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Abstract

Machine learning algorithms often use data from
databases that are mutable; therefore, the data and the
results of machine learning cannot be fully trusted. Also,
the learning process is often difficult to automate. A unified
analytical framework for trusted machine learning has
been presented in the literature to address both issues. It is
proposed building a trusted machine learning system by
using blockchain technology, which can store data in a
permanent and immutable way. In addition, smart
contracts on blockchain are used to automate the machine
learning process. However, in such a blockchain
framework, data efficiency is a big concern, because it is
very expensive to store a large amount of data on
blockchain. On the other hand, machine learning—based
computer vision systems often rely on a lot of data.
Therefore, to fully leverage a blockchain-based machine
learning framework for computer vision systems, data
efficiency issues must be addressed. This paper investigates
how to enhance data efficiency in such a framework to
bring computer vision systems to the edge. It presents a
three-step approach. First, a lightweight machine learning
model is trained on the server layer. Second, the trained
model is saved in a special binary data format for data
efficiency. Finally, the streaming layer takes these binary
data as input and scores incoming new data in an online
fashion. Real-time semantic segmentation for autonomous
driving is used as an example to demonstrate how this
approach works. This paper makes the following
contributions. First, it improves the analytical framework
for trusted computer vision systems based on blockchain.
Second, the real-time semantic segmentation example
shows how data-efficient learning for computer vision can
be performed on the edge.

1. Introduction

Machine learning—based computer vision systems are
playing a significant role in people’s lives. They have been
widely applied to retail, security, financial services,
autonomous driving, production line automation, facial

detection and recognition, health care, agriculture,
intelligence, automation, and more. However, many such
systems share some common concerns, including
trustability, lack of automation, and data efficiency. First, it
can be difficult to trust the results from a machine learning
algorithm because machine learning algorithms use data
from databases that are mutable. System administrators and
illegal hackers can modify the data source, and this will
eventually change the results, with or without notification.
Second, it can be difficult to automate the machine learning
pipeline. Currently, the machine learning pipeline is
controlled and monitored mostly by human beings.
Sometimes this process might begin or end at suboptimal
times because of human involvement and the imperfect
nature of human beings. Third, data efficiency is becoming
a bigger issue than it used to be. We are currently in the
Internet of Things (IoT) era, in which large amounts of
streaming data are generated continuously. It is extremely
impractical and inefficient to store all these data in a
mutable database at a data center. Furthermore, most of
these data can be irrelevant and useless. For example, in
anomaly detection setting, only streaming data that contain
anomaly events are worth storing or transmitting for further
analysis; other data can be ignored and discarded. Note that
some computer vision systems are not based on machine
learning methods. Those systems are beyond the scope of
this paper.

If trustability and automation are the primary goals, it is
becoming obvious that blockchain [1] technology can
greatly benefit machine learning—based computer vision
systems. A blockchain is a continuously growing,
single-linked list of immutable blocks (records) that are
often secured using cryptography. It was invented by
Satoshi Nakamoto [1] in 2008 as a public financial
transaction ledger for use in the cryptocurrency Bitcoin [1].
Blockchain technology solved the Byzantine Generals
Problem [3] and the double-spending problem [4, 5] by
using a peer-to-peer (P2P) system without going through a
trusted financial institution. This P2P network time-stamps
transactions by hashing them using SHA-256 [9] into an
ongoing chain of hash-based proof-of-work (PoW) [1],
forming a block (record) that cannot be changed without
redoing the PoW (also known as blockchain mining), which



requires substantial computing power. The longest
blockchain with the highest combined difficulties serves not
only as proof of the sequence of transactions witnessed but
also as proof that it came from the pool that has the greatest
computing power. With more and more computers added to
the blockchain every day, it is increasingly difficult to hack
the blockchain system unless the hacker overpowers the rest
of the world, which is almost impossible. Therefore, people
believe that the data that are stored in the Bitcoin
blockchain are immutable and therefore can be fully trusted.

