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Abstract

Adversarial Training (AT) is a straight forward solution

to learn robust models by augmenting the training mini-

batches with adversarial samples. Adversarial attack meth-

ods range from simple non-iterative (single-step) methods

to computationally complex iterative (multi-step) methods.

Although the single-step methods are efficient, the models

trained using these methods merely appear to be robust, due

to the masked gradients. In this work, we propose a novel

regularizer named Plug-And-Pipeline (PAP) for single-step

AT. The proposed regularizer attenuates the gradient mask-

ing effect by promoting the model to learn similar represen-

tations for both single-step and multi-step adversaries. Fur-

ther, we present a novel pipelined approach that allows an

efficient implementation of the proposed regularizer. Plug-

And-Pipeline yields robustness comparable to multi-step AT

methods, while requiring a low computational overhead,

similar to that of single-step AT methods.

1. Introduction

The success of Deep Neural Networks is attributed to

large scale annotated datasets. However, DNNs are shown

to be susceptible to adversarial attacks [26], wherein an im-

age perturbed with a specially crafted imperceptible noise is

misclassified by the model with high confidence. This acts

as a deterrent to the real-world deployment [15, 21] of deep

models. In the literature, several works have studied the

poor generalizability of deep models to physical transfor-

mations [10], domain-shift [12, 25] and out-of-distribution

samples [17]. Early works explored synthetic augmentation

of the training dataset as a solution to improve the general-

ization. Nevertheless, even such approaches exhibited poor

robustness to adversarial noise [26, 13, 7, 20, 11]. This phe-

nomenon has motivated a line of works specifically aiming

to defend against adversarial samples [26, 13, 16, 22, 19].

Along this direction, the most successful approaches are

adversarial training (AT) methods [13, 18, 5, 31, 4], wherein
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mini-batches of training data are augmented with adversar-

ial samples generated by the model being trained. Partic-

ularly, these samples are generated by crafting an image

perturbation (additive noise) via gradient ascent on the loss

function. As this systematic procedure approximates the

worst-case adversaries, the model is expected to be robust to

real-world adversaries. Adversarial training methods can be

broadly classified into two categories, non-iterative (single-

step AT) and iterative (multi-step AT) methods.

Non-iterative. Notably, non-iterative AT methods such

as FGSM-AT [13, 16] require a single additional backprop-

agation step (gradient ascent) for each mini-batch. While,

non-iterative methods are computationally efficient, they

yield suboptimal results by converging to a degenerative

minimum [27]. This effect is widely known as the gradient

masking effect [27], wherein the model prevents the gener-

ation of strong adversaries. As a result, models that mask

the gradients often show poor robustness to transfer attacks,

i.e. adversaries generated by other models [27].

Iterative. Methods such as PGD-AT [18] and

TRADES [31] perform multiple steps of gradient ascent

for each mini-batch. The perturbation added to the image

at each iteration is small, which allows them to generate

strong adversaries over multiple iterations. Training with

such strong adversaries avoids degenerative minimum by

preventing masked gradients. Thus, they yield robust mod-

els. However, they are computationally intensive, requiring

multiple steps of backpropagation for each mini-batch.

In general, we find that the computational efficiency of

adversarial training is at odds with the robustness of the

trained model. Motivated by this trade-off, we aim to ex-

plore an efficient regularization strategy [1, 3] that enjoys

the benefit of both iterative and non-iterative methods. To

this end, we present Plug-And-Pipeline (PAP), a regular-

ization scheme that can be readily plugged into single-step

AT methods to mitigate the effect of gradient masking. The

PAP regularizer is scalable, in that it can be applied over a

desired fraction of samples in each mini-batch.

The key idea we present in this paper is to harness a

pipelined approach for generating multi-step adversaries,

such that the computational cost at each mini-batch is com-



parable to non-iterative AT methods. Thus, our pipelined

approach is designed to be a plug-and-play regularizer that

can improve the performance of non-iterative adversarial

training methods at minimal computational overhead.

We summarize our prime contributions as follows:

1. We propose Plug-And-Pipeline (PAP), a regularization

scheme that yields robustness comparable to multi-

step AT methods, while requiring a low computational

overhead, similar to that of single-step AT methods.

2. PAP can be enforced on a suitable fraction of the mini-

batch, resulting in a scalable framework.

