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Abstract

Whilst face recognition applications are becoming in-

creasingly prevalent within our daily lives, leading ap-

proaches in the field still suffer from performance bias to

the detriment of some racial profiles within society. In this

study, we propose a novel adversarial derived data augmen-

tation methodology that aims to enable dataset balance at a

per-subject level via the use of image-to-image transforma-

tion for the transfer of sensitive racial characteristic facial

features. Our aim is to automatically construct a synthe-

sised dataset by transforming facial images across varying

racial domains, while still preserving identity-related fea-

tures, such that racially dependant features subsequently

become irrelevant within the determination of subject iden-

tity. We construct our experiments on three significant face

recognition variants: Softmax, CosFace and ArcFace loss

over a common convolutional neural network backbone. In

a side-by-side comparison, we show the positive impact

our proposed technique can have on the recognition per-

formance for (racial) minority groups within an originally

imbalanced training dataset by reducing the per-race vari-

ance in performance.

1. Introduction

Numerous machine learning applications utilising facial

attributes have proliferated in recent years as autonomous

decision-making processes have become widely adopted by

companies and governments [1]. A growing number of ap-

plications based on face analyses for surveillance [2], re-

cruitment [3], and health-care [4] have increasingly become

integrated into our daily lives.

However, the generalisation of such research and appli-

cations is problematic due to the prevalence of bias oc-

currences within face recognition [5]. The imbalance in

specific demographic groups occurring with varying geo-

graphic locale globally, including race, age or gender, poses

Figure 1. Racial transformation example using [7]. We transfer

an African image xA to Asian image yE and obtain sythesised x
E

in Asian domain and we reconstruct x̂A from x
E image. Asian

image y
E to African image x

A transformation follows the same

procedure.

a challenge of transparent explanations and solutions for

facial recognition applications. Hence, to cope with real-

world diversity, it is crucial to have a profound understand-

ing of this bias within every aspect [6].

Bias in machine learning has been extensively studied

for decades [8, 9]. These studies provide the fundamental

understanding of the underlying reasons for face recogni-

tion bias which has also seen a surge of interest in recent

years [10, 6]. Studies have addressed this problem in var-

ious perspectives such as data pre-processing [11, 12, 13],

and adversarial training [14, 15, 16].

Meanwhile, recent advances in Generative Adversarial

Networks (GAN), have led to realistic image generation

[17] and even class generation [12]. Such advances in the

field have a promising potential to overcome the bias in

face recognition via realistic image generation as most of

the face recognition datasets have a significantly imbalance

distribution on either classes [18] or demographic groups

[19].

In this study, we address the racial bias of face recog-
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nition from an adversarial augmentation point of view. As

most of the datasets [20, 21, 6] consist of four major racial

groups, namely African, Asian, Caucasian and Indian, we

seek group-fairness among these races, in terms of facial

recognition performance, by utilising generative adversar-

ial network (GAN) [22].

Previous work [14, 15, 16] has established adversarial

techniques to minimise mutual information on identity fea-

tures, which reveal sensitive attributes about race, gender

and age of the subject. However, such approaches [14, 23],

have failed to effectively address the trade-off between sup-

pressing the use of such sensitive attributes and the loss

of key identity-related features which pertain to the overall

performance of the facial recognition approach. Our solu-

tion, instead, uses an adversarial image re-synthesise tech-

nique [7], to transform sensitive attributes across a set of

synthetic images comprising the full range of races being

considered within the facial recognition problem.

By doing so, we preserve the important identity-related

features whilst making the racially dependent features of the

face less prevalent due to the artificially synthesised distri-

bution of these identity characteristics across the full range

of race profiles for any given individual.

Figure 1 illustrates how we transform the identity char-

acteristics, and hence features, any given individual across

multiple racial profiles using a CycleGAN [7]. It proposes

transformation across racial domains and reconstruction to

produce an identical image from a transformed image dur-

ing the cyclic adversarial training.

To show its robustness, we explore the performance

of our approach using balanced and imbalanced training

datasets. The main contributions of this paper are as fol-

lows:

• we propose an adversarial image-to-image transfor-

mation technique to mitigate racial bias based on the

cyclic adversarial training approach of CycleGAN [7].