In addition to the data trustability that the Bitcoin
blockchain provides, the Ethereum blockchain [2] provides
automation capabilities. Whereas the Bitcoin blockchain is
widely considered to be blockchain 1.0, the Ethereum
blockchain is often considered to be blockchain 2.0.
Ethereum uses blockchain technology not only as the
foundation for cryptocurrency but also for decentralized
applications (DApps) and decentralized autonomous
organizations (DAOs). The Ethereum network provides a
blockchain with a built-in, fully fledged, Turing-complete
[6] programming language that can be used to implement
so-called smart contracts. Smart contracts are essentially
automated processes that can be used to encode arbitrary
state transition functions, enabling you to create and run
complicated systems (such as Facebook and Twitter,
theoretically) on top of the Ethereum blockchain. The
Ethereum blockchain opened a door to the largest
development effort so far in the world of blockchain
technology.

Although the Ethereum blockchain provides both
trustability and automation capabilities, data efficiency
remains a big concern. It is very expensive [16] to store
large data sets on blockchain. Therefore, for real-time
computer vision systems, moving the machine learning
process to edge devices not only saves the device-to-cloud
data round trip but also improves data efficiency. This is our
motivation for writing this paper. With the massive amount
of streaming data being generated and processed every day,
edge computing has become an exciting facet of people’s
lives. Edge computing helps break the limits of cloud
computing, particularly in dealing with computer vision. It
is desirable to address the data efficiency issue to bring
computer vision to the edge. However, edge devices usually
have very limited memory and computing power. How can
we train or score a machine learning model with such
limitations? Based on an analytical framework [10] for
trusted machine learning running with blockchain, this
paper presents a three-step approach to improve data
efficiency. First, a lightweight machine learning model is
trained on the server layer. Second, the trained model is
saved in a special binary data format for security and data
efficiency. The blob of binary data is very compact and can
be deployed to edge devices. Finally, the streaming layer

takes this blob of binary data as input and scores incoming
new data in an online fashion. We use real-time semantic
segmentation for autonomous driving as an example to
demonstrate how this approach works.

The rest of the paper is organized as follows. Section 2
reviews the prior art. Section 3 introduces the proposed
computer vision architecture that serves as the backbone of
our three-step approach. Section 4 presents a special binary
data format and describes how to save trained machine
learning models in this format. Section 5 uses real-time
semantic segmentation for autonomous driving as an
example to demonstrate the general workflow. Section 6
concludes the paper and suggests future research directions.

2. Review of prior art

In the literature, one paper [10] proposed to use
blockchain to solve the trustability problem and suggested
the use of a smart contract to solve the lack of automation
problem for machine learning. The framework can be
visualized using Figure 1.
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Figure 1. An analytical framework for trustable machine learning.

Let’s look at each component of Figure 1 in more detail.

1. Core machine learning is the implementation of the
machine learning algorithm in its native form. It often
includes model initialization, model training, model
validation, model scoring, model evaluation, model
serialization, and model cleanup.



2. Server layer implementation is the implementation of the
machine learning algorithm after code refactoring so that it
can run on top of the server layer, which is often a
cloud-based computing environment.

3. Streaming layer implementation is the implementation of
the machine learning algorithm after code refactoring so
that it can run on top of the streaming layer. A streaming
layer is a computing environment that runs in sliding
windows and discards old data after use.

4. Smart contract implementation is the implementation of
the machine learning algorithm after code refactoring so
that it can run on top of the smart contract layer. A smart
contract [2] is simply an automated process. When a
machine learning algorithm is implemented as a smart
contract and is running on blockchain in a native way, the
automation problem can be solved or largely alleviated.

5. Server layer APIs are, as you would expect, the APIs that
are provided by the server layer. Currently, most server
layer offerings come with SDK, which is a set of APIs that
enable you to create applications to run on the server layer.

6. Streaming layer APIs are, as you would expect, the APIs
that are provided by the streaming layer. Currently, most
streaming layer offerings come with SDK, which is a set of
APIs that enable you to create applications to run on the
streaming layer.

7. Smart contract APIs are the APIs provided by the
underlying smart contract layer. Currently, most smart
contract layer offerings come with SDK, which is a set of
APIs that enable you to create applications to run on the
smart contract layer.