2. Background

Notations. The notations used in this paper are as follows.

Symbol Description

D Distribution of clean samples

U(a, b) Uniform distribution in [a, b]
N (a, b) Normal distribution with mean a and std. b
x, y Clean image & its ground-truth label

x∗ Potential adversarial sample

x∗ {i} Adv. sample at ith step of multi-step attack

fθ Neural network parameterized by θ
J Primary loss function e.g. cross-entropy

∇ Gradient operator (Jacobian).

δ Perturbation added to the image x
ǫ Maximum strength of the perturbation δ
α Step size used in iterative methods

N Number of steps used in iterative methods

γ Measure of computational overhead

2.1. Classical Adversarial Training

Notably, most adversarial training methods approxi-

mately perform the following min-max training strategy,

min
θ

E
(x,y)∼D

[

max
δ

J
(

fθ(x+ δ), y
)

]

(1)

where, J is the standard cross-entropy loss, and δ is a

perturbation added to the clean image x, under the Lp norm

constraint ||δ||p ≤ ǫ for some p ∈ W. The Lp norm con-

straint is enforced such that the generated adversarial noise

(δ) is imperceptible to the human eye. We study adversarial

robustness under the L∞ norm constraint.

In Eq. 1, the inner-maximization step corresponds to the

generation of worst-case adversaries, while the outer mini-

mization step aims to achieve a low error rate on such sam-

ples. The key idea of adversarial training is to prevent a

drastic change in the model’s prediction when an impercep-

tible noise is added to the image. We now describe some

popular approaches for generating adversarial samples.

a) Fast Gradient-Sign Method (FGSM) [13]. In this

method, a single-step gradient ascent is performed on the

loss J to obtain the perturbation δ that maximizes the loss,

x∗ = x+ δ

δ = ǫ · sign
(

∇xJ(fθ(x), y)
) (2)

Intuitively, this process entails the first order approxima-

tion of the loss function J , which is expected to be max-

imized via a single gradient ascent step of size ǫ. While

this method is computationally efficient, the first order ap-

proximation is often not accurate as the presence of non-

linear activation functions disturbs the local-lipschitzness

[8, 23, 30] of the loss landscape. Therefore, models trained

with single-step adversaries exhibit a sharp curvature in

the neighborhood of the training samples, which causes a

highly irregular (noisy) gradient pattern [27].

As a result, the gradient computed at x (sign(∇x(·))),
does not represent the true direction corresponding to the

loss maximization. Thus, a single perturbation of strength ǫ
does not effectively maximize the loss J . This is the gradi-

ent masking effect [27] observed in the models trained with

FGSM-AT. Such models show poor robustness to iterative

attacks that are more effective in maximizing the loss.

b) Iterative FGSM (IFGSM) [15]. A more effective ap-

proach to approximate the inner-maximization step (Eq. 1)

is to perform a fine-grained gradient ascent over several it-

erations. Here, FGSM is applied for N iterations, with a

perturbation of strength α in each iteration (α = ǫ/N ) as,

x∗ {i+1} = x∗ {i} + δi

δi = α · sign
(

∇x∗{i}J
(

fθ(x
∗ {i}), y

)

) (3)

where, i = 0, 1, ..., N − 1, and x∗ {0} = x, the clean

sample. The adversarial sample is obtained at the last iter-

ation, i.e. x∗ = x∗ {N}. A fine-grained iterative optimiza-

tion with a small step-size (α) yields perturbed samples x∗

that are more likely to fall in a local maxima around the

neighborhood of the clean sample x. Performing the outer-

minimization (Eq. 1) for such samples ensures that the loss

landscape is smooth and the model prediction does not dras-

tically change around the neighborhood of the clean sample.

c) Projected Gradient Descent (PGD) [18]. This method

is a variant of IFGSM, where a random perturbation is

added to the image before the first step, and re-projection

is preformed after every step. Specifically,

x0 = x+ U(−ǫ, ǫ)

x∗ {i+1} = x∗ {i} + δi

δi = α · sign
(

∇x∗{i}J
(

fθ(x
∗ {i}), y

)

)

(4)

where, δi is within the ǫ-bound, i.e. clipǫ(δi), and, usu-

ally ǫ/N < α ≤ ǫ. The stochasticity resulting from the

initial random perturbation further prevents a degenerative

minimum, yielding stronger adversarial samples.