• we illustrate both quantitative and qualitative perfor-

mance of our proposed facial data augmentation tech-

niques over established benchmark datasets within

the face recognition domain, establishing a statistical

paradigm for the presentation of recognition results on

a per-race basis.

The rest of this paper is structured as follows: in Sec-

tion 2, we review the current solutions for face recognition

bias in three different categories. We present a methodology

for this study in Section 3 with our experimental setup and

results in Section 4 and 5, respectively. An extended discus-

sion on adversarial face recognition bias for both balanced

and imbalanced datasets is presented within Section 5 with

our final conclusions subsequently presented in Section 6.

2. Related Work

Bias and fairness in machine learning have been studied

in the last decade, and significant research [24, 25] draws

attention to bias for different fields like face recognition,

action recognition or language processing.

As one of the most prominent fields of machine learn-

ing, face recognition has been extensively used across dif-

ferent areas [26, 27]. As the popularity of face recogni-

tion increases, we face more bias incidents [10]. Moreover,

studies [6, 28, 29] point out the bias of current face recog-

nition web services and state-of-the-art algorithms for de-

mographic groups such as age, gender, and race. Although

definitions of demographic attributes might be uncertain, it

is still important to strive for group-fairness [30].

Studies of bias in face recognition which use con-

temporary deep learning approaches are categorised into

three main groups: pre-processing (data preparation), in-

processing (model training) and post-processing (output in-

ference) techniques.

Pre-processing Methods. Previous studies [31, 19] re-

vealed that the public face recognition datasets have more

male and lighter skin tone subjects than respectively female

and darker skin tone subjects. This is due to the images

within these datasets are mostly from celebrities, including

sports players, actors, politicians, collected from predomi-

nantly white male subjects. In other respects, the studies of

[20, 31] released balanced datasets for four racial groups;

they do not provide universal race coverage nor they are not

openly and readily available for access.

To obtain fair datasets, studies [32, 12, 13] propose re-

sampling methods by either dropping or augmenting sam-

ples in the datasets. Downsampling can be considered as a

solution for avoiding bias despite the information loss it in-

troduces. Augmentation techniques [12, 13] for image gen-

eration have improved significantly using adversarial learn-

ing. However, the limitations, as described in [33], are still

a concern for mitigating bias. Feature transformation is an-

other pre-processing approach [34] that improves the fea-

ture space of under-represented subjects by moving the dis-

tribution of the feature space closer to the regular, suppos-

edly unbiased distribution.

In-processing Methods. In-processing methods are di-

vided into three groups: (i) adversarial approaches [14, 23,

15, 16], (ii) domain adaptation methods [20] and (iii) cost-

sensitive learning techniques [35, 36]. Adversarial meth-

ods focus on sensitive features on the image; with [14]

proposing an adversarial feature learning approach rather

than learning all the feature representations from the im-

age. In this way, it minimises mutual information between

bias features and characteristic features to decrease bias in-

fluence. The experiments of [14] are relatively simplistic

compared to face recognition bias. Distinguishing demo-

graphic information within an image is a serious trade-off



of face recognition as demographic features (age, gender,

race), and identity features overlap. Another approach in

[23], addresses this problem by highlighting the difficulty

of setting a demographic condition in realistic face gener-

ation. On the other hand, [15] debiases images by min-

imising correlation on disentangled features. Another study

[16] reduces the dependence on sensitive attributes. De-

spite achieving state-of-the-art results on the test, there is

still ample room for further understanding of bias.

A domain adaptation technique, [20], transfers the Cau-

casian domain to non-Caucasian domains during training

but requires to have at least one source domain to trans-

fer into others. Cost-sensitive solutions [35, 36] have been

used for imbalanced learning and machine learning fairness

in general. For face recognition, adaptive margin [37] or

cluster large margin settings [18] are more frequently con-

siderable since the aim is to have intra-class compactness

and inter-class discrepancy for large scale datasets. Distin-

guishing the group features on hypersphere helps to avoid

overfitting of under-represented groups. Adaptive margins

[21] for each race improves the scatter of features of races.

Post-processing Methods. Post-processing studies are

based on either detecting the bias or improving the fair-

ness after training the model. For example, [38] proposes

a Multiaccuracy-Boost algorithm for any machine learn-

ing algorithms to improve fairness. IBM [39] provides an

extensive toolkit to detect bias and determine the current

model fairness level. For broader explanations, [40, 29]

give demographic bias level of current state-of-the-art face

recognition algorithms.