8. The server layer is a cloud-based computing environment
that can train or score machine learning models.

9. The streaming layer is a computing environment that can
train or score machine learning models in sliding windows.

10. The smart contract layer is a computing environment
that can train or score machine learning models on
blockchain as a native application.

11. Blockchain APIs are the APIs that are provided by the
underlying blockchain. The server layer can obtain
aggregated data from the blockchain via blockchain APIs.
The streaming layer can obtain live data on the fly from the
blockchain via blockchain APIs. The smart contract layer
can obtain data from the blockchain via blockchain APIs in
a native way.

12. The blockchain is a continuously growing list of
immutable blocks.

Nowadays, most data that are stored on blockchain are
financial transactions that often require fraud detection.
However, in such applications, it can be hard to gather
enough training data to train a good fraud detection model.
One paper [11] proposed to use synthetic data generation to
enrich training data.

Although the Ethereum blockchain—based analytical
frameworks [10, 11] provide both trustability and
automation capabilities, data efficiency remains a concern.
In the IoT era, huge amounts of streaming data are
generated continuously. On the other hand, it is extremely
expensive and inefficient to store all these data in a mutable
database or on blockchain. This paper investigates how to
enhance data efficiency to bring machine learning—based
computer vision systems to the edge. The details are
discussed in the next section.

3. The proposed computer vision architecture

The three-step approach that this paper proposes is
designed to bring machine learning—based computer vision
system to edge devices. In the first step, a lightweight
machine learning model is trained offline on the server
layer. In the second step, the trained model is saved in a
special binary data format for security and data efficiency.
The blob of binary data is very compact and can be
deployed on edge devices. In the third step, the streaming
layer takes this blob of binary data as input and scores
incoming new data in an online fashion.

Edge computing has three main advantages. First, it
improves data efficiency and cost efficiency. With massive
amounts of data generated and processed each day, it is
extremely expensive and inefficient to store all these data in
a mutable database or on blockchain. Furthermore, most of
the data from edge devices can be completely irrelevant,
with only a small portion worth storing. Therefore, with
edge computing, after data stream in and are analyzed, the
irrelevant data can simply be discarded. Second, edge
computing improves security and privacy. It improves
security by reducing the distance that data have to travel for
storing and processing, thus reducing the risk of hackers
intercepting the data during transmission. In the blockchain
setting, only a very small portion of streaming data are
saved on blockchain; most of data are analyzed and
discarded on the edge. Third, edge computing increases
speed. One of the driving forces for this type of computing
is its speed. Without edge computing, an autonomous
driving car would need to scan the road by using local
cameras, send the images back for analysis and prediction,
and wait to receive the analysis results in order to take the
next move. Completing that entire process would take
considerable time. In contrast, edge computing can reduce
latency by completing all the steps on the car’s computer.
The processing algorithm runs locally, thus making it



possible to build more responsive applications that can
achieve real-time reactions. Figure 2 shows the proposed
computer vision architecture, including training on the
server layer and scoring on the edge side.
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Figure 2. Proposed computer vision architecture.
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This architecture has two major parts: model training that
uses batches on the server side with SAS Viya [7], a
cloud-based computing server; and edge computing with
streaming data on edge devices enabled by SAS Event
Stream Processing [8], a sliding-window-based streaming
environment. The main design goal of this architecture is to
ensure data efficiency. Under this architecture, a
blockchain-based analytical framework [10, 11] is used to
provide both trustability and automation capabilities.

Models are trained and validated on the server side
before they are deployed to edge devices for scoring or
prediction on the fly. In most cases, the training process
consists of four steps. In the first step, images are loaded
from raw files to create the training data. In the second step,
the images that are used for training are processed. This can
include image resizing, cropping, flipping, mutating, and
possibly augmentation. In the third step, a deep learning
model is built. In the fourth step, a special binary data
format is used to save the trained model, which contains
both model information and weight information. The
special binary data format is called an analytic store
(ASTORE) [11]. More details are discussed in Section 4.