A key observation is that FGSM-AT tends to overfit on

the FGSM samples early on during the training [28, 5]. In

other words, instead of exhibiting robustness to adversaries,

the model resists the generation of plausible adversarial

samples. On the other hand, though IFGSM and PGD re-

quire significantly more computation, they generate strong

adversarial samples, owing to a fine-grained iterative pro-

cess. This mitigates the gradient masking effect.

2.2. Generalization Tradeoff

While iterative methods yield robust models, the min-

max formulation in Eq. 1 depends upon the extent to which

the inner-maximization and outer-minimization steps are

approximated. Note, classical AT methods optimize a sin-

gle objective function ρ(θ) (i.e. training occurs only with

adversarial samples). As a result, adversarial training often

degrades the performance on the clean samples [29], due to

the limited flexiblity offered by the formulation in Eq. 1.

TRADES [31] formally studied this trade-off between the

accuracy on the clean samples and the generalization to ad-

versarial samples. Particularly, [31] proposed the following,

min
θ

E
(x,y)∼D

ρ(θ)

ρ(θ) = J
(

fθ(x), y
)

+max
δ

η ·KL
(

fθ(x), fθ(x+ δ)
)

(5)

where, J is the cross-entropy loss, KL is the KL-divergence

between the softmax distributions of the output fθ(·) for the

clean image x and the perturbed image x∗ = x + δ. Here,

η is a hyperparameter that controls the trade-off between

the cross-entropy loss J (i.e. learning to classify clean im-

ages), and the KL-divergence between the clean and the

perturbed image outputs (i.e. generalization to the perturbed

images). TRADES demonstrated state-of-the-art robustness

to adversarial samples. However, similar to PGD-AT, the

inner-maximization (Eq. 5) is performed over N iterations,

to obtain a perturbation δ that maximizes KL.

We observe that to effectively approximate the inner-

maximization in both Eq. 1 and Eq. 5, one has to perform

multiple steps of gradient ascent. This introduces additional

computational burden, on top of the compromise made on

the accuracy on clean samples, for improving the robustness

to adversarial samples. Motivated by this trade-off, we aim

to propose a regularizer that aids in minimizing the compu-

tational effort in adversarial training. Particularly, we pro-

pose a regularizer which aims to improve the effectiveness

of the inner-maximization step in Eq. 1 performed in single-

step AT methods, by mitigating the gradient-masking effect.

2.3. Computational Efficiency

Before formalizing the approach, we qualitatively an-

alyze the primary computational overhead of adversarial

training, i.e. the generation of adversarial samples. Accord-

ingly, we define the following qualitative measure.

Definition 1. (γ-FGSM). For a given mini-batch of m clean

samples, γ-FGSM indicates that on an average (averaged

over the number of clean samples m), γ backpropagation

operations are required to generate adversarial samples.

Notionally, we say that an adversarial training method

is γ-FGSM, if the method requires a backpropagation op-

eration equivalent to that of γ FGSM steps, to generate an

adversarial sample corresponding to a clean sample. Thus,

γ signifies an expected computational overhead for gener-

ating adversarial samples during training.

Note that, for every epoch of adversarial training, the

backpropagation computation would be equivalent to that

of 1 + γ epochs of normal training (ceteris paribus). Fur-

ther, γ is independent of the underlying loss formulation.

Thus, a computationally efficient adversarial training strat-

egy should achieve a reasonably low value of γ.

By definition, FGSM-AT has γ = 1, i.e. for each clean

sample x, the major overhead incurred to generate the cor-

responding FGSM sample x∗ is a single backpropagation

(gradient ascent). Similarly, for iterative methods using N
iterations (PGD-AT and TRADES), we have γ = N ·m

m
=

N , since each clean sample requires N backpropagations to

obtain the corresponding adversarial sample x∗ = x∗{N}.

