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Abstract

In many areas in machine learning, decision trees play a

crucial role in classification and regression. When a deci-

sion tree based classifier is hosted as a service in a critical

application with the need for privacy protection of the ser-

vice as well as the user data, fully homomorphic encrypted

can be employed. However, a decision node in a decision

tree can’t be directly implemented in FHE. In this paper,

we describe an end-to-end approach to support privacy-

enhanced decision tree classification using IBM supported

open-source library HELib. Using several options for build-

ing a decision node and employing oblivious computations

coupled with an argmax function in FHE we show that a

highly secure and trusted decision tree service can be en-

abled.

1. Introduction

Decision Trees are very popular machine learning mod-

els used in both classification and regression settings [14].

Typically, it consists of a binary tree where each node makes

a decision by comparing a feature to a threshold and split-

ting the decision path at that node. Leaf nodes contain de-

cisions, real values or class labels depending on whether

the task is classification or regression. Several greedy algo-

rithms (popular examples are CART and C4.5 [6, 24]) have

been proposed to learn a decision tree from training data. A

common feature of these algorithms is to greedily search for

a leaf node to split to grow the current tree that minimizes

cross entropy or other popular metrics like Gini index.

Decision trees are very effective when the number of

training samples is limited since evaluating a candidate split

is less expensive during training and other complex models

(like neural networks) cannot be trained due to large num-

ber of parameters. One of the appealing properties of deci-

sion trees is that they are invariant to feature scaling thereby

reducing any explicit need for standardization during train-

ing. There are many popular variants of this algorithm (e.g.

CHAID and FACT) [22]. Combined with ensemble meth-

ods like Gradient boosted trees [8], decision trees are very

important primitives for modern day machine learning. In

fact, in the case of classification and regression tasks over

tabular datasets, Gradient Boosted Trees are quite the stan-

dard choice [23]. In a popular survey in the data mining

community before the deep learning era, popular decision

tree learning algorithms like CART and C4.5 were voted as

one of the top ten algorithms used in the field of data min-

ing [29]. There is a recent surge and renewed interest in

learning decision trees due to its attractive property of be-

ing interpretable [18]. There has been a lot of work recently

trying to transfer information from a complex model (neu-

ral networks and boosted trees) into a single decision tree

to leverage the interpretable nature of decision trees [15, 2].

When machine learning models are used to aid decisions

made by human end users in important areas like healthcare

[7] and judiciary [20], interpretable models that are easy to

train in a small data regime like decision trees would be a
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preferable choice.

In this work, we turn our attention to the issue of de-

ploying these ubiquitously used decision trees, hosted as a

service (in a cloud environment), for critical applications

where user data privacy needs to be preserved. One way to

achieve this is to enable decision tree inference on homo-

morphically encrypted input sample at test time.

1.1. Homomorphic Encryption

Homomorphic encryption (HE) refers to a cryptosys-

tem that allows some computation on ciphertexts without

decryption [1]. A cryptosystem is homomorphic with re-

spect to operation ⋄, if there exists an operation ⊙ such

that x1 ⋄ x2 = D (E(x1, pk)⊙ E(x2, pk), sk), where E and

D represent the encryption and decryption mechanisms, re-

spectively, pk and sk represent the public and private/secret

keys, respectively, and x1 and x2 are the two plaintext

operands. An HE scheme is considered to be fully homo-

morphic (FHE) if it allows arbitrary computations on the

ciphertext [16]. Specifically, given ci = E(xi, pk), i =
1, 2, · · · ,K, an FHE scheme allows the computation of c =
g(c1, c2, · · · , cK) such that D(c, sk) = f(x1, x2, · · · , xK)
for any arbitrary function f . FHE is often achieved by em-

ploying a somewhat homomorphic (SWHE) or leveled HE

scheme in combination with a bootstrapping or recryption

technique. The SWHE scheme is capable of supporting

computations only up to a preset level of complexity de-

termined by its parameters. This is because the ciphertexts

are “noisy”, the noise keeps growing with each HE compu-

tation, and once the noise grows beyond some (parameter-

dependent) threshold the ciphertext can no longer be de-

crypted. This problem is solved using Gentry’s bootstrap-

ping technique [16], which “refreshes” the ciphertext and

reduces its noise level (at the cost of relying on circu-

lar security). However, bootstrapping is a computationally

expensive and time-consuming operation. Therefore, for

practical feasibility, the number of bootstrapping operations

should be kept at a minimum and possibly avoided.

