

Abstract

Machine learning algorithms often use data from

databases that are mutable; therefore, the data and the

results of machine learning cannot be fully trusted. Also,

the learning process is often difficult to automate. A unified

analytical framework for trusted machine learning has

been presented in the literature to address both issues. It is

proposed building a trusted machine learning system by

using blockchain technology, which can store data in a

permanent and immutable way. In addition, smart

contracts on blockchain are used to automate the machine

learning process. However, in such a blockchain

framework, data efficiency is a big concern, because it is

very expensive to store a large amount of data on

blockchain. On the other hand, machine learning−based

computer vision systems often rely on a lot of data.

Therefore, to fully leverage a blockchain-based machine

learning framework for computer vision systems, data

efficiency issues must be addressed. This paper investigates

how to enhance data efficiency in such a framework to

bring computer vision systems to the edge. It presents a

three-step approach. First, a lightweight machine learning

model is trained on the server layer. Second, the trained

model is saved in a special binary data format for data

efficiency. Finally, the streaming layer takes these binary

data as input and scores incoming new data in an online

fashion. Real-time semantic segmentation for autonomous

driving is used as an example to demonstrate how this

approach works. This paper makes the following

contributions. First, it improves the analytical framework

for trusted computer vision systems based on blockchain.

Second, the real-time semantic segmentation example

shows how data-efficient learning for computer vision can

be performed on the edge.

1. Introduction

Machine learning−based computer vision systems are

playing a significant role in people’s lives. They have been

widely applied to retail, security, financial services,

autonomous driving, production line automation, facial

detection and recognition, health care, agriculture,

intelligence, automation, and more. However, many such

systems share some common concerns, including

trustability, lack of automation, and data efficiency. First, it

can be difficult to trust the results from a machine learning

algorithm because machine learning algorithms use data

from databases that are mutable. System administrators and

illegal hackers can modify the data source, and this will

eventually change the results, with or without notification.

Second, it can be difficult to automate the machine learning

pipeline. Currently, the machine learning pipeline is

controlled and monitored mostly by human beings.

Sometimes this process might begin or end at suboptimal

times because of human involvement and the imperfect

nature of human beings. Third, data efficiency is becoming

a bigger issue than it used to be. We are currently in the

Internet of Things (IoT) era, in which large amounts of

streaming data are generated continuously. It is extremely

impractical and inefficient to store all these data in a

mutable database at a data center. Furthermore, most of

these data can be irrelevant and useless. For example, in

anomaly detection setting, only streaming data that contain

anomaly events are worth storing or transmitting for further

analysis; other data can be ignored and discarded. Note that

some computer vision systems are not based on machine

learning methods. Those systems are beyond the scope of

this paper.

If trustability and automation are the primary goals, it is

becoming obvious that blockchain [1] technology can

greatly benefit machine learning−based computer vision

systems. A blockchain is a continuously growing,

single-linked list of immutable blocks (records) that are

often secured using cryptography. It was invented by

Satoshi Nakamoto [1] in 2008 as a public financial

transaction ledger for use in the cryptocurrency Bitcoin [1].

Blockchain technology solved the Byzantine Generals

Problem [3] and the double-spending problem [4, 5] by

using a peer-to-peer (P2P) system without going through a

trusted financial institution. This P2P network time-stamps

transactions by hashing them using SHA-256 [9] into an

ongoing chain of hash-based proof-of-work (PoW) [1],

forming a block (record) that cannot be changed without

redoing the PoW (also known as blockchain mining), which

An Analytical Framework for Trusted Machine Learning and Computer Vision

Running with Blockchain

Tao Wang, Maggie Du, Xinmin Wu, Taiping He

SAS Institute Inc

requires substantial computing power. The longest

blockchain with the highest combined difficulties serves not

only as proof of the sequence of transactions witnessed but

also as proof that it came from the pool that has the greatest

computing power. With more and more computers added to

the blockchain every day, it is increasingly difficult to hack

the blockchain system unless the hacker overpowers the rest

of the world, which is almost impossible. Therefore, people

believe that the data that are stored in the Bitcoin

blockchain are immutable and therefore can be fully trusted.

