
 

 

Abstract 

 

Machine learning algorithms often use data from 

databases that are mutable; therefore, the data and the 

results of machine learning cannot be fully trusted. Also, 

the learning process is often difficult to automate. A unified 

analytical framework for trusted machine learning has 

been presented in the literature to address both issues. It is 

proposed building a trusted machine learning system by 

using blockchain technology, which can store data in a 

permanent and immutable way. In addition, smart 

contracts on blockchain are used to automate the machine 

learning process. However, in such a blockchain 

framework, data efficiency is a big concern, because it is 

very expensive to store a large amount of data on 

blockchain. On the other hand, machine learning−based 

computer vision systems often rely on a lot of data. 

Therefore, to fully leverage a blockchain-based machine 

learning framework for computer vision systems, data 

efficiency issues must be addressed. This paper investigates 

how to enhance data efficiency in such a framework to 

bring computer vision systems to the edge. It presents a 

three-step approach. First, a lightweight machine learning 

model is trained on the server layer. Second, the trained 

model is saved in a special binary data format for data 

efficiency. Finally, the streaming layer takes these binary 

data as input and scores incoming new data in an online 

fashion. Real-time semantic segmentation for autonomous 

driving is used as an example to demonstrate how this 

approach works. This paper makes the following 

contributions. First, it improves the analytical framework 

for trusted computer vision systems based on blockchain. 

Second, the real-time semantic segmentation example 

shows how data-efficient learning for computer vision can 

be performed on the edge.  

1. Introduction 

Machine learning−based computer vision systems are 

playing a significant role in people’s lives. They have been 

widely applied to retail, security, financial services, 

autonomous driving, production line automation, facial 

detection and recognition, health care, agriculture, 

intelligence, automation, and more. However, many such 

systems share some common concerns, including  

trustability, lack of automation, and data efficiency. First, it 

can be difficult to trust the results from a machine learning 

algorithm because machine learning algorithms use data 

from databases that are mutable. System administrators and 

illegal hackers can modify the data source, and this will 

eventually change the results, with or without notification. 

Second, it can be difficult to automate the machine learning 

pipeline. Currently, the machine learning pipeline is 

controlled and monitored mostly by human beings. 

Sometimes this process might begin or end at suboptimal 

times because of human involvement and the imperfect 

nature of human beings. Third, data efficiency is becoming 

a bigger issue than it used to be. We are currently in the 

Internet of Things (IoT) era, in which large amounts of 

streaming data are generated continuously. It is extremely 

impractical and inefficient to store all these data in a 

mutable database at a data center. Furthermore, most of 

these data can be irrelevant and useless. For example, in 

anomaly detection setting, only streaming data that contain 

anomaly events are worth storing or transmitting for further 

analysis; other data can be ignored and discarded. Note that 

some computer vision systems are not based on machine 

learning methods. Those systems are beyond the scope of 

this paper. 

If trustability and automation are the primary goals, it is 

becoming obvious that blockchain [1] technology can 

greatly benefit machine learning−based computer vision 

systems. A blockchain is a continuously growing, 

single-linked list of immutable blocks (records) that are 

often secured using cryptography. It was invented by 

Satoshi Nakamoto [1] in 2008 as a public financial 

transaction ledger for use in the cryptocurrency Bitcoin [1]. 

Blockchain technology solved the Byzantine Generals 

Problem [3] and the double-spending problem [4, 5] by 

using a peer-to-peer (P2P) system without going through a 

trusted financial institution. This P2P network time-stamps 

transactions by hashing them using SHA-256 [9] into an 

ongoing chain of hash-based proof-of-work (PoW) [1], 

forming a block (record) that cannot be changed without 

redoing the PoW (also known as blockchain mining), which 
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requires substantial computing power. The longest 

blockchain with the highest combined difficulties serves not 

only as proof of the sequence of transactions witnessed but 

also as proof that it came from the pool that has the greatest 

computing power. With more and more computers added to 

the blockchain every day, it is increasingly difficult to hack 

the blockchain system unless the hacker overpowers the rest 

of the world, which is almost impossible. Therefore, people 

believe that the data that are stored in the Bitcoin 

blockchain are immutable and therefore can be fully trusted. 

In addition to the data trustability that the Bitcoin 

blockchain provides, the Ethereum blockchain [2] provides 

automation capabilities. Whereas the Bitcoin blockchain is 

widely considered to be blockchain 1.0, the Ethereum 

blockchain is often considered to be blockchain 2.0. 

