network using framework F */
3 Fθ = Eθ ◦Gθ

/* Here, G and E are
encoder-decoder network (ed)
or a composition of ed */

/* Next minimize the loss
function L. */

4 θ∗ = argmin
θ

L(Fθ(z), Î)

5 return Gθ∗(z)

Algorithm 1: Image restoration algorithm. Given a cor-
rupted image Î , ImageRestoration outputs Gθ∗(z) as the
restored image. Pictorial representation of image restora-
tion framework F is given in Fig. 1.

2. Classification of Skip Connections

The skip links are mainly classified into the following
two types. (I) Intra-skip: skip links within an ed network
and (II) Inter-skip: skip links between the layers of two dif-
ferent ed subnetworks. Inter-skip links can further be clas-
sified into the following types. (II.a) Skip links between the
layers of the encoder/decoder of the first ed to the encoder
layers of the second ed. We call them Inter-skip EE/Inter-
skip DE. (II.b) Skip links between layers of the encoder/de-
coder of the first ed to the decoder layers of the second ed.
We call them Inter-skip ED/Inter-skip DD. Intra-skip links,
Inter-skip EE, and Inter-skip DE are pictorially shown in
Fig. 2.

In Fig. 3, we show the effects of the skip connections on



(a) Intra-skip (b) Inter-skip EE

(c) Inter-skip DE (d) Full-skip

(e) Cascading of network input

Figure 2: Network components. Types of skip connec-
tions (from (a) to (d)) and cascading of the network input
(e). Layers of the encoder are in red and layers of the de-
coder are in blue. (a) Intra-skip: the skip connections within
EDS network. (b) Inter-skip EE: the connections from the
first encoder to second encoder. (c) Inter-skip DE: the con-
nections between the first decoder to second encoder. (d)
Full-skip: both the Intra-skip connections and Inter-skip
connections (Inter-skip EE, and Inter-skip DE) are present.
(e) Cascading of the network input.

image inpainting when the corrupted image is prepared by
removing 95% pixels uniformly at random. The MEDSF
network has skip connections, and MED does not have skip
connections. The effects from skip connections for single
encoder-decoder (ed) network were shown in [4]; whereas
we consider the case when the restoration is performed us-
ing a composition of the ed networks allowed by the med
framework. In other words, the med framework provides
the study of the image prior for various configurations of
the skip connection (Fig. 2).

3. Perceptual Quality Comparison
As we see in Fig. 7 to Fig. 13, the perceptual quality of

the generated images is comparable to the baseline methods
despite we use very high capacity networks. This observa-
tion could also be validated using the SSIM index of our
methods are close to the other methods given in Table 3 of
the manuscript. We now provide further details of the image
restoration tasks we have performed.

• Inpainting. We have given the perceptual qualitative
comparison for inpainting 90% missing pixels in Fig. 7
and Fig. 8. The quantitative comparison is provided in
the Table 1 and Table 2. After getting the restored image
output, we perform the post-processing using the selec-
tive gaussian blur filter.

• Super-resolution. We have given a visual comparison of
the generated images in Fig. 9, Fig. 10, and Fig. 11. The
quantitative comparison between our method and base-
line methods is given in Table 3 and Table 4. RGB images
in Set14 dataset have three channels, and our MED and
MEDSF networks also output RGB images having three
channels. However, we downloaded the super-resolution
output of DIP [4] from the project page had images with
four channels (including the alpha channel). Therefore,
to get a fair comparison, we have reconstructed DIP
output before drawing the comparison. One could ob-
serve that the perceptual quality of the generated super-
resolution output is comparable to baseline methods. We
use the post-processing method proposed by Li et al. [1]
to improvise the visual quality of the generated images.

• Denoising. We give a visual comparison of the gener-
ated images in Fig. 12 and Fig. 13. The quantitative com-
parison is provided in the Table 5 and Table 6. Similar
to super-resolution, we use the post-processing method
proposed by Li et al. [1].