In addition to the data trustability that the Bitcoin

blockchain provides, the Ethereum blockchain [2] provides

automation capabilities. Whereas the Bitcoin blockchain is

widely considered to be blockchain 1.0, the Ethereum

blockchain is often considered to be blockchain 2.0.

Ethereum uses blockchain technology not only as the

foundation for cryptocurrency but also for decentralized

applications (DApps) and decentralized autonomous

organizations (DAOs). The Ethereum network provides a

blockchain with a built-in, fully fledged, Turing-complete

[6] programming language that can be used to implement

so-called smart contracts. Smart contracts are essentially

automated processes that can be used to encode arbitrary

state transition functions, enabling you to create and run

complicated systems (such as Facebook and Twitter,

theoretically) on top of the Ethereum blockchain. The

Ethereum blockchain opened a door to the largest

development effort so far in the world of blockchain

technology.

Although the Ethereum blockchain provides both

trustability and automation capabilities, data efficiency

remains a big concern. It is very expensive [16] to store

large data sets on blockchain. Therefore, for real-time

computer vision systems, moving the machine learning

process to edge devices not only saves the device-to-cloud

data round trip but also improves data efficiency. This is our

motivation for writing this paper. With the massive amount

of streaming data being generated and processed every day,

edge computing has become an exciting facet of people’s

lives. Edge computing helps break the limits of cloud

computing, particularly in dealing with computer vision. It

is desirable to address the data efficiency issue to bring

computer vision to the edge. However, edge devices usually

have very limited memory and computing power. How can

we train or score a machine learning model with such

limitations? Based on an analytical framework [10] for

trusted machine learning running with blockchain, this

paper presents a three-step approach to improve data

efficiency. First, a lightweight machine learning model is

trained on the server layer. Second, the trained model is

saved in a special binary data format for security and data

efficiency. The blob of binary data is very compact and can

be deployed to edge devices. Finally, the streaming layer

takes this blob of binary data as input and scores incoming

new data in an online fashion. We use real-time semantic

segmentation for autonomous driving as an example to

demonstrate how this approach works.

The rest of the paper is organized as follows. Section 2

reviews the prior art. Section 3 introduces the proposed

computer vision architecture that serves as the backbone of

our three-step approach. Section 4 presents a special binary

data format and describes how to save trained machine

learning models in this format. Section 5 uses real-time

semantic segmentation for autonomous driving as an

example to demonstrate the general workflow. Section 6

concludes the paper and suggests future research directions.

2. Review of prior art

In the literature, one paper [10] proposed to use

blockchain to solve the trustability problem and suggested

the use of a smart contract to solve the lack of automation

problem for machine learning. The framework can be

visualized using Figure 1.

Figure 1. An analytical framework for trustable machine learning.

Let’s look at each component of Figure 1 in more detail.

1. Core machine learning is the implementation of the

machine learning algorithm in its native form. It often

includes model initialization, model training, model

validation, model scoring, model evaluation, model

serialization, and model cleanup.

2. Server layer implementation is the implementation of the

machine learning algorithm after code refactoring so that it

can run on top of the server layer, which is often a

cloud-based computing environment.

3. Streaming layer implementation is the implementation of

the machine learning algorithm after code refactoring so

that it can run on top of the streaming layer. A streaming

layer is a computing environment that runs in sliding

windows and discards old data after use.

4. Smart contract implementation is the implementation of

the machine learning algorithm after code refactoring so

that it can run on top of the smart contract layer. A smart

contract [2] is simply an automated process. When a

machine learning algorithm is implemented as a smart

contract and is running on blockchain in a native way, the

automation problem can be solved or largely alleviated.

5. Server layer APIs are, as you would expect, the APIs that

are provided by the server layer. Currently, most server

layer offerings come with SDK, which is a set of APIs that

enable you to create applications to run on the server layer.

6. Streaming layer APIs are, as you would expect, the APIs

that are provided by the streaming layer. Currently, most

streaming layer offerings come with SDK, which is a set of

APIs that enable you to create applications to run on the

streaming layer.