Ethereum uses blockchain technology not only as the 

foundation for cryptocurrency but also for decentralized 

applications (DApps) and decentralized autonomous 

organizations (DAOs). The Ethereum network provides a 

blockchain with a built-in, fully fledged, Turing-complete 

[6] programming language that can be used to implement 

so-called smart contracts. Smart contracts are essentially 

automated processes that can be used to encode arbitrary 

state transition functions, enabling you to create and run 

complicated systems (such as Facebook and Twitter, 

theoretically) on top of the Ethereum blockchain. The 

Ethereum blockchain opened a door to the largest 

development effort so far in the world of blockchain 

technology. 

Although the Ethereum blockchain provides both 

trustability and automation capabilities, data efficiency 

remains a big concern. It is very expensive [16] to store 

large data sets on blockchain. Therefore, for real-time 

computer vision systems, moving the machine learning 

process to edge devices not only saves the device-to-cloud 

data round trip but also improves data efficiency. This is our 

motivation for writing this paper. With the massive amount 

of streaming data being generated and processed every day, 

edge computing has become an exciting facet of people’s 

lives. Edge computing helps break the limits of cloud 

computing, particularly in dealing with computer vision. It 

is desirable to address the data efficiency issue to bring 

computer vision to the edge. However, edge devices usually 

have very limited memory and computing power. How can 

we train or score a machine learning model with such 

limitations? Based on an analytical framework [10] for 

trusted machine learning running with blockchain, this 

paper presents a three-step approach to improve data 

efficiency. First, a lightweight machine learning model is 

trained on the server layer. Second, the trained model is 

saved in a special binary data format for security and data 

efficiency. The blob of binary data is very compact and can 

be deployed to edge devices. Finally, the streaming layer 

takes this blob of binary data as input and scores incoming 

new data in an online fashion. We use real-time semantic 

segmentation for autonomous driving as an example to 

demonstrate how this approach works. 

The rest of the paper is organized as follows. Section 2 

reviews the prior art. Section 3 introduces the proposed 

computer vision architecture that serves as the backbone of 

our three-step approach. Section 4 presents a special binary 

data format and describes how to save trained machine 

learning models in this format. Section 5 uses real-time 

semantic segmentation for autonomous driving as an 

example to demonstrate the general workflow. Section 6 

concludes the paper and suggests future research directions. 

2. Review of prior art 

In the literature, one paper [10] proposed to use 

blockchain to solve the trustability problem and suggested 

the use of a smart contract to solve the lack of automation 

problem for machine learning. The framework can be 

visualized using Figure 1. 

 

Figure 1. An analytical framework for trustable machine learning. 

   

Let’s look at each component of Figure 1 in more detail. 

1. Core machine learning is the implementation of the 

machine learning algorithm in its native form. It often 

includes model initialization, model training, model 

validation, model scoring, model evaluation, model 

serialization, and model cleanup. 



 

2. Server layer implementation is the implementation of the 

machine learning algorithm after code refactoring so that it 

can run on top of the server layer, which is often a 

cloud-based computing environment. 

3. Streaming layer implementation is the implementation of 

the machine learning algorithm after code refactoring so 

that it can run on top of the streaming layer. A streaming 

layer is a computing environment that runs in sliding 

windows and discards old data after use. 

4. Smart contract implementation is the implementation of 

the machine learning algorithm after code refactoring so 

that it can run on top of the smart contract layer. A smart 

contract [2] is simply an automated process. When a 

machine learning algorithm is implemented as a smart 

contract and is running on blockchain in a native way, the 

automation problem can be solved or largely alleviated.  

5. Server layer APIs are, as you would expect, the APIs that 

are provided by the server layer. Currently, most server 

layer offerings come with SDK, which is a set of APIs that 

enable you to create applications to run on the server layer. 

6. Streaming layer APIs are, as you would expect, the APIs 

that are provided by the streaming layer. Currently, most 

streaming layer offerings come with SDK, which is a set of 

APIs that enable you to create applications to run on the 

streaming layer. 

7. Smart contract APIs are the APIs provided by the 

underlying smart contract layer. Currently, most smart 

contract layer offerings come with SDK, which is a set of 

APIs that enable you to create applications to run on the 

smart contract layer. 