Suppose that FGSM-AT is performed on a fraction of the

mini-batch [16], i.e., given a mini-batch of m clean samples,

we generate FGSM samples only for n samples (n < m)

while m−n samples are unchanged. Here, γ = n
m

, signify-

ing that on an average, n
m

< 1 additional backpropagations

are required to generate adversarial samples. Intuitively, an

adversarial training strategy with γ < 1 is expected to be

more efficient than FGSM-AT (γ = 1). However, single-

step AT methods generally do not yield promising robust-

ness, due to gradient masking, which makes approaches

with γ < 1 infeasible according to the current literature.

Nevertheless, we aim to address the significant computa-

tional overhead incurred in training robust models. To this

end, we propose a regularizer that significantly improves

the performance of single-step AT by mitigating the ef-

fect of gradient masking. Our regularizer named Plug-And-

Pipeline (PAP), when used in FGSM-AT has γ = 1 + γ′,

where, the first term (1) is due to the generated FGSM sam-

ples in FGSM-AT while the second term (γ′) is the compu-

tational overhead of the samples taking part in regulariza-

tion. In the next section, we demonstrate the design of our

regularizer that achieves γ′ < 1.

3. Approach

In this section, we present our approach viz. Plug-And-

Pipeline (PAP) regularizer. Motivated from the discussion

in Sec. 2, we systematically identify the challenges involved

to formalize our approach. An overview is given in Fig. 1.
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Figure 1. A. Overview of the proposed regularization scheme. During FGSM-AT (using samples x∗

b ), we utilize a fraction of the mini-batch

(xreg) to perform regularization. B. Description of the notations used in A.

3.1. Mitigating Gradient Masking

a) Challenges. To generate a single-step adversarial sample

such as FGSM, a large perturbation (strength ǫ) is added to

the clean image along the direction of the gradient ∇x(·).
In such methods, the loss is minimized on the adversarial

sample x + δ (Eq. 2). However, this does not guarantee

a suitable loss landscape between the clean image x and

the perturbed image x + δ. As a result, the loss landscape

possesses sharp curvatures [27] in the intermediate region

[x, x+ δ], thereby yielding false gradient directions∇x(·).
Thus, we must ensure a smooth (locally-lipschitz [30]) loss

landscape around the neighborhood of the clean samples.

b) Solution. Arguably, the most effective way to attenuate

the gradient masking effect is to train with iterative adver-

sarial samples e.g. IFGSM. We observe that IFGSM uses

a fine-grained iterative optimization to effectively identify

local-maxima around the neighborhood of the clean sam-

ples, while FGSM samples are less effective in this regard.

This results in a discrepancy between the output distribu-

tions of the FGSM and IFGSM samples, generated using

the same perturbation strength for a given image. We hy-

pothesize that in order to reduce this discrepancy between

the FGSM and IFGSM outputs, the model must achieve a

smooth loss landscape. With this intent, we formalize our

regularizer as a loss between the pre-softmax activations of

the FGSM and the IFGSM samples for a given clean image.

A naive implementation of such a regularizer can be

as follows. For a clean sample x, with a perturbation

strength ǫ, generate an FGSM sample x∗ (Eq. 2) and an N -

step IFGSM sample x∗ {N} (Eq. 3), and penalize the dis-

crepancy in the pre-softmax distributions using the mean-

squared-loss, i.e. ||fθ(x
∗) − fθ(x

∗ {N})||22. However, this

would entail γ = 1 + N , due to the generation of FGSM

and N -step IFGSM samples for each mini-batch of clean

samples. Thus, we aim to explore a pipelined approach for

the generation of IFGSM samples, described as follows.

3.2. Amortized Computational Costs

a) Challenges. In general, we observe that the representa-

tions learned by a model do not change drastically within a

few training iterations. Leveraging this property one could

pipeline IFGSM-AT as follows.

Consider, a fixed set of clean images x for N iterations.

At each iteration i, perform a single gradient ascent step

of IFGSM (with α = ǫ
N

) on the sample x∗ {i−1} (previ-

ous iterative sample) to obtain the sample x∗ {i}. There-

after, update the model parameters θi by imposing a cross-

entropy loss on x∗ {i}. The next iteration of IFGSM (i+ 1)

is performed on the new parameters θi+1. In this manner,

our regularizer could also be pipelined while performing

FGSM-AT. At each iteration i, one could generate the ith

step IFGSM sample and an FGSM sample with an equiva-

lent strength i · α, and penalize the resulting discrepancy.



Methods such as [24] employ such a pipelined approach.