7. Smart contract APIs are the APIs provided by the

underlying smart contract layer. Currently, most smart

contract layer offerings come with SDK, which is a set of

APIs that enable you to create applications to run on the

smart contract layer.

8. The server layer is a cloud-based computing environment

that can train or score machine learning models.

9. The streaming layer is a computing environment that can

train or score machine learning models in sliding windows.

10. The smart contract layer is a computing environment

that can train or score machine learning models on

blockchain as a native application.

11. Blockchain APIs are the APIs that are provided by the

underlying blockchain. The server layer can obtain

aggregated data from the blockchain via blockchain APIs.

The streaming layer can obtain live data on the fly from the

blockchain via blockchain APIs. The smart contract layer

can obtain data from the blockchain via blockchain APIs in

a native way.

12. The blockchain is a continuously growing list of

immutable blocks.

Nowadays, most data that are stored on blockchain are

financial transactions that often require fraud detection.

However, in such applications, it can be hard to gather

enough training data to train a good fraud detection model.

One paper [11] proposed to use synthetic data generation to

enrich training data.

Although the Ethereum blockchain−based analytical

frameworks [10, 11] provide both trustability and

automation capabilities, data efficiency remains a concern.

In the IoT era, huge amounts of streaming data are

generated continuously. On the other hand, it is extremely

expensive and inefficient to store all these data in a mutable

database or on blockchain. This paper investigates how to

enhance data efficiency to bring machine learning−based

computer vision systems to the edge. The details are

discussed in the next section.

3. The proposed computer vision architecture

The three-step approach that this paper proposes is

designed to bring machine learning−based computer vision

system to edge devices. In the first step, a lightweight

machine learning model is trained offline on the server

layer. In the second step, the trained model is saved in a

special binary data format for security and data efficiency.

The blob of binary data is very compact and can be

deployed on edge devices. In the third step, the streaming

layer takes this blob of binary data as input and scores

incoming new data in an online fashion.

Edge computing has three main advantages. First, it

improves data efficiency and cost efficiency. With massive

amounts of data generated and processed each day, it is

extremely expensive and inefficient to store all these data in

a mutable database or on blockchain. Furthermore, most of

the data from edge devices can be completely irrelevant,

with only a small portion worth storing. Therefore, with

edge computing, after data stream in and are analyzed, the

irrelevant data can simply be discarded. Second, edge

computing improves security and privacy. It improves

security by reducing the distance that data have to travel for

storing and processing, thus reducing the risk of hackers

intercepting the data during transmission. In the blockchain

setting, only a very small portion of streaming data are

saved on blockchain; most of data are analyzed and

discarded on the edge. Third, edge computing increases

speed. One of the driving forces for this type of computing

is its speed. Without edge computing, an autonomous

driving car would need to scan the road by using local

cameras, send the images back for analysis and prediction,

and wait to receive the analysis results in order to take the

next move. Completing that entire process would take

considerable time. In contrast, edge computing can reduce

latency by completing all the steps on the car’s computer.

The processing algorithm runs locally, thus making it

possible to build more responsive applications that can

achieve real-time reactions. Figure 2 shows the proposed

computer vision architecture, including training on the

server layer and scoring on the edge side.

Figure 2. Proposed computer vision architecture.

This architecture has two major parts: model training that

uses batches on the server side with SAS Viya [7], a

cloud-based computing server; and edge computing with

streaming data on edge devices enabled by SAS Event

Stream Processing [8], a sliding-window-based streaming

environment. The main design goal of this architecture is to

ensure data efficiency. Under this architecture, a

blockchain-based analytical framework [10, 11] is used to

provide both trustability and automation capabilities.

Models are trained and validated on the server side

before they are deployed to edge devices for scoring or

prediction on the fly. In most cases, the training process

consists of four steps. In the first step, images are loaded

from raw files to create the training data. In the second step,

the images that are used for training are processed. This can

include image resizing, cropping, flipping, mutating, and

possibly augmentation. In the third step, a deep learning

model is built. In the fourth step, a special binary data

format is used to save the trained model, which contains

both model information and weight information. The

special binary data format is called an analytic store

(ASTORE) [11]. More details are discussed in Section 4.