Motivated by [7], our approach is based on adversarial

image synthesise to mitigate bias. Unlike other adversarial

studies [14, 16], we transform race information from one

group to another for fair face recognition. We aim to aug-

ment sensitive attributes to make them irrelevant for face

recognition solutions.

3. Proposed Method

We present our methodology in three parts: we first de-

scribe our problem definition in Section 3.1, explain image-

to-image transfer method [7] for race transformation to

mitigate face recognition bias in Section 3.2 and outline

our comparator state-of-the-art face recognition algorithms

[41, 37] in Section 3.3.

3.1. Problem Definition

In this section, we define our problem by introducing the

general terms of machine learning bias. Disparate impact,

as indirect discrimination, appears when there is a corre-

lation between sensitive attributes (age, gender, race) and

other attributes. It causes inequality on outcomes for differ-

ent demographic groups, as observed on various machine

learning applications, including face recognition web ser-

vices [6].

Ideally, a machine learning algorithm should require that

the conditional probability P of the output given input x

does not depend on any sensitive attributes which is demo-

graphic features in our case. This unawareness can be for-

malized as P (y | x) = P (y | x, s), where x is an input,

y is the corresponding label and s is a sensitive attribute

that does not alter the outcome. However, removing depen-

dency is highly challenging for face recognition due to high

mutual information between facial features and sensitive at-

tributes, like race.

For a given face image dataset, D =
[x1, x2, x3, . . . , xN ] provides N number of face im-

ages. A feature embedding vector of an image,

zi = [f1, f2, . . . , fd], where zi ∈ R
d, is commonly

statistically dependent on sensitive attributes where it

causes indirect discrimination for particular demographic

groups which potentially form overlapping, subsets of

D. Although the common approach for face recognition

bias is to minimise this mutual information to remove the

dependency on sensitive features; it is still an extremely

difficult task using face features without sacrificing any

prior information for face recognition as shown in [14, 23].

Hence, we approach the problem from a completely dif-

ferent perspective by transferring sensitive attributes from

one domain to another whilst simultaneously preserving

prior information for recognition. On the other hand, we

are aware that some features are more prevalent in some de-

mographic groups than others. The sensitive information, in

this case, may improve the prior information for the recog-

nition task. Lighter skin allows the model to learn more de-

tailed features given characteristics of modern cameras and

common scene lumination conditions. A novel input mech-

anism which projects different sensitive information for one

image to a model makes race modelling irrelevant. As a

result, we ask a question; What if we augment and trans-

fer sensitive information rather than removing it? To an-

swer this question, we present a new pre-processing based

method requires augmentation of sensitive attributes of an

image.

Our new inputs consist of three generated images from

different domains for each image. Given the race domains

{A,E,C, I} for {African,Asian,Caucasian, Indian}
respectively, we aim to transform an image xi from one do-

main as an image xj to another domain. For instance, we

transform given xi in A to another image from different do-

mains such as E,C, I . If we use different images belonging

to these domains to transform, we can define new generated

input dataset as following list x+
i =

[

xi, x
E
i , x

C
i , x

I
i

]

where

xi is the original image and x+
i is a new input list including

the original image.

Transferring sensitive information while keeping



Figure 2. Overview of our solution in three phases: (a) describes imbalanced distribution of VGGFace2 [42] and downsampling it to

VGGFace2 1200. (b) illustrates race domain transformation schema for a given image xi (c) shows face recognition algorithms with

Softmax [43], CosFace [41] and ArcFace [37] loss functions using VGGFace2 1200 Races.

prior information of the image is possible via adversar-

ial methods, as they are capable of generating images

from the training data distribution. To show that, we

propose a solution of sensitive attribute transforma-

tion while keeping prior information for face recogni-

tion and present a new augmented dataset, D+
image =

[

xi, x
A
i , x

C
i , x

I
i , . . . xi, x

E
i , x

C
i , x

I
i , . . . , xn, x

A
n , x

E
n , x

C
n ,

]

.

In the next Section 3.2 we present our approach to the

image synthesise process to obtain D+
image.