• Flash-no flash. In Fig. 4, we show how to control the
image features provided by flash image and ambient il-
lumination supplied by no-flash image for the flash-no
flash based reconstruction. It is achieved using scaling
factors λ1 and λ2. For example, a higher value to λ1 will
provide more features from no-flash image and a higher
value to λ2 will supply more features from flash image.
The PSNR values are calculated using the reference im-
age provided by Georg et al. [3]1.

4. Mean Square Error Loss
Here, we discuss a counter-intuitive result that the MSE

loss performed better compared to the contextual loss [2]
for super-resolution when working without the training data
(Fig. 5). Our interpretation of this result is as follows. The
contextual loss minimizes the difference between the con-
text vector sampled from the feature space. Our restoration
procedure iteratively learns the image prior by drawing a
comparison between the network output and the corrupted
image. Therefore, for initial iterations, the output of the net-
work is not perceptually good because the network is yet to
learn the prior of the target image. In such a scenario, the
loss function which performs a direct comparison with the
features of the target image (i.e., MSE loss) is better than
a loss function which performs comparison at the feature
space (i.e., contextual loss).

1URL: http://hhoppe.com/proj/flash/.

https://github.com/jbhuang0604/SelfExSR/tree/master/data/Set14/image_SRF_4
https://dmitryulyanov.github.io/deep_image_prior
http://hhoppe.com/proj/flash/


Original image MEDSF, 5%, 16.01 MED, 5%, 27.78

Figure 3: Effects of skip connections. The corrupted image is prepared by removing 95% pixels uniformly at random. The
network with skip connection (MEDSF) achieves higher PSNR than the network without skip connections (MED).

(a) Flash image (b) No-flash image (c) (5,1), 18.5 (d) (2,1), 17.7 (e) (1,1), 16.6

Figure 4: Flash-no flash. This figure shows that using scaling factors (λ1, λ2) we can control features from no-flash and
flash images in the reconstruction. (a) flash image IF . (b) no-flash image INF . (c) λ1 = 5 and λ2 = 1. (d) λ1 = 2 and
λ2 = 1. (e) λ1 = 1 and λ2 = 1. PSNR values for (c), (d), and (e) are also shown.

Figure 5: The comparision between contextual loss and
MSE loss for 4× super-resolution in a learning-free setting
using a depth five encoder-decoder network.

5. Hyper-parameters (HP)

The learning-free image restoration using high capacity
untrained networks is observed to be sensitive to the hyper-
parameters (HP) (Fig. 6). This implies that a small modifi-
cation of the hyper-parameters leads to a significant change
in the restoration output. This could be because the network
is not getting trained using a collection of images and it only
depends upon the hand-crafted structure of the network and
carefully chosen hyper-parameters, e.g., learning rate. In
other words, the network design decisions and choice of
the hyper-parameters are essential to learning the restora-
tion task specific mapping between the network parameter
space and the natural image space.

We have used the adam optimizer. The network parame-
ters are randomly initialized and fitted to minimize the MSE
loss between the network output and corrupted image. Our
work builds upon the assumption that there exists a learn-



Figure 6: Effects of Hyper-parameters (HP). We have ob-
served that there are sudden downfall of PSNR value dur-
ing the execution. The experiments were performed for
different values of (λ1, λ2) with the same set of HP (the
experimental setup is the same). We have observed such
events when learning rate or size convolutional kernel is
high. However, a smaller value of learning rate would result
in a slower convergence near optimum. The sensitivity of
image restoration quality due to change in the learning-rate
is studied in [4]). One way to control the sensitivity of the
hyper-params is to minimize the total variation norm (TV
norm) along with the MSE loss. TV norm is the sum of the
absolute differences for neighboring pixel values of an im-
age which measures how much noise is in the images. Min-
imizing the TV norm reduces the noise and provide more
control over the image restoration procedure. The resulting
image of the above experiment is shown in Fig. 4.

able mapping between the network parameter space and the
natural image space [4].