After a model is trained, validated, and saved in

ASTORE format, it can be readily deployed in edge devices

by using SAS Event Stream Processing [8], a

sliding-window-based streaming environment. A typical

model contains four sliding windows. First, a source

window takes the input images from either a CSV file or a

video connector. Second, an image processing window is

used when the images need preprocessing before they are

ready for scoring or prediction. For example, if the input

images are larger than allowed, then an image processing

window is needed to resize the images in the designated

dimensions. (Note that there is no image processing window

in the example in Section 5 because image processing is not

needed there.) Third, a model reader window reads in the

model (in ASTORE format) and provides the model and

associated parameter weights to the score window. Fourth, a

score window takes the model as input and scores incoming

images on the fly.

4. The ASTORE format for machine learning

The analytic store (ASTORE) format [11] is a binary data

format for storing machine learning models. It was designed

to be compact, unique, and immutable. Therefore, it is a

natural choice for tasks that are related to blockchain.

An ASTORE model is essentially a serializable binary

object. It contains a unique ASTORE key, which is

universal and secured using cryptography. ASTORE format

saves the machine model states, as well as all the

information needed to reconstruct a model, into a

platform-independent binary blob. This binary blob can be

stored in a local file, a blob table in the cloud, a blob in the

databases, or a blob on blockchain. An ASTORE blob

contains model information, the entry function that is

required to run this model, lists of input and output

variables, and so on. All the information is compressed and

serialized when the blob is created. It is unpacked and

deserialized when the blob is loaded into memory. When an

ASTORE is created, it can be transferred to and used on any

platform in a portable way. Therefore, it is very flexible and

can easily score new data in different environments.

A typical ASTORE contains following information:

• unique key

• model name and description

• machine learning algorithm information

• timestamps

• training parameters

• scoring functions and rules

• input variables, data types, and data formats

• output variables, data types, and data formats

One of the key features of the ASTORE format is that the

unique key is generated and secured using cryptography.

This key contains a string of characters such as

2580E6ABBCEE8B9C05689CDD952C60554A76A02E.

The key ensures that each ASTORE data file is unique and

immutable. If one bit of data is changed, the key is also

changed. This makes the ASTORE format compatible with

blockchain.

Other existing machine learning model formats like

PMML [17], PFA [18], and ONNX [19] have potential

security risks for commercial use since they are based on

plain-text based files, which can be reverse-engineered.

ASTORE’s binary format makes it not possible to

reverse-engineer. Another advantage of ASTORE is its blob

is platform-independent, so it can be deployed to different

operating systems such as in local machine, in the cloud, on

edge device, and even in GPU clusters.

5. Autonomous driving with real-time image segmentation

In this section, real-time semantic segmentation for

autonomous driving is used as an example to demonstrate

how data-efficient machine learning for computer vision

can be performed on the edge.

In this example, a lightweight semantic segmentation

model is trained that uses labeled street scenes and could

potentially be deployed in vehicle cameras and sensors [12].

It demonstrates how to perform real-time semantic

segmentation by using street scene images that are

generated by the CARLA car simulator [13]. CARLA

provides images in the RGB (red, green, blue) color space

and labeled mask images that can be used to train models for

autonomous vehicles. It is crucial for self-driving cars to

segment objects on the street (such as other vehicles,

pedestrians, road lines, and so on) so that the car can drive

safely. The segmentation model has to be implemented in

real time because any delays can lead to undesirable

outcomes.

The training data set contains 4,800 color images that are

all resized to 512 × 512. The mask images are of the same

dimensions, with pixels labeled as belonging to one of the

13 predefined categories. These categories are Unlabeled,

Building, Fence, Other, Pedestrian, Pole, Road line, Road,

Sidewalk, Vegetation, Car, Wall, Traffic sign. Figure 3

shows four sample raw images and their corresponding

mask images. Objects in the same category are marked with

the same color. For example, all pixels that belong to the

Car category are in medium blue, and all pixels that belong

to the Road category are in green.

