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1. Introduction

In this supplementary material, we first derive the back-
ward computation of the proposed graph Laplacian regu-
larization layer. We then present additional visual compar-
isons of image denoising, including both the cases of real
image denoising and vanilla Gaussian denoising, with our
DeepGLR framework.

2. Backpropagation of the Graph Laplacian
Regularization Loss

We hereby derive the backward computation of the pro-
posed graph Laplacian regularization layer which consists
of the graph construction module and the QP solver. Sup-
pose for a noisy patch y, its corresponding recovered patch
is x while the underlying ground-truth is x(gt), where
x,x(gt),y ∈ Rm. For simplicity, we consider a loss func-
tion defined on a patch basis, which computes the weighted
Euclidean distance between x and the ground-truth x(gt),
i .e.,

e =
1

2

∥∥∥C(x− x(gt)
)∥∥∥2

2

=
1

2

(
x− x(gt)

)T
CTC

(
x− x(gt)

)
,

(1)

where C = diag{c1, c2, · · · , cm} is a diagonal matrix and
ci ≥ 0 represents the weight of the i-th pixel. Consequently,
the loss function Lres in our paper can be regarded as the
summation of a series of patch-based loss (1) with the cor-
responding matrices C’s.

QP solver: we first consider the backward pass of the QP
solver, i.e., we derive the error propagation of the weighting
parameter µ and the graph Laplacian matrix L. From [1],

∗Both authors contributed equally to this work. Jiahao Pang is the cor-
responding author.

we have
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We denote δi ∈ Rm as the indication vector whose i-th
entry is 1 while the rest are zeros, then
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where x(i) is the i-th entry of x, the same for x(gt)(i).
Graph construction: we hereby derive the partial

derivative of the graph Laplacian matrix L with respect
to the i-th entry of the exemplar fn where 1 ≤ i ≤ m,
1 ≤ n ≤ N . From the definition of the graph Laplacian
matrix and (3)(4) of our paper,
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where N (i) denotes the 8 neighboring pixels of pixel i.



(a) Ground-truth (b) Noisy (c) CBM3D (d) MC-WNNM (e) Noise Clinic

(f) CDnCNN (g) GLRNet (h) DeepGLR-FR (i) DeepGLR-PR (j) DeepGLR
Figure 1. Real image noise removal for image 23 of the RENOIR dataset with different approaches.

(a) Ground-truth (b) Noisy (c) CBM3D (d) MC-WNNM (e) Noise Clinic

(f) CDnCNN (g) GLRNet (h) DeepGLR-FR (i) DeepGLR-PR (j) DeepGLR
Figure 2. Real image noise removal for image 103 of the RENOIR dataset with different approaches.

3. More Visual Results

In this section, we present more visual results applying
DeepGLR to image denoising, with the same settings de-
scribed in our paper. In all the figures, we enlarge the block
in the blue rectangle and display it in the green rectangle for
a better view.

Figure 1 and Figure 2 show visual results on real im-
age denoising trained on small dataset as discussed in Sec-
tion 4.2 in the paper. Competing schemes exhibit notice-
able noise, while the proposed DeepGLR generates clean
and sharp results. Meanwhile, the variants of DeepGLR
does not show competitive results as DeepGLR, indicating

that any component of the our proposed architecture is irre-
placeable.

In Figure 3, we additionally show results of real image
denoising with models trained for Gaussian noise removal
in order to test cross-domain generalization as discussed in
Section 4.3 in the paper. Meanwhile, Figure 4 show visual
results on Gaussian noise removal.

We see that CDnCNN trained on AWGN dataset fails at
real noise removal as shown in Figure 3, indicating strong
overfit to AWGN denoising. On the contrary, DeepGLR is
still able to capture underlying signal structure and remove
the noise with high quality. Moreover, as shown in Fig-
ure 4, DeepGLR demonstrates competitive denoising per-



(a) Ground-truth (b) Noisy (c) Noise Clinic (d) CDnCNN (e) DeepGLR
Figure 3. The proposed DeepGLR trained for AWGN denoising generalizes well to real image denoising.

formance as CDNCNN for AWGN. We see that DeepGLR
well preserves the sharp details without over-sharpening,
while DnCNN shows less sharp edges and loss of details in
the first three images in Figure 4, and generates extra sharp
features in the last image. Note that images in the first two
rows are rotated counterclockwise by 90◦ for a compact-
yet-clear layout.
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(a) Ground-truth (b) Noisy (c) CBM3D (d) CDnCNN (e) DeepGLR
Figure 4. Subjective evaluation of AWGN denoising on BSD68 Dataset.