8. The server layer is a cloud-based computing environment 

that can train or score machine learning models. 

9. The streaming layer is a computing environment that can 

train or score machine learning models in sliding windows. 

10. The smart contract layer is a computing environment 

that can train or score machine learning models on 

blockchain as a native application.  

11. Blockchain APIs are the APIs that are provided by the 

underlying blockchain. The server layer can obtain 

aggregated data from the blockchain via blockchain APIs. 

The streaming layer can obtain live data on the fly from the 

blockchain via blockchain APIs. The smart contract layer 

can obtain data from the blockchain via blockchain APIs in 

a native way. 

12. The blockchain is a continuously growing list of 

immutable blocks. 

Nowadays, most data that are stored on blockchain are 

financial transactions that often require fraud detection. 

However, in such applications, it can be hard to gather 

enough training data to train a good fraud detection model. 

One paper [11] proposed to use synthetic data generation to 

enrich training data. 

Although the Ethereum blockchain−based analytical 

frameworks [10, 11] provide both trustability and 

automation capabilities, data efficiency remains a concern. 

In the IoT era, huge amounts of streaming data are 

generated continuously. On the other hand, it is extremely 

expensive and inefficient to store all these data in a mutable 

database or on blockchain. This paper investigates how to 

enhance data efficiency to bring machine learning−based 

computer vision systems to the edge. The details are 

discussed in the next section. 

3. The proposed computer vision architecture 

The three-step approach that this paper proposes is 

designed to bring machine learning−based computer vision 

system to edge devices. In the first step, a lightweight 

machine learning model is trained offline on the server 

layer. In the second step, the trained model is saved in a 

special binary data format for security and data efficiency. 

The blob of binary data is very compact and can be 

deployed on edge devices. In the third step, the streaming 

layer takes this blob of binary data as input and scores 

incoming new data in an online fashion. 

Edge computing has three main advantages. First, it 

improves data efficiency and cost efficiency. With massive 

amounts of data generated and processed each day, it is 

extremely expensive and inefficient to store all these data in 

a mutable database or on blockchain. Furthermore, most of 

the data from edge devices can be completely irrelevant, 

with only a small portion worth storing. Therefore, with 

edge computing, after data stream in and are analyzed, the 

irrelevant data can simply be discarded. Second, edge 

computing improves security and privacy. It improves 

security by reducing the distance that data have to travel for 

storing and processing, thus reducing the risk of hackers 

intercepting the data during transmission. In the blockchain 

setting, only a very small portion of streaming data are 

saved on blockchain; most of data are analyzed and 

discarded on the edge. Third, edge computing increases 

speed. One of the driving forces for this type of computing 

is its speed. Without edge computing, an autonomous 

driving car would need to scan the road by using local 

cameras, send the images back for analysis and prediction, 

and wait to receive the analysis results in order to take the 

next move. Completing that entire process would take 

considerable time. In contrast, edge computing can reduce 

latency by completing all the steps on the car’s computer. 

The processing algorithm runs locally, thus making it 



 

possible to build more responsive applications that can 

achieve real-time reactions. Figure 2 shows the proposed 

computer vision architecture, including training on the 

server layer and scoring on the edge side.  

 

Figure 2. Proposed computer vision architecture. 

 

This architecture has two major parts: model training that 

uses batches on the server side with SAS Viya [7], a 

cloud-based computing server; and edge computing with 

streaming data on edge devices enabled by SAS Event 

Stream Processing [8], a sliding-window-based streaming 

environment. The main design goal of this architecture is to 

ensure data efficiency. Under this architecture, a 

blockchain-based analytical framework [10, 11] is used to 

provide both trustability and automation capabilities. 

Models are trained and validated on the server side 

before they are deployed to edge devices for scoring or 

prediction on the fly. In most cases, the training process 

consists of four steps. In the first step, images are loaded 

from raw files to create the training data. In the second step, 

the images that are used for training are processed. This can 

include image resizing, cropping, flipping, mutating, and 

possibly augmentation. In the third step, a deep learning 

model is built. In the fourth step, a special binary data 

format is used to save the trained model, which contains 

both model information and weight information. The 

special binary data format is called an analytic store 

(ASTORE) [11]. More details are discussed in Section 4. 