Figure 3. Training data visualization (raw images in the top row

and ground truth masks in the bottom row).

The deep learning model architecture in this example is

based on EfficientNet (also known as ENet) [12]. This

architecture can be divided into several stages, and a

diagram of each stage is shown in Figure 4. The initial block

contains an input layer, followed by a 3 × 3 convolution

layer with stride 2 (denoted by “s=2” in Figure 4) and a

max-pooling layer, followed by a concatenation layer. In the

downsampling bottleneck module [12], there is a 3 × 3

convolution layer with stride 2 to reduce feature sizes and

an extra max-pooling layer, followed by a 1 × 1 expansion.

In the upsampling bottleneck and regular modules, a 1 × 1

projection is used to reduce dimensionality. Then, the main

convolution layer or transpose convolution layer (denoted

by “Tconv” in Figure 4) is followed by another 1 × 1

expansion. In all modules, each convolution layer is

followed by a batch normalization layer (not shown in

Figure 4 to save space).

Figure 4. Diagram of each module in ENet.

The overall architecture is shown in the appendix. With

input images of 512 × 512, the initial block and bottlenecks

in the appendix downsample the feature size to 64 × 64.

Further downsampling is avoided because reduced

resolution hurts prediction accuracy. The last convolution

layer adjusts the number of channels to match the number of

categories in the data set.

 This is a lightweight deep learning model for semantic

segmentation, with only 0.2M parameters and 1.88

GFLOPS (billion floating point operations). The streaming

model contains three windows in this example: a source

window streams images in; a model reader window reads

the trained model in ASTORE format; and a score window

performs real-time scoring. The overall workflow (shown in

Figure 5) of real-time semantic segmentation can be

processed entirely on edge devices.

Figure 5. Real-time semantic segmentation on an edge device.

The test images are street scene images that are not used

for training. In our experiment, the pixel accuracy on test

images is 92.1%, meaning that fewer than 8% of pixels are

misclassified. For some of the most important categories

(road and car), the accuracies are 94.2% and 97.1%,

respectively. Figure 6 shows the comparison among raw

images (top row), ground truth images (middle row), and

predicted images (bottom row).

Figure 6. Predictions on test images. Top row: raw images.

Middle row: ground truth. Bottom row: predictions.

Table 1 shows the computing power and scoring frames per

second (FPS) on different NVIDIA devices, including

Jetson AGX Xavier [14] and Jetson TX2 [15]. Scoring FPS

values of 8 or higher are considered real-time values.

 Jetson AGX Xavier

(edge)

Jetson TX2

(edge)

TFLOPS 11 1.5

FPS 21 10

Table 1. Computing power and scoring FPS.

6. Conclusion and future research

Ethereum blockchain−based analytical frameworks provide

both trustability and automation capabilities for machine

learning algorithms. However, data efficiency remains a

concern. This paper presents a three-step approach to

improve data efficiency in order to bring machine

learning−based computer vision systems to edge devices. In

the first step, a lightweight machine learning model is

trained on the server layer. In the second step, the trained

model is saved in a special ASTORE data format for

security and data efficiency. In the third step, the streaming

layer takes these ASTORE data as input and scores

incoming new data in an online fashion. A real-time

semantic segmentation for autonomous driving is used as an

example to demonstrate how the approach works. In the

future, we plan to further improve the ASTORE data format

to enhance data efficiency and apply this analytical

framework for trusted machine learning running with

blockchain to more computer vision applications. We plan

to provide a means to objectively and empirically study data

efficiency aspects of the proposed framework. This is a key

step towards fully integrating blockchain aspect of the

proposed framework.

Acknowledgement

The authors would like to thank Ed Huddleston for his

editing work and thank the anonymous reviewers for their

reviews.

References

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash

system. Retrieved online at https://bitcoin.org/bitcoin.pdf,
May 2018.

[2] Vitalik Buterin. A next generation smart contract and

decentralized application platform. Retrieved online at

https://whitepaper.io/document/5/ethereum-whitepape

r, May 2018.