The HP could be set for each image to get better results.
However, we focused on determining HP which give sat-
isfactory results for all the images in the dataset. The HP
given in Listing 1 to Listing 6 were found using the Tensor-
flow implementation of our methods. One could also find
different HP using a careful analysis.
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Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage Avg
DIP 22.30 25.66 21.97 25.48 23.57 26.78 29.77 29.42 26.17 21.48 22.96 25.05
Ours 22.30 25.85 23.14 26.18 22.42 25.78 26.78 25.54 24.80 22.83 25.21 24.62

Table 1: Inpainting 90% of missing pixels (I). The corrupted image is prepared by removing 90% pixels from the original
image randomly. The performance comparison is done using PSNR values for DIP [4] and our MED. The perceptual quality
comparison of the generated images for the above experiment is given in Fig. 7 and Fig. 8.

Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage Avg
DIP 0.79 0.85 0.82 0.84 0.84 0.83 0.92 0.91 0.85 0.91 0.87 0.86
Ours 0.77 0.86 0.84 0.85 0.81 0.85 0.91 0.90 0.86 0.91 0.88 0.86

Table 2: Inpainting 90% of missing pixels (II). The corrupted image is prepared by removing 90% pixels from the original
image randomly. The performance comparison is done using SSIM values for DIP [4] and our MED. The perceptual quality
comparisons of the generated images for the above experiment is given in Fig. 7 and Fig. 8.

Baboon Barbara Bridge Coastguard Comic Face Flowers Foreman Lenna Man Monarch Pepper Ppt3 Zebra Avg
DIP [4] 20.35 23.85 23.21 24.24 20.99 28.39 24.64 27.66 29.23 24.93 29.07 28.20 22.91 24.39 25.14
Bicubic 20.28 23.58 23.06 23.99 20.25 28.92 23.83 26.01 28.35 24.41 26.24 27.22 20.43 22.82 24.24
MEDSF 20.03 23.02 23.15 23.92 20.29 28.58 23.87 26.12 27.82 23.18 26.70 25.43 20.42 23.35 23.99

Table 3: 4× image super-resolution (I). Performance comparison between DIP [4], Bicubic and ours MEDSF on Set14
dataset (PSNR values). The perceptual quality comparison of the generated images for the above experiment is given in
Fig. 9, Fig. 10, and Fig. 11.

Baboon Barbara Bridge Coastguard Comic Face Flowers Foreman Lenna Man Monarch Pepper Ppt3 Zebra Avg
DIP [4] 0.59 0.78 0.72 0.70 0.74 0.83 0.83 0.92 0.88 0.80 0.94 0.88 0.90 0.82 0.81
Bicubic 0.55 0.76 0.69 0.68 0.68 0.83 0.81 0.90 0.87 0.78 0.91 0.88 0.85 0.78 0.78
MEDSF 0.57 0.77 0.71 0.69 0.72 0.82 0.82 0.91 0.87 0.79 0.92 0.88 0.88 0.81 0.80

Table 4: 4× image super-resolution (II). Performance comparison between DIP [4], Bicubic and our MEDSF on Set14
dataset (SSIM values). The perceptual quality comparison of the generated images for the above experiment is given in
Fig. 9, Fig. 10, and Fig. 11.

House Peppers Lena Baboon F16 Kodak-1 Kodak-2 Kodak-3 Kodak-12 Avg
CBM3D 20.71 26.41 26.69 27.11 26.09 23.18 27.06 28.39 28.41 26.00

DIP 18.65 21.15 21.12 22.07 21.03 21.17 21.14 22.94 23.14 21.37
Ours 18.39 23.39 21.72 21.16 20.40 18.16 19.76 21.27 24.34 20.95

Table 5: Denoising (I). A detailed comparision for Denoising with strength σ = 100 using PSNR values. The perceptual
quality comparison of the generated images for the above experiment is given in Fig. 12 and Fig. 13.

House Peppers Lena Baboon F16 Kodak-1 Kodak-2 Kodak-3 Kodak-12 Avg
CBM3D 0.60 0.879 0.869 0.854 0.832 0.69 0.827 0.876 0.867 0.810

DIP 0.479 0.824 0.691 0.777 0.735 0.609 0.709 0.802 0.822 0.716
Ours 0.496 0.826 0.688 0.80 0.747 0.572 0.732 0.823 0.851 0.725

Table 6: Denoising (II). A detailed comparision for Denoising with strength σ = 100 using SSIM values. The perceptual
quality comparison of the generated images for the above experiment is given in Fig. 12 and Fig. 13.