After a model is trained, validated, and saved in 

ASTORE format, it can be readily deployed in edge devices 

by using SAS Event Stream Processing [8], a 

sliding-window-based streaming environment. A typical 

model contains four sliding windows. First, a source 

window takes the input images from either a CSV file or a 

video connector. Second, an image processing window is 

used when the images need preprocessing before they are 

ready for scoring or prediction. For example, if the input 

images are larger than allowed, then an image processing 

window is needed to resize the images in the designated 

dimensions. (Note that there is no image processing window 

in the example in Section 5 because image processing is not 

needed there.) Third, a model reader window reads in the 

model (in ASTORE format) and provides the model and 

associated parameter weights to the score window. Fourth, a 

score window takes the model as input and scores incoming 

images on the fly. 

4. The ASTORE format for machine learning 

The analytic store (ASTORE) format [11] is a binary data 

format for storing machine learning models. It was designed 

to be compact, unique, and immutable. Therefore, it is a 

natural choice for tasks that are related to blockchain. 

An ASTORE model is essentially a serializable binary 

object. It contains a unique ASTORE key, which is 

universal and secured using cryptography. ASTORE format 

saves the machine model states, as well as all the 

information needed to reconstruct a model, into a 

platform-independent binary blob. This binary blob can be 

stored in a local file, a blob table in the cloud, a blob in the 

databases, or a blob on blockchain. An ASTORE blob 

contains model information, the entry function that is 

required to run this model, lists of input and output 

variables, and so on. All the information is compressed and 

serialized when the blob is created. It is unpacked and 

deserialized when the blob is loaded into memory. When an 

ASTORE is created, it can be transferred to and used on any 

platform in a portable way. Therefore, it is very flexible and 

can easily score new data in different environments. 

  

A typical ASTORE contains following information: 

• unique key 

• model name and description  

• machine learning algorithm information 

• timestamps 

• training parameters  

• scoring functions and rules 

• input variables, data types, and data formats 

• output variables, data types, and data formats  

One of the key features of the ASTORE format is that the 

unique key is generated and secured using cryptography. 

This key contains a string of characters such as 

2580E6ABBCEE8B9C05689CDD952C60554A76A02E. 

The key ensures that each ASTORE data file is unique and 

immutable. If one bit of data is changed, the key is also 

changed. This makes the ASTORE format compatible with 

blockchain. 

Other existing machine learning model formats like 

PMML [17], PFA [18], and ONNX [19] have potential 

security risks for commercial use since they are based on 

plain-text based files, which can be reverse-engineered. 

ASTORE’s binary format makes it not possible to 

reverse-engineer. Another advantage of ASTORE is its blob 

is platform-independent, so it can be deployed to different 



 

operating systems such as in local machine, in the cloud, on 

edge device, and even in GPU clusters. 

5. Autonomous driving with real-time image segmentation 

In this section, real-time semantic segmentation for 

autonomous driving is used as an example to demonstrate 

how data-efficient machine learning for computer vision 

can be performed on the edge. 

In this example, a lightweight semantic segmentation 

model is trained that uses labeled street scenes and could 

potentially be deployed in vehicle cameras and sensors [12]. 

It demonstrates how to perform real-time semantic 

segmentation by using street scene images that are 

generated by the CARLA car simulator [13]. CARLA 

provides images in the RGB (red, green, blue) color space 

and labeled mask images that can be used to train models for 

autonomous vehicles. It is crucial for self-driving cars to 

segment objects on the street (such as other vehicles, 

pedestrians, road lines, and so on) so that the car can drive 

safely. The segmentation model has to be implemented in 

real time because any delays can lead to undesirable 

outcomes. 

The training data set contains 4,800 color images that are 

all resized to 512 × 512. The mask images are of the same 

dimensions, with pixels labeled as belonging to one of the 

13 predefined categories. These categories are Unlabeled, 

Building, Fence, Other, Pedestrian, Pole, Road line, Road, 

Sidewalk, Vegetation, Car, Wall, Traffic sign. Figure 3 

shows four sample raw images and their corresponding 

mask images. Objects in the same category are marked with 

the same color. For example, all pixels that belong to the 

Car category are in medium blue, and all pixels that belong 

to the Road category are in green. 

 
Figure 3. Training data visualization (raw images in the top row 

and ground truth masks in the bottom row). 