However, [24] “replays” a mini-batch of clean samples for

N iterations, resulting in γ = N . Likewise, the regularizer

described above would yield γ = 2N , since for N replays,

we perform an FGSM and an IFGSM step.

b) Solution. We propose a two-fold solution to the above

challenge. Firstly, we separate the FGSM-AT process from

the regularization process. More concretely, we do not re-

play each mini-batch of clean samples. Instead, as shown

in Fig. 1A, we maintain a separate set of samples which

are used for regularization, while FGSM-AT proceeds nor-

mally. Secondly, to obtain these samples, we randomly

select a fraction k of the clean samples (n = km) at ev-

ery N th mini-batch. Thus, for each mini-batch of m clean

samples, we generate m FGSM samples for FGSM-AT, and

2n = 2km samples taking part in the regularization (FGSM

and IFGSM). In our experiments, we use k = 0.1, i.e. 10%
of samples. This reduces to γ = 1 + 0.2 = 1.2.

3.3. Training Algorithm

In Fig. 1A, we illustrate N iterations of FGSM-AT with

the PAP regularizer. At each iteration iter, a new mini-

batch of m clean samples xb is used to generate samples for

FGSM-AT (x∗
b ). Additionally, at every N th mini-batch, we

randomly select n = 0.1m clean samples for regularization

(xreg). Note that these samples are loaded into a global

memory for N iterations while the mini-batch is refreshed

with new clean samples (xb) at each iteration (see Fig. 1A).

At each mini-batch, FGSM-AT is performed by generat-

ing FGSM samples x∗
b (Fig. 1B) and imposing the loss,

Lfgsm =
1

m

∑

J(fθ(x
∗
b), yb) (6)

where the summation is over m FGSM samples. Simul-

taneously, we generate the samples for regularization, i.e.,

the ith IFGSM sample x
∗ {i}
reg with α = ǫ/N from x∗ {i−1}

and a single-step FGSM sample x∗
reg with an equivalent

perturbation strength (ǫ · i)/N (Fig. 1B) and enforce,

Lreg =
1

n

∑

||fθ(x
∗
reg)− fθ(x

∗ {i}
reg )||22 (7)

where n = 0.1m is the number of samples selected for

regularization and || · ||2 represents the L2 norm of the dif-

ference between the pre-softmax output vectors produced

by the single-step and iterative samples used for regulariza-

tion. Thus, the total loss employed at each iteration is,

L = Lfgsm + λ · Lreg (8)

where λ is a suitable hyperparameter. We summarize the

algorithm in Algo. 1. The selection of samples for regular-

ization is performed in lines 7-10. Lines 11-15 demonstrate

the generation of adversarial samples, which is followed by

training the model with the total loss L (lines 16-17).

Algorithm 1 Plug-And-Pipeline (PAP)

1: require: Training dataset of clean images (x, y), Num-

ber of epochs nepochs, Model parameters θ.

2: notations: x∗ is single-step adversarial sample, x∗ {i}

is ith step adversarial sample of an iterative attack.

3: iter ← 0
4: for epoch in nepochs do

5: Sample a mini-batch (xb, yb) from the train set

6: i← (iter%N) + 1 /* Initialize counter */

7: if iter %N == 0 then

/* Select samples for regularization*/

8: (xreg, yreg)← select 10% of (xb, yb)

9: x
∗ {0}
reg ← xreg

10: end if

/* Generate FGSM samples for FGSM-AT */

11: x∗
b ← xb + ǫ · sign

(

∇xb
J(fθ(xb), yb)

)

/* Generate FGSM samples for Regularization */

12: δ1 ←
ǫ · i

N
· sign

(

∇xreg
J(fθ(xreg), yreg)

)

13: x∗
reg ← xreg + δ1

/* Generate IFGSM samples for Regularization */

14: δ2 ←
ǫ

N
· sign

(

∇
x
∗{i−1}
reg

J(fθ(x
∗ {i−1}
reg ), yreg)

)

15: x
∗ {i}
reg ←x

∗ {i−1}
reg + δ2

16: Compute total loss L = Lfgsm + λ · Lreg

17: Update parameters (θ) by minimizing L
18: iter ← iter + 1
19: end for

Note that this process results in a plug-and-play regular-

izer that can be readily integrated into any single-step AT

method. The regularizer mitigates the gradient-masking ef-

fect by encouraging the output distributions of single-step

and iterative attacks to be similar, thereby improving the ef-

ficacy of the single-step adversarial samples (here, the gen-

erated FGSM samples x∗
b ). Furthermore, this approach is

highly efficient requiring a mere 10% additional batch size.