Several FHE cryptosystems have been proposed in the

recent past based on hardness of the Ring Learning With

Errors (RWLE) problem. Prominent examples of such cryp-

tosystems include the BFV [4, 12], BGV [5], and CKKS [9]

schemes. All these three schemes are both additively and

multiplicatively homomorphic. While the BFV and BGV

schemes are efficient for vector operations over integers,

the CKKS scheme is more appropriate for “approximate”

(limited precision) floating-point operations. Furthermore,

all the above three schemes support Single Instruction Mul-

tiple Data (SIMD) operations, by packing different plain-

text values into different slots in the ciphertext. While this

ciphertext packing enables parallelization of addition and

multiplication operations, it is important to emphasize that

it is not possible to randomly access values in the individual

slots of the ciphertext after packing. Only limited opera-

tions such rotation of the slots within the ciphertext is pos-

sible. Consequently, the benefits of SIMD operations can

be fully leveraged only if ciphertext packing is performed

smartly, so as to minimize any interaction between the slots.

In this work, we employ the CKKS scheme implemented

in the HELib library [17] for our HE operations. This allows

us to directly use real-valued features as input to the deci-

sion tree, without worrying about appropriately transform-

ing the inputs as integers. Moreover, one of the critical op-

erations in a decision tree is the conditional branching based

on the result of a comparison. To implement this in practice,

we rely on a soft/fuzzy comparison operator, which requires

floating point operations.

2. Existing/Related Work

Machine learning algorithms in general and decision tree

algorithms in particular have been studied through the lens

of privacy preservation for a long time. In this section, we

provide an overview of some the related existing work in

this area. Three types of privacy risks from inference attacks

in the life cycle of a decision tree classifier have been identi-

fied in [25], namely: (1) leakage of the private training data,

(2) public release of the decision tree model, (3) privacy risk

involved in using the decision tree classifier for evaluating

classification queries in the inferencing phase. While all of

these are important from the perspective of secure decision

tree classification, in our work, we are focusing on the step 3

since in our model, the trained decision tree is hosted using

a secure server. In [27], the authors develop methods to se-

curely construct random decision trees (RDT)for both hori-

zontally and vertically partitioned data sets. Based on [13]

RDTs are constructed as follows: a non-tested feature is

“randomly” chosen without using any training data at each

level of the tree. The tree construction stops as soon as the

depth of the tree exceeds a predefined limit. After the struc-

ture of the tree is built, the training data is used to update the

statistics of each node. Each node records the number of ex-

amples of different classes that are “classified” through that

node. The process is similar to classifying with a decision

tree. The structure of the tree is only dependent on the order

that the features are randomly chosen and is completely in-

dependent from the training data. To classify an example x,

the probability outputs from multiple random trees are aver-

aged as an estimate. Based on the protocol followed in the

paper for honest adversary, they compare the performance

of the proposed protocols with the existing ID3-based pro-

tocols and conclude that RDTs can provide good security

with very high efficiency and security. Additionally in [19],

it has been shown that RDTs can be designed to support

differential privacy easily.

A cloud based privacy enhance decision tree training and

inferencing system has been proposed in [21]. In this paper,
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an additive homographic computation scheme is used for

privacy-preserving decision tree training (PPDT) and pro-

pose three methods for different privacy levels. Addition-

ally, to fully protect the query privacy, the classification re-

sult and the decision tree model simultaneously, they pro-

pose privacy-preserving decision tree evaluation (PPDE).

Both these schemes, fully exploit their functions for count-

ing and comparison in encrypted data under the additive ho-

mography.

Based on decision tree randomization and comparison

protocol based on oblivious transfer, wu et al. [28] propose

a secure decision tree evaluation. It is based on additive ho-

momorphic computation scheme and supports semi-honest

and malicious adversary attacks. Extending this concept

further, De Cock et al. [11] propose privacy-preserving de-

cision tree classifiers by decomposing the problem into few

secure components such as (i) secure distributed multipli-

cation, (ii) distributed comparison, (iii) bit-decomposition

of shares, (iv) distributed inner product, (v) argmax com-

putation, and (vi) oblivious input selection. They also sup-

port secure evaluation of other machine learning classifiers

such as SVM and logistic regression using these building

blocks. In a foundational work, Bost et al. [3] focus on tech-

niques to identify a set of core operations over encrypted

data: comparison, argmax, and dot product. These opera-

tors can be combined to build many classification protocols.