3.2. Adversarial Image­to­Image Transfer

Our solution transforms these sensitive attributes using

a cyclic adversarial domain transfer approach, CycleGAN

[7]. We assume that learning a mapping function between

two different race groups domain reduces the dependency

on sensitive features.

For example, given an African face image xi ∈ A,

and a Caucasian image xj ∈ C, we assume that the two

different data distributions from these image race groups

xi ∼ pdata(xi) and xj ∼ pdata(xj) can be transferable be-

tween each other. To map these two distributions between

domain A and C, we introduce two mapping functions F

and G, respectively from African to Caucasian domains and

from Caucasian to African domains using CycleGAN [7].

Within a GAN framework, these two directional transfor-

mations need two discriminators DA and DC , to distin-

guish between xi and F (xj), xj and G(xi), respectively.

Moreover, as an additional control on adversarial training, a

cycle-consistency loss is introduced to ensure that the map-

ping function can transfer an individual input xi to the de-

sired output xj .

LGAN (G,DC , A, C) = Exj
∼ pd(xj) [logDC(xj)] (1)

+ Exi
∼ pd(xi) [log(1−DC(G(xi))]

For the first part of race transformation, an adversarial

loss is used as defined in Equation 1 where A and C are the

African and Caucasian group domains, respectively. While

the generator G synthesise images using source domain A

to associate to target domain C, discriminator DC distin-

guishes between the real image and xj from the synthesised

image, G(xi). The same process is applied with generator

F and discriminator DA to transform domains from C to A.

The key premise of CycleGAN [7] is a controlled mech-

anism of adversarial training which allows us to synthesise

more accurate images from the desired images in the do-

main. To achieve this, cycle consistency loss is introduced

as defined in Equation 2 , where F (G(xi)) is reconstructed

xi from synthesised G(xi) new image. In this case, gener-

ators F and G are able to reconstruct the original images.

The L1 norm in this loss measures the difference between



the original image and reconstructed image as follows:

Lcyc(G,F ) = Exi
∼ pd(xi) [‖ F (G(xi))− xi ‖1] (2)

+ Exj
∼ pd(xj)

[

‖ G(F (xj))− xj ‖1
]

The overall loss function, as defined in Equation 3, con-

sists of two adversarial loss within the cycle-consistency

loss where λ is a term to control the relative importance

of the cycle-consistency loss.

L(G,F,DA, DC) = LGAN (G,DC , A, C) (3)

+ LGAN (F,DA, C,A)

+ λLcyc(G,F )]

Subsequently, overall adversarial training of this objective

function aims to solve the following equation:

G∗, F ∗ = argmin
G,F

max
DA,DC

L(G,F,DA, DC). (4)

In the intermediate step G(xi) and F (xj), the genera-

tor encodes features of inputs xi and xj and then F (xj)
and G(xi) decodes back to obtain original images again.

With reference to this set of transform Equations 1-4, we

can transform both, domain A into domain C and C into A

similarly for other domain pairings.

3.3. Face Recognition

Recent state-of-the-art face recognition algorithms [43,

41, 37, 42] achieve outstanding results for both face veri-

fication and identification tasks on public datasets. How-

ever, they are not as reliable for real-world racial diversity

as their performance is lower for under-represented racial

groups [20].

In Section 3.2, we presented our proposed approach to

address racial bias within face recognition using an adver-

sarial image-to-image transformation technique. To assess

this proposed approach, we first present current face recog-

nition loss functions namely Softmax, CosFace, ArcFace

that underpin leading state-of-the-art face recognition al-

gorithms [43, 41, 37], then we utilise each of these three

methods in conjunction with our cyclic adversarial domain

transfer approach.

The Softmax [43], CosFace [41] and ArcFace [37] meth-

ods are based on loss functions that operate on the outputs of

the last fully connected layer of the selected backbone Deep

Convolutional Neural Network [44] (DCNN). In essence,

after feeding an image forward through a DCNN, we ob-

tain the feature space representation of the image. These

loss functions enforce different representations of features

to predict if they belong to a given subject. First, Softmax

loss is formulated as follows,

L1 = −
1

N

N
∑

i=1

log
e
WT

yi
zi+byi

∑n

j=1 e
WT

j zi+bj
(5)

where zi is the feature representation of the image xi ∈
R

d in the dataset D belonging to yi-th subject class. The

number of samples is N labelled with n classes. Wj is the

j-th column of the weights and bj is the j-th column of the

bias term in the last fully-connected layer. Weights and bias

term dimensions are W ∈ R
dxn and bj ∈ R

n, respectively.