The pipeline also confers a fine-grained regularization, by

amortizing the discrepancy minimization Lreg in the inter-

mediate region between the clean sample x and the corre-

sponding adversarial sample x + δ. One can perceive this

as a curriculum [2], where the minimization of loss Lreg

gradually occurs from i = 1 (easiest) to i = N (hardest).

Extension to TRADES. Having proposed the PAP regular-

izer for FGSM-AT, we now demonstrate the applicability

of PAP to other approaches. As a use-case, we consider

TRADES [31] that also exhibits gradient masking when the

inner-maximization step (Eq. 5) is approximated using a



Table 1. Experimental setup. For MNIST dataset, we use network described in [31].

FGSM [13] IFGSM [15] PGD[18] MIFGSM [9]

Datasets Network nepochs ǫ ǫ α N ǫ α N ǫ α N
MNIST Small CNN [31] 50 0.3 0.3 ǫ/N 40, 100 0.3 0.01 40, 100 0.3 ǫ/N 100

CIFAR-10 ResNet-18 [14] 100 8/255 8/255 ǫ/N 7, 20 8/255 2/255 7, 20 8/255 ǫ/N 20

single-step gradient ascent. We propose to integrate the PAP

regularizer into a single-step TRADES formulation as,

L =
1

m

∑

J(fθ(xb), yb) + η ·KL(fθ(xb), fθ(x
∗
b))

+ λ ·
1

n

∑

||fθ(x
∗
reg)− fθ(x

∗ {i}
reg )||22

(9)

where the J(·) and KL(·) correspond to the TRADES

loss function (Eq. 5), while the last term is the PAP regu-

larizer. Note that KL in Eq. 9 is obtained on the softmax

distributions of the outputs fθ(·), while the regularizer is

applied at the pre-softmax layer. Here, x∗
b is obtained as,

x∗
b ← xb + ǫ · sign

(

∇xb
KL(fθ(xb), fθ(xb + δ′))

)

(10)

where, δ′ is a small random perturbation. Following

[31], we use δ′ = 0.001 · N (0, 1)). Further, note that the

process used to generate the samples x∗
reg and x

∗ {i}
reg re-

mains the same as in Fig. 1. Similar to FGSM-AT, this for-

mulation of single-step TRADES combined with the PAP

regularizer achieves γ = 1.2, in contrast to the regular

TRADES formulation with N steps (γ = N ).

4. Experimental Results

In this section, we demonstrate the performance of mod-

els trained using Plug-And-Pipeline against adversarial at-

tacks in white-box and black-box settings. We perform san-

ity checks described in [6] to verify the adversarial robust-

ness of models. Following this, we perform a rigorous vali-

dation of our approach.

a) Experimental Setup. Table 1 shows the experimental

setup. Note that, a method such as [24] that “replays” a

mini-batch of clean samples for N iterations, must reduce

the number of epochs by N times (since, γ = N for such a

method). However, our approach allows us to aim for a total

number of epochs similar to standard FGSM training owing

to γ = 1.2. We follow Madry et al. [18] for attack parameter

settings. We refer FGSM-AT with the proposed regulariza-

tion as “PAP FGSM” (Eq. 8), and single-step TRADES with

the proposed regularization as “PAP TRADES” (Eq. 9).

b) Threat Model. The threat model that we consider in

this work is in line with [18, 31]. The goal of an adversarial

attack method is to craft an imperceptible small perturbation

δ for an image x such that the resulting adversarial image

x∗ is misclassified by the model, i.e. the adversarial noise δ
is bounded within L∞ norm. The goal of a defense method

is to exhibit robustness against these adversarial attacks.