λ1, λ2, λ3 =1 ,0 ,1
LR , η=0 .0001 ,10
che , chd = ( 6 4 , 1 2 8 , 1 2 8 , 1 2 8 , 1 2 8 ) , ( 1 2 8 , 1 2 8 , 1 2 8 , 1 2 8 , 6 4 )
f ed , f s =3 ,3

Listing 1: Hyper-parameters for super-resolution.

λ1, λ2, λ3 =1 ,1 ,1
LR , η=0 .0001 ,25
che=chd =128 ,128 ,128 ,128 ,128
f ed , f s =3 ,1

Listing 2: Hyper-parameters for denoising.

λ1, λ2, λ3 =1 ,1 ,1
LR , η=0 .0005 ,10
che , chd = ( 1 6 , 3 2 , 6 4 , 1 2 8 , 1 2 8 ) , ( 1 2 8 , 1 2 8 , 6 4 , 3 2 , 1 6 )
f ed , f s =3 ,3

Listing 3: Hyper-parameters for region inpainting, object removal, and text removal.

λ1, λ2, λ3 =1 ,1 ,1
LR , η=0 .0001 ,50
che , chd = ( 3 2 , 3 2 , 3 2 , 3 2 , 3 2 ) , ( 9 6 , 9 6 , 9 6 , 9 6 , 9 6 )
f ed , f s =7 ,7

Listing 4: Hyper-parameters for restoration of BW image from 90% pixels.

λ1, λ2, λ3 =1 ,1 ,1
LR , η=0 .0001 ,5
che , chd = ( 3 2 , 3 2 , 3 2 , 3 2 , 3 2 ) , ( 6 4 , 8 0 , 9 6 , 1 1 2 , 1 2 8 )
f ed , f s =5 ,7

Listing 5: Hyper-parameters for restoration of RGB image.

λ1, λ2 =5 ,1
LR , η=0 .0001 ,10
che , chd = ( 3 2 , 6 4 , 1 2 8 , 1 2 8 , 1 2 8 ) , ( 1 2 8 , 1 2 8 , 1 2 8 , 6 4 , 3 2 )
f ed , f s =3 ,3

Listing 6: Hyper-parameters for flash-no flash.

Hyper-parameters listing. The hyper-parameters in the Listing 1 to Listing 6 are as follows. λ1, λ2 and λ3 are the coeffi-
cients of the loss function (Eq.4, Eq.5, Eq.6, and Eq.7 of the manuscript). LR is the learning rate. η is the noise strength to
generate network input. che and chd are the channels of encoder and decoder. fed is the kernel size of the encoder-decoder
layers and fs is the kernel size of the layer for skip connection.



(a) Original image (b) Corrupted image (c) DIP [4] (d) MED (ours)

Figure 7: Restoration from 90% missing pixels part-1.



(a) Original image (b) Corrupted image (c) DIP [4] (d) MED (ours)
Figure 8: Restoration from 90% missing pixels part-2.



(a) HR image (b) Bicubic (c) DIP (d) MEDSF

Figure 9: 4× Super-resolution on Set14 dataset part-1.



(a) HR image (b) Bicubic (c) DIP (d) MEDSF

Figure 10: 4× Super-resolution on Set14 dataset part-2.



(a) HR image (b) Bicubic (c) DIP (d) MEDSF

Figure 11: 4× Super-resolution the Set14 dataset part-3.

Original Image Noisy Image CBM3D DIP Ours

Figure 12: Denoising (I). A comparison between CBM3D, DIP [4], and our MEDSF for noise strength of σ = 100.



Original Image Noisy Image CBM3D DIP Ours

Figure 13: Denoising (II). A comparison between CBM3D, DIP [4], and our MEDSF with noise strength of σ = 100.