[3] Leslie Lamport, Robert Shostak, and Marshall Pease. The

Byzantine Generals Problem. ACM Trans. on Programming

Languages and Systems 4(3):382–401, 1982.

[4] Ivan Osipkov, Eugene Vasserman, Nicholas Hopper, and

Yongdae Kim. Combating double-spending using

cooperative P2P systems. doi:10.1109/ICDCS.2007.91,

2007.

[5] Jaap-Henk Hoepman. Distributed double-spending

prevention. arXiv preprint arXiv:0802.0832v1, 2008.

[6] Andrew Hodges and Alan Turing. The Enigma. London:

Burnett Books, 1983.

[7] Jonathan Wexler, Susan Haller, and Radhikha Myneni. An

overview of SAS Visual Data Mining and Machine Learning

on SAS Viya. SAS Global Forum, 2017.

[8] John Davis. How’s Your Sports ESP? Using SAS Event

Stream Processing with SAS Visual Analytics to Analyze

Sports Data, SAS Global Forum, 2017.

[9] Henri Gilbert and Helena Handschuh. Security analysis of

SHA-256 and Sisters. Selected Areas in Cryptography, 2003,

pp. 175–193.

[10] Tao Wang. A unified analytical framework for trustable

machine learning and automation running with blockchain.

IEEE BigData Conference workshops, 2018.

[11] Tao Wang, Xinmin Wu, and Taiping He. Trustable and

Automated Machine Learning Running with Blockchain and

Its Applications, KDD Workshops, 2019.

[12] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and

Eugenio Culurciello. ENet: A Deep Neural Network

Architecture for Real-Time Semantic Segmentation. arXiv

preprint arXiv:1606.02147, 2016.

[13] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Valdlen Koltun. CARLA: An Open Urban

Driving Simulator. arXiv preprint arXiv:1711.03938, 2017.

[14] NVIDIA Jetson AGX Xavier. Retrieved online at

https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-agx-xavier/, March 2020.

[15] NVIDIA Jetson TX2. Retrieved online at

https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-tx2/, March 2020.

[16] A. Besir Kurtulmus and Kenny Daniel. Trustless Machine

Learning Contracts; Evaluating and Exchanging Machine

Learning Models on the Ethereum Blockchain, arXiv

preprint arXiv:1802.10185, 2018.

[17] Robert Grossman, Stuart Bailey, Ashok Ramu, Balinder
Malhi, Philip Hallstorm, Ivan Pulleyn, and Xiao Qin. The
management and mining of multiple predictive models using
the predictive modeling markup language, Information and
Software Technology, vol. 41, no. 9, pp. 589–595, 2002,
DOI: 10.1016/S0950-5849(99)00022-1.

[18] Jim Pivarski, Collin Bennett, and Robert Grossman.
Deploying analytics with the Portable Format for Analytics
(PFA), KDD 2016.

[19] Kim Hazelwood, et al., Applied machine learning at
Facebook: A datacenter infrastructure perspective,
International Symposium on High-Performance Computer
Architecture (HPCA), 2018.

[20] Ravi Kiran Rama, et al., Trusted Multi-Party Computation
and Vefiriable Simulations: A Scalable Blockchain
Apporach. arXiv preprint arXiv:1809.08438, 2018.

Appendix: The Overall Model Architecture

Stage Name Type Output Size

0 Initial Initial 256 256 16

1
BNeck1.0 Downsampling 128 128 64

BNeck1.1–BNeck1.4 Regular 128 128 64

2
BNeck2.0 Downsampling 64 64 128

BNeck2.1–BNeck2.4 Regular 64 64 128

3 BNeck3.1–BNeck3.4 Regular 64 64 128

4
BNeck4.0 Upsampling 128 128 64

BNeck4.1–BNeck4.2 Regular 128 128 64

5
BNeck5.0 Upsampling 256 256 16

BNeck5.1 Regular 256 256 16

6
BNeck6.0 Upsampling 512 512 16

Conv Convolution 512 512 13