These operators are also useful in secure decision tree eval-

uation. In [26], the authors propose to use BGV style FHE

scheme to address the secure decision tree evaluation. In

BGV scheme with secure access to sign bit in arithmetic

computation, the comparison function can be easily built.

In a more recent article [30] use a novel method to compute

securely evaluation of decision trees using Fully Homomor-

phic Encryption (FHE). They replace the comparison func-

tion by a sigmoid function. The sigmoid function is ap-

proximated by a Chebyshev polynomial. They show that

a 24-degree Chebyshev polynomial performs quite well for

their experiments.

We propose to use FHE based approach using CKKS

scheme. Additionally, we exploit the SIMD operations sup-

ported in HElib to get efficient decision tree inference. The

details are described in next section.

3. The Setting

In a typical Machine Learning as a Service (MLaaS) sce-

nario, trained models are hosted on a Cloud server. As a

service, the hosting Cloud server, allows users to run infer-

ence queries on the model. Our work falls in a fundamental

regime of “privacy preserving inference problems”, where

the goal is

• the users (Client) must maintain the privacy of the

scoring data points

Figure 1. Privacy Preserving MLaaS Setting using Homomorphic

Encryption

• The Cloud wishes to reveal only the model predictions

in some form and keep model private to itself.

In this work, we assume that the Cloud owns a decision

tree based model T and the Client wishes to evaluate its data

points on T.

4. Background: Decision Trees

Definition 1 (Decision Tree) A Decision Tree T is a binary

tree structure where each node N ∈ T has an associated

triplet (fN , tN , vN ), where fN is the splitting feature, tN is

the threshold and vN is the value associated with the node.

Definition 2 (Decision Tree Evaluation) Given a data

point d and a decision tree T, we define evaluation of d on

T, eval(d,T) recursively, starting from the root node, as

follows:

• If the current node N is a leaf node, then we return

eval(d,T) := vN . Otherwise,

• Let Nl and Nr be the left and right child of N . If

tN > d[fN ], we set Nl as the current node. Otherwise,

we set Nr as the current node.

Note that for regression trees the values are real values,

where as, for classifier trees the values are class labels. Fig-

ure 2 shows an example of a decision tree.

5. Private Inference on Decision Trees

We use homomorphic encryption to enable privacy pre-

serving inference on decision trees. Figure 1 depicts the

high-level approach. Client homomorphically encrypts its

data points and shares them with the Cloud. Cloud then

uses the public key received from the Client to encrypt its

model and homomorphically evaluates the decision tree on

the encrypted data points.

Homomorphic encryption is excellent at evaluating poly-

nomials of low degree. However, it is highly expensive

to perform certain non-polynomial operations such as di-

vision, comparison and argmax. As is evident from the def-

inition in Section 4, comparison is a basic building block of
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Figure 2. Decision Tree Example: Will I be a millionaire by next

year?

the decision tree evaluation process. We use the approx-

imate comparison function from [10]. The comparison

function can be described as follows: Given two positive

real numbers a and b, and a parameter k ∈ N, we define the

operation:

EVAL(a ≥ b; k) =
ak

ak + bk

The intuition behind this function is the observation that

if a > b the above quantity tends to 1 as the parameter k in-

creases. Since, these computations are performed in an en-

crypted space, their results are also obtained in an encrypted

form. Hence, the tree evaluation needs to be performed in

the following oblivious fashion:

1. The soft-membership (SM) of a data point d at any

node N of the tree is computed recursively using the

following equations:

- If N is the right child of a node P , then:

SM(K, tK , vK) = SM(P, tP , vP )×Eval(vP ≥ tP )

- If N is the left child of a node P , then

SM(K, tK , vK) = SM(P, tP , vP )×Eval(vP < tP )

2. If the decision tree is a classifier over the class set C,

then for each class C:

– Let L = {L1, L2, . . . Lk} be the set of leaves

in T whose value is label C, then the aggregated class

confidence is given by

ACC(C) =
∑

L∈L

SM(L,d)

We return the class label with maximum ACC(.)

value, i.e., argmaxC ACC(C)

3. If the decision tree is a regressor, then assuming the

leaves of the tree are L, we return the final value as:

∑

L∈L

SM(L,d) · vL

6. Implementation and Experimental Results

6.1. Implementation Details

As mentioned before, the CKKS scheme supports SIMD

type operations. In plain language, this means one can

pack several floating-point numbers into a single ciphertext

and thereby achieve significant parallelism in operations.