After a model is trained, validated, and saved in
ASTORE format, it can be readily deployed in edge devices
by using SAS Event Stream Processing [8], a
sliding-window-based streaming environment. A typical
model contains four sliding windows. First, a source
window takes the input images from either a CSV file or a
video connector. Second, an image processing window is
used when the images need preprocessing before they are
ready for scoring or prediction. For example, if the input
images are larger than allowed, then an image processing
window is needed to resize the images in the designated
dimensions. (Note that there is no image processing window
in the example in Section 5 because image processing is not
needed there.) Third, a model reader window reads in the

model (in ASTORE format) and provides the model and
associated parameter weights to the score window. Fourth, a
score window takes the model as input and scores incoming
images on the fly.

4. The ASTORE format for machine learning

The analytic store (ASTORE) format [11] is a binary data
format for storing machine learning models. It was designed
to be compact, unique, and immutable. Therefore, it is a
natural choice for tasks that are related to blockchain.

An ASTORE model is essentially a serializable binary
object. It contains a unique ASTORE key, which is
universal and secured using cryptography. ASTORE format
saves the machine model states, as well as all the
information needed to reconstruct a model, into a
platform-independent binary blob. This binary blob can be
stored in a local file, a blob table in the cloud, a blob in the
databases, or a blob on blockchain. An ASTORE blob
contains model information, the entry function that is
required to run this model, lists of input and output
variables, and so on. All the information is compressed and
serialized when the blob is created. It is unpacked and
deserialized when the blob is loaded into memory. When an
ASTORE is created, it can be transferred to and used on any
platform in a portable way. Therefore, it is very flexible and
can easily score new data in different environments.

A typical ASTORE contains following information:

unique key

model name and description

machine learning algorithm information

timestamps

training parameters

scoring functions and rules

input variables, data types, and data formats
e output variables, data types, and data formats

One of the key features of the ASTORE format is that the
unique key is generated and secured using cryptography.
This key contains a string of characters such as
2580E6ABBCEE8B9C05689CDD952C60554A76A02E.
The key ensures that each ASTORE data file is unique and
immutable. If one bit of data is changed, the key is also
changed. This makes the ASTORE format compatible with
blockchain.

Other existing machine learning model formats like
PMML [17], PFA [18], and ONNX [19] have potential
security risks for commercial use since they are based on
plain-text based files, which can be reverse-engineered.
ASTORE’s binary format makes it not possible to
reverse-engineer. Another advantage of ASTORE is its blob
is platform-independent, so it can be deployed to different



operating systems such as in local machine, in the cloud, on
edge device, and even in GPU clusters.

5. Autonomous driving with real-time image segmentation

In this section, real-time semantic segmentation for
autonomous driving is used as an example to demonstrate
how data-efficient machine learning for computer vision
can be performed on the edge.

In this example, a lightweight semantic segmentation
model is trained that uses labeled street scenes and could
potentially be deployed in vehicle cameras and sensors [12].
It demonstrates how to perform real-time semantic
segmentation by using street scene images that are
generated by the CARLA car simulator [13]. CARLA
provides images in the RGB (red, green, blue) color space
and labeled mask images that can be used to train models for
autonomous vehicles. It is crucial for self-driving cars to
segment objects on the street (such as other vehicles,
pedestrians, road lines, and so on) so that the car can drive
safely. The segmentation model has to be implemented in
real time because any delays can lead to undesirable
outcomes.

The training data set contains 4,800 color images that are
all resized to 512 x 512. The mask images are of the same
dimensions, with pixels labeled as belonging to one of the
13 predefined categories. These categories are Unlabeled,
Building, Fence, Other, Pedestrian, Pole, Road line, Road,
Sidewalk, Vegetation, Car, Wall, Traffic sign. Figure 3
shows four sample raw images and their corresponding
mask images. Objects in the same category are marked with
the same color. For example, all pixels that belong to the
Car category are in medium blue, and all pixels that belong
to the Road category are in green.
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Figure 3. Training data visualization (raw images in the top row

and ground truth masks in the bottom row).