Table 2. Hyper-parameters of Plug-And-Pipeline. Where k is the

number of clean samples used for regularization and is expressed

in terms of percentage of mini-batch size. λ represents the weigh-

tage given to the regularization.

k λ

MNIST
PAP FGSM

10%

0.5

PAP TRADES 0.5

CIFAR-10
PAP FGSM 0.1

PAP TRADES 1

c) Training. We train models on MNIST and CIFAR-10

datasets for 50 and 100 epochs respectively. For FGSM-

AT [16], PGD-AT [18] and TRADES [31], we follow train-

ing procedure described in the respective papers. Table 2

shows the hyper-parameter setting of Plug-And-Pipeline.

4.1. Whitebox setting

Table 3 and 4 shows the performance of models trained

using Plug-And-Pipeline in a white-box setting. It can be

observed that models trained using Plug-And-Pipeline are

robust against non-iterative and iterative attacks. Whereas,

models trained using FGSM-AT are susceptible to iterative

attack i.e. IFGSM and PGD. Further, the performance of

models trained using the proposed training method is on-par

with models trained using multi-step adversarial methods

which are computationally expensive.

Ablation. We perform ablation study to show the effective-

ness of the proposed regularizer. We train ResNet-18 on

CIFAR-10 dataset using the proposed method with λ = 0.

However, we compute cross-entropy loss J on all samples,

i.e. on both FGSM (x∗
b ) and pipelined adversarial samples

(x∗
reg and x

∗ {i}
reg ) at each iteration. The last row of Table 4,

shows the performance of this model. It can be observed

that the model is susceptible to adversarial attacks. The ef-

ficacy of our regularizer is attributed to the enforcement of

local smoothness in the loss landscape.

4.2. Blackbox setting

In a black-box setting, transfer attacks are performed by

a normally trained model of the same architecture, typically

referred to as a source model. Source model is used for

generating adversarial samples and these samples are trans-

ferred to the target models. Adversarial samples are gen-

erated using MIFGSM, since this method is effective in a

black-box setting [9]. Table 5 shows the performance of

models in a black-box setting. It can be observed that the

susceptibility of models trained using Plug-And-Pipeline

(ours) is less than compared in a white-box setting.



Table 3. MNIST: Recognition accuracy (%) of models in a white-

box attack setting. We refer FGSM-AT with the proposed regu-

larization as “PAP FGSM” (Eq. 8), and single-step TRADES with

the proposed regularization as “PAP TRADES” (Eq. 9).

Method Clean FGSM
IFGSM PGD

N=40 N=100 N=40 N=100

Normal 99.19 28.20 4.30 4.13 1.43 0.02

FGSM-AT 99.29 98.61 29.90 28.14 22.05 12.41

PGD-AT 99.26 96.95 95.72 95.69 95.33 94.57

TRADES 99.48 97.86 96.51 96.50 96.13 95.15

PAP FGSM 99.29 96.69 95.58 95.56 95.05 94.04

PAP TRADES 99.10 97.11 96.07 96.05 95.62 94.66

Table 4. CIFAR-10: Recognition accuracy (%) of models in a

white-box attack setting.

Method Clean FGSM
IFGSM PGD

N=7 N=20 N=7 N=20

Normal 92.45 14.44 0.01 0.00 0.00 0.00

FGSM-AT 91.46 98.30 1.27 0.48 0.17 0.00

PGD-AT 81.42 55.62 52.45 52.12 50.77 48.87

TRADES 81.66 56.43 53.37 52.93 51.75 50.21

PAP FGSM 80.25 52.71 49.63 49.32 48.10 46.34

PAP TRADES 79.05 54.27 51.55 51.36 50.10 48.71

Ablation 81.06 97.78 21.31 17.29 0.78 0.00

4.3. Sanity Checks

In this subsection, we perform sanity checks prescribed

in [6] to verify the robustness of the models trained using

the Plug-And-Pipeline regularizer.

• Iterative attacks should be stronger than non-iterative

attacks in a white-box setting: From Table 3 and 4 it

can be observed that iterative attacks i.e. IFGSM and

PGD are stronger than non-iterative attack i.e. FGSM.

• White-box attacks should be stronger than black-box

attacks: In Table 5 it can be observed that MIFGSM

attack in a white-box setting is stronger than MIFGSM

in a black-box setting.

• Model’s accuracy should degrade with increase in the

perturbation size of an attack: From Fig. 2 it can be

observed that the model’s accuracy decreases with in-

crease in the perturbation size of PGD attack.