We exploit this SIMD capability of the CKKS scheme and

evaluate all the comparisons operations involved in the

decision tree evaluation using a single ciphertext based

computation. A key point to note here is once packed into a

ciphertext, it is not possible to retrieve individual entries in

a random-access fashion. However, we can perform certain

types of operations such as rotation of a ciphertext which

rotates the underlying plaintext entries as well.

Ciphertext Packing: We now present our ciphertext pack-

ing strategy. Suppose the maximum depth of the decision

tree is ℓ. We assume, without loss of generality, that the tree

is balanced. Indeed, if the depth of a certain leaf is ℓ′ < ℓ,

then we can add replicas of the leaf as its left and right child,

thus increasing its depth until it becomes ℓ.

Now, for a given quantity q, we denote [q, 2t] =

[q, q, . . . 2t times . . . q]
Ciphertext Packing at Cloud’s end: Suppose

N1N2, . . . N2ℓ+1−1 is the order in which nodes of the

decision tree are visited in a bread-first search traversal.

Cloud constructs two ciphertext, whose packing is given by

T+ = [tN1
, 2ℓ][0, 2ℓ][tN2

, 2ℓ−1][0, 2ℓ−1][tN3
, 2ℓ−1][0, 2ℓ−1] . . .

and

T− = [0, 2ℓ][tN1
, 2ℓ][0, 2ℓ−1][tN2

, 2ℓ−1][0, 2ℓ−1][tN3
, 2ℓ−1] . . .

Client similarly constructs the following ciphertexts:

V + = [d[fN1
], 2ℓ][0, 2ℓ][d[fN2

], 2ℓ−1][0, 2ℓ−1] . . .

and

V − = [0, 2ℓ][d[fN1
], 2ℓ][0, 2ℓ−1][d[fN2

], 2ℓ−1][0, 2ℓ−1] . . .

The homomorphic evaluation of the decision tree can

then be implemented as follows:
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1. Let M+ = T+ + V + and M− = T− + V −.

2. Compute C ←EVAL(M+ ≥ M−) in an SIMD fash-

ion.

3. For i ∈ [0, log2 ℓ], we rotate the ciphertext to obtain

rot(C, -2ℓ+i) and compute their product as follows:

C = C×rot(C, -2ℓ+i).

It follows that the first 2ℓ entries of the resulting cipher-

text contains the SM(.) value for each leaf node.

6.2. Preliminary Experiments:

We have implemented the above ciphertext packing

based approach in C++ using IBM’s homomorphic encryp-

tion library (HElib). HElib supports a basic version of

CKKS encryption scheme but provides no bootstrapping

support. Since the comparison operation we use needs

bootstrapping, we simulate it by a simple decryption/re-

encryption routine. For the experimental setup, we used

the standard datasets from the scikit-learn machine learn-

ing library. We train a decision tree regression model on

the standard Boston housing dataset. We obtain the predic-

tion score on a test dataset using our private decision tree

approach and compare it with the non-private counterpart.

The results show that the R2-score of these two predictions

is 0.98, which implies that the private approach was able to

match the non-private version almost perfectly. As a future

work, we aim to conduct experiments on a wider range of

datasets.

We used the iris dataset (150 samples, 4 features and 3

classes) to demonstrate the classification use case for de-

cision trees. In the first stage, since the comparator and

other related processing require the feature values to be in

a specified range, we normalized the data between 0.5-1.5.

The normalization involves min-max normalization on each

feature. To handle outliers in data, on each feature, 5-95

percentile is scaled to 0.5-1.5. Data 0-5 percentile is set

to 0 and >95% is set to 1. We built the decision tree us-

ing 90% of the data leaving 10% of the data for validation.

This training is done in cleartext using regular scikit-learn

in python. The inference testing is done using the 10% of

the samples. The FHE simulated comparator has been used

currently along with an argmax function. The tree has 12

decision nodes. The class confidence from each node is

summed up and the argmax of the class confidence is re-

turned. We expect the results to be similar when HElib is

used. We found no difference in class labels in the con-

fusion matrix between cleartext inference and (simulated)

FHE encrypted version.

7. Conclusion

In this paper, we showed an efficient and secure deci-

sion tree inferencing for regression and classification. The

security is derived from the underlying provable security as-

sociated with FHE scheme. The implementation used IBM

open source version of the HElib. Our future plan includes

using larger datasets to demonstrate the efficacy of our ap-

proach.
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