The deep learning model architecture in this example is
based on EfficientNet (also known as ENet) [12]. This
architecture can be divided into several stages, and a
diagram of each stage is shown in Figure 4. The initial block
contains an input layer, followed by a 3 x 3 convolution
layer with stride 2 (denoted by “s=2” in Figure 4) and a
max-pooling layer, followed by a concatenation layer. In the
downsampling bottleneck module [12], there is a 3 x 3

convolution layer with stride 2 to reduce feature sizes and
an extra max-pooling layer, followed by a 1 X 1 expansion.
In the upsampling bottleneck and regular modules, a 1 x 1
projection is used to reduce dimensionality. Then, the main
convolution layer or transpose convolution layer (denoted
by “Tconv” in Figure 4) is followed by another 1 x 1
expansion. In all modules, each convolution layer is
followed by a batch normalization layer (not shown in
Figure 4 to save space).

Downsampling
bottleneck

Upsampling Regular

Initial block bottleneck bottleneck

Figure 4. Diagram of each module in ENet.

The overall architecture is shown in the appendix. With
input images of 512 x 512, the initial block and bottlenecks
in the appendix downsample the feature size to 64 x 64.
Further downsampling is avoided because reduced
resolution hurts prediction accuracy. The last convolution
layer adjusts the number of channels to match the number of
categories in the data set.

This is a lightweight deep learning model for semantic
segmentation, with only 0.2M parameters and 1.88
GFLOPS (billion floating point operations). The streaming
model contains three windows in this example: a source
window streams images in; a model reader window reads
the trained model in ASTORE format; and a score window
performs real-time scoring. The overall workflow (shown in
Figure 5) of real-time semantic segmentation can be
processed entirely on edge devices.

SAS Event Stream Processing

Figure 5. Real-time semantic segmentation on an edge device.

The test images are street scene images that are not used
for training. In our experiment, the pixel accuracy on test
images is 92.1%, meaning that fewer than 8% of pixels are
misclassified. For some of the most important categories
(road and car), the accuracies are 94.2% and 97.1%,
respectively. Figure 6 shows the comparison among raw
images (top row), ground truth images (middle row), and
predicted images (bottom row).



0 raw image

2 raw image

3 raw image

1 raw image
B

0

100
00
0
a0
s00

]

200 00
N 0 ground truth

100

Figure 6. Predictions on test images. Top row: raw images.
Middle row: ground truth. Bottom row: predictions.

Table 1 shows the computing power and scoring frames per
second (FPS) on different NVIDIA devices, including
Jetson AGX Xavier [14] and Jetson TX2 [15]. Scoring FPS
values of 8 or higher are considered real-time values.

Jetson AGX Xavier | Jetson TX2
(edge) (edge)
TFLOPS 11 1.5
FPS 21 10

Table 1. Computing power and scoring FPS.

6. Conclusion and future research

Ethereum blockchain—based analytical frameworks provide
both trustability and automation capabilities for machine
learning algorithms. However, data efficiency remains a
concern. This paper presents a three-step approach to
improve data efficiency in order to bring machine
learning—based computer vision systems to edge devices. In
the first step, a lightweight machine learning model is
trained on the server layer. In the second step, the trained
model is saved in a special ASTORE data format for
security and data efficiency. In the third step, the streaming
layer takes these ASTORE data as input and scores
incoming new data in an online fashion. A real-time
semantic segmentation for autonomous driving is used as an
example to demonstrate how the approach works. In the
future, we plan to further improve the ASTORE data format
to enhance data efficiency and apply this analytical
framework for trusted machine learning running with
blockchain to more computer vision applications. We plan
to provide a means to objectively and empirically study data
efficiency aspects of the proposed framework. This is a key
step towards fully integrating blockchain aspect of the
proposed framework.
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Stage Name Type Output Size
0 Initial Initial 256 x 256 X 16
BNeckl1.0 Downsampling 128 x 128 x 64
: BNeckl1.1-BNeck1.4 Regular 128 x 128 x 64
BNeck2.0 Downsampling 64 x 64 x 128
2 BNeck2.1-BNeck2.4 Regular 64 x 64 x 128
3 BNeck3.1-BNeck3.4 Regular 64 x 64 x 128
BNeck4.0 Upsampling 128 x 128 x 64
* BNeck4.1-BNeck4.2 Regular 128 x 128 x 64
BNeck5.0 Upsampling 256 X 256 x 16
: BNeck5.1 Regular 256 x 256 x 16
BNeck6.0 Upsampling 512 x 512 x 16
° Conv Convolution 512 x 512 %13