• Model’s accuracy should reach zero/random for an at-

tack with large perturbation size: From Fig. 2 it can

be observed that the model’s accuracy reaches zero for

PGD attack with large perturbation size.

• Untargeted attacks should be stronger than targeted

attacks: From Table 6 it can be observed that untar-

geted attack i.e. PGD is stronger than targeted attacks

i.e. PGD-R (random class is chosen as a target class)

and PGD-LL (least likely prediction of the model is

chosen as a target class). Note that, targeted attacks

generate an adversarial perturbation that aims at im-

proving the confidence of the target class.

Table 5. Performance of models trained on MNIST and CIFAR-10

dataset against MIFGSM attack in white-box and black-box set-

tings. Normally trained model is used for generating MIFGSM

adversarial samples in a black-box setting, and the generated ad-

versarial samples are transferred to the target models.

Method

MNIST CIFAR-10

MIFGSM (N=100) MIFGSM (N=20)

White-box Black-box White-box Black-box

FGSM-AT 46.52 75.74 3.01 72.85

PGD-AT 95.67 96.44 53.45 79.30

TRADES 96.59 96.99 54.34 79.56

PAP FGSM 95.57 96.26 50.70 78.31

PAP TRADES 95.91 96.59 52.42 76.77

Table 6. Comparison between untargeted and targeted attacks. (i)

untargeted attack: PGD, (ii) targeted attacks: PGD-R and PGD-

LL. We set the attack steps (N ) equal to 100 and 20 for MNIST

and CIFAR-10 datasets respectively.

Method
MNIST CIFAR-10

PGD PGD-R PGD-LL PGD PGD-R PGD-LL

PAP FGSM 94.04 98.30 98.65 46.34 72.25 77.43

PAP TRADES 94.66 98.33 98.81 48.71 72.47 76.70

Table 7. Computational overhead of adversarial training methods,

measured in terms of γ. Refer to Sec. 2.3 for the definition of γ.

.

γ
MNIST CIFAR-10

FGSM-AT 1 1

PGD-AT 40 7

TRADES 40 7

PAP (ours) 1.2 1.2

4.4. PGD attack with random restarts

In Fig. 3, we show the performance of models trained

using Plug-And-Pipeline against PGD attack with various

random restarts. It can be observed that the model’s accu-

racy decreases slightly and then saturates with the increase

in the number of random restarts, suggesting that the model

is truly robust for such samples.

4.5. Computational Overhead

In Table 7, we compare the computational overhead of

Plug-And-Pipeline (PAP) against other approaches. Adver-

sarial samples generation is the major overhead in adversar-

ial training. We measure this using γ-FGSM (Sec. 2.3).

For multi-step AT, γ = N (where N is the number of

iterations used to generate adversarial samples), while for

single-step AT γ = 1. In PGD-AT and TRADES, adversar-

ial samples are generated using multi-step attacks with steps

equal to 40 and 7 for MNIST and CIFAR-10 respectively.

It can be observed that PGD-AT and TRADES have the

highest computational overhead, where as FGSM-AT has

the lowest computational overhead. The proposed PAP

regularizer confers robustness similar to iterative methods,

while having significantly less computational overhead.



Figure 2. Recognition accuracy (%) of models trained using Plug-And-Pipeline, for PGD attack with different perturbation size (ǫ). Note

that, models’ accuracy decreases with increase in the perturbation size (ǫ).

Figure 3. Recognition accuracy (%) of models trained using Plug-And-Pipeline, for PGD attack with different number of random restarts.

Note that, the models’ accuracy does not decrease drastically with increase in the number of random restarts of PGD attack.

5. Conclusion

In this work, we proposed a novel regularizer for

single-step adversarial training methods to suppress gradi-

ent masking effect. The proposed regularizer mitigates the

gradient masking effect by promoting the model to learn

similar final representation for both single-step and multi-

step adversaries. In this regard, a computationally efficient

pipeline approach is proposed to generate multi-step adver-

saries. Finally, the performance of models trained using

Plug-And-Pipeline is on par with models trained using ex-

isting multi-step adversarial training methods.
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[27] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan

Boneh, and Patrick McDaniel. Ensemble Adversarial Train-

ing: Attacks and Defenses. In ICLR, 2018.
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