Softmax loss [43] is one of the most widely used objec-

tive function to learn optimal feature representations from

images. It discriminates deep representations from differ-

ent classes by maximizing the posterior probability of the

ground-truth class. Once large-scale datasets have high sim-

ilarity on intra-class samples and diversity on inter-class

samples, Softmax loss entangles features [45]. To address

this problem, CosFace [41] proposes to use both norm and

angle of the feature representation to contribute to the pos-

terior probability such that:

L2 = −
1

N

N
∑

i=1

log
e‖z‖(cos(θyi,i)−m)

e‖z‖(cos(θyi,i)−m) +
∑n

j 6=yi
e‖z‖(cos(θj,i))

(6)

where cos(θj , i) = WT
jzi and zi, yi,n N , Wi denote i-th

feature representation with all other definitions as per previ-

ously defined. For CosFace loss, the bias term is removed,

and the weights W and embeddings z are normalized us-

ing the L2 normalization. To cope with incorrect classified

samples, a cosine margin m is applied to the classification

boundary.

An alternative loss function, ArcFace [37] differs from

CosFace [41] based on its distinct margin. ArcFace has

more accurate geodesic distance due to it has constant lin-

ear angular margin, m penalty throughout the interval while

CosFace has a nonlinear angular margin. It also normalizes

the weights and embeddings and fixes the bias term to zero.

In Equation 7, the ArcFace loss function is formulized as

follows:

L3 = −
1

N

N
∑

i=1

log
e‖z‖(cos(θyi,i+m))

e‖z‖(cos(θyi,i+m)) +
∑n

j 6=yi
e‖z‖(cos(θj,i))

(7)

where all definitions are as per Equation 6. Overall the key

Softmax, CosFace [41] and ArcFace [37] differences lie in

their use of deep feature representation, weight vectors and

approach to their margin penalty. Within the scope of this

study, we only use these methods as experimental vehicles

to illustrate our per-subject data augmentation methodology

to address face recognition race bias within such state-of-

the-art face recognition algorithms.

An overview of our approach is shown in Figure 2. Fig-

ure 2 (a) describes the real-world dataset imbalanced distri-

bution for different racial groups. As an initial experimental

exercise, we, downsample this imbalanced distribution to



understand the relationship between bias and data. In Fig-

ure 2 (b), we explain the image transformation process for

one exemplar Asian subject. We introduce our xi to three

different CycleGAN and obtain three different synthesised

images xA
i , x

C
i , x

I
i . Subsequently, the training dataset has

changed, and then we use our newly augmented dataset for

face recognition using algorithms with Softmax, CosFace

[41], ArcFace [37] in Figure 2 (c).

4. Experimental Setup

This section provides overview of our experimental eval-

uation in terms of the face recognition datasets used, the

race classification used for racial annotation and the imple-

mentation details of our proposed approach.

4.1. Datasets

To validate our approach, we utilise BUPT-Transferface

[20], VGGFace2 [42] and RFW [20].

BUPT-Transferface [20] provides 50K African, Asian

and Indian face images and over 460K Caucasian face im-

ages. We use BUPT-Transferface dataset for two different

purposes: (i) race transfer, (ii) race classification.

VGGFace2 [42] contains 3.3M+ images for over 9K sub-

jects (8631 subjects training examples, 500 testing exam-

ples). We train the face recognition methods which we in-

troduced in Section 3.3 on VGGFace2.

VGGFace2 1200 is a subsampled version of VGGFace2

which is racially balanced and contains 300 subjects per-

race. We evaluate our approach on both VGGFace2 1200

and VGGFace2.

Racial Faces in-the-Wild (RFW) [20] is a face verifica-

tion test set which provides 6K pairs of images for each

race. We compare the verification accuracy of our proposed

approach on different races using the same protocol in [46].

4.2. Race Annotations

We obtain racial annotation labels for VGGFace2 [42]

dataset using fine-grained classification to solely support

our development of a technique to mitigate bias.