 

The deep learning model architecture in this example is 

based on EfficientNet (also known as ENet) [12]. This 

architecture can be divided into several stages, and a 

diagram of each stage is shown in Figure 4. The initial block 

contains an input layer, followed by a 3 × 3 convolution 

layer with stride 2 (denoted by “s=2” in Figure 4) and a 

max-pooling layer, followed by a concatenation layer. In the 

downsampling bottleneck module [12], there is a 3 × 3 

convolution layer with stride 2 to reduce feature sizes and 

an extra max-pooling layer, followed by a 1 × 1 expansion. 

In the upsampling bottleneck and regular modules, a 1 × 1 

projection is used to reduce dimensionality. Then, the main 

convolution layer or transpose convolution layer (denoted 

by “Tconv” in Figure 4) is followed by another 1 × 1 

expansion. In all modules, each convolution layer is 

followed by a batch normalization layer (not shown in 

Figure 4 to save space). 

 
Figure 4. Diagram of each module in ENet. 

 

The overall architecture is shown in the appendix. With 

input images of 512 × 512, the initial block and bottlenecks 

in the appendix downsample the feature size to 64 × 64. 

Further downsampling is avoided because reduced 

resolution hurts prediction accuracy. The last convolution 

layer adjusts the number of channels to match the number of 

categories in the data set. 

 This is a lightweight deep learning model for semantic 

segmentation, with only 0.2M parameters and 1.88 

GFLOPS (billion floating point operations). The streaming 

model contains three windows in this example: a source 

window streams images in; a model reader window reads 

the trained model in ASTORE format; and a score window 

performs real-time scoring. The overall workflow (shown in 

Figure 5) of real-time semantic segmentation can be 

processed entirely on edge devices. 

 
Figure 5. Real-time semantic segmentation on an edge device. 

 

The test images are street scene images that are not used 

for training. In our experiment, the pixel accuracy on test 

images is 92.1%, meaning that fewer than 8% of pixels are 

misclassified. For some of the most important categories 

(road and car), the accuracies are 94.2% and 97.1%, 

respectively. Figure 6 shows the comparison among raw 

images (top row), ground truth images (middle row), and 

predicted images (bottom row). 



 

 
Figure 6. Predictions on test images. Top row: raw images. 

Middle row: ground truth. Bottom row: predictions. 

 

Table 1 shows the computing power and scoring frames per 

second (FPS) on different NVIDIA devices, including 

Jetson AGX Xavier [14] and Jetson TX2 [15]. Scoring FPS 

values of 8 or higher are considered real-time values. 

 

 Jetson AGX Xavier 

(edge) 

Jetson TX2 

(edge) 

TFLOPS 11 1.5 

FPS 21 10 

Table 1. Computing power and scoring FPS. 

6. Conclusion and future research 

Ethereum blockchain−based analytical frameworks provide 

both trustability and automation capabilities for machine 

learning algorithms. However, data efficiency remains a 

concern. This paper presents a three-step approach to 

improve data efficiency in order to bring machine 

learning−based computer vision systems to edge devices. In 

the first step, a lightweight machine learning model is 

trained on the server layer. In the second step, the trained 

model is saved in a special ASTORE data format for 

security and data efficiency. In the third step, the streaming 

layer takes these ASTORE data as input and scores 

incoming new data in an online fashion. A real-time 

semantic segmentation for autonomous driving is used as an 

example to demonstrate how the approach works. In the 

future, we plan to further improve the ASTORE data format 

to enhance data efficiency and apply this analytical 

framework for trusted machine learning running with 

blockchain to more computer vision applications. We plan 

to provide a means to objectively and empirically study data 

efficiency aspects of the proposed framework. This is a key 

step towards fully integrating blockchain aspect of the 

proposed framework. 
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Appendix: The Overall Model Architecture 

Stage Name Type Output Size 

0 Initial Initial 256  256  16 

1 
BNeck1.0 Downsampling 128  128  64 

BNeck1.1–BNeck1.4 Regular 128  128  64 

2 
BNeck2.0 Downsampling 64  64  128 

BNeck2.1–BNeck2.4 Regular 64  64  128 

3 BNeck3.1–BNeck3.4 Regular 64  64  128 

4 
BNeck4.0 Upsampling 128  128  64 

BNeck4.1–BNeck4.2 Regular 128  128  64 

5 
BNeck5.0 Upsampling 256  256  16 

BNeck5.1 Regular 256  256  16 

6 
BNeck6.0 Upsampling 512  512  16 

Conv Convolution 512  512  13 

 
 