The work of [47] proposes attention-guided data aug-

mentation to improve the spatial representation of discrimi-

native image parts using its cropping and dropping mecha-

nism. We adopt this solution for a race classification prob-

lem where discriminative image parts are facial attributes

of eyes, nose, mouth, and forehead. Via this approach

[47], we obtain racial annotations of VGGFace2 [42] and

we manually check the least certain subjects according to

the majority of image labels for each subject and addition-

ally exclude some subjects who are not in the four-race set

{Caucasian,African,Asian, Indian}. After this semi-

automatic process, the subject distribution for training and

testing sets is shown in Figure 3 whereby the inherent racial

and gender imbalance is clearly illustrated.

Train Test

African

Asian

Caucasian

Indian

Male

Female

0 2K 4K 0 125 250

Number of Subjects

Figure 3. VGGFace2 dataset gender and race distribution for train

and test.

4.3. Race Transfer

Our proposed image-to-image transformation approach

creates a new dataset D+
image, to transfer race attributes

from one race group to another. To achieve that, we de-

fine separate mappings for each pair of the four different

race groups. The set of 12 mappings are: {African →
Asian, African → Caucasian, African → Indian, Asian →
African, Asian → Caucasian, Asian → Indian, Caucasian

→ African, Caucasian → Asian, Caucasian → Indian, In-

dian → African, Indian → Asian, Indian → Caucasian}.

As our CycleGAN based approach provides two-way trans-

formations between source and target domains, we train six

models to find these two directional mappings following the

approach outlined in Section 3.2.

For training, we generate 25K image pairs using the

BUPT-Transfer [20] dataset. All face images are aligned

and have a size of 256× 256. To avoid gender domain dif-

ferences, we only match images of the same gender as pairs.

Using these six CycleGAN models, we synthesise new im-

ages and denote extended dataset as VGGFace2 1200 Races

[42] which contains the original VGGFace2 1200 images

and synthesised race images. Each image has three differ-

ent transformed images that belong to other race domains in

addition to the original. As a result, we partially absorb the

downsampling effect on VGGFace2 1200. Subsequently,

we synthesise all non-Caucasians images on original VG-

GFace2 and call the new dataset VGGFace2 8631 Races,

D+
image. We do not transform Caucasian images to other

racial domains; they are already dominant in the original

dataset.

4.4. Face Recognition

We train a common DCNN, ResNet [44] on pro-

posed augmented datasets; VGGFace 2 1200, VGGFace

2 8631. We utilise ResNet100 explored by [37] with



BatchNorm−Dropout− FC −BatchNorm structure

to get the final 512-D feature space representation after the

last convolutional layer. We use same architecture for Soft-

max [43], CosFace [41] and ArcFace [37] loss functions.

5. Results

To evaluate the performance of the proposed approach,

we use LFW face verification protocol [46], which mea-

sures whether two images belong to the same subject or not.

We assess synthesised image quality by feeding them

through a race classifier introduced in Section 4.2. We show

examples of the correctly classified images and the misclas-

sified images in Figure 4 (top and bottom parts are sepa-

rated). Each column of Figure 4 show an image transforma-

tion example where the original image is represented with

green and red borders, and synthesised images are laid in

the corresponding racial domain label in the y-axis. As can

be seen in the bottom part of Figure 4, image transformation

is prone to fail on poor illumination and pose variations.

Loss Training Dataset LFW
RFW

African Asian Caucasian Indian AVG STDV

Softmax VGGFace2 1200 96.13 69.10 73.70 79.25 76.78 74.71 4.37

Softmax VGGFace2 1200 Races 96.27 70.65 75.68 80.27 78.28 76.22 4.16

CosFace VGGFace2 1200 98.16 82.78 82.68 87.53 85.41 84.60 2.33

CosFace VGGFace2 1200 Races 98.65 83.22 83.23 87.95 85.77 85.04 2.28

Arcface VGGFace2 1200 98.16 80.91 81.78 86.86 83.70 83.31 2.64

Arcface VGGFace2 1200 Races 98.63 81.28 82.83 85.95 84.72 83.69 2.06

Table 1. Verification performance (%) of Softmax, CosFace, and

ArcFace with ResNet-101 [44] on LFW [46] and RFW [20] when

trained on VGGFace2 1200 and proposed VGGFace2 1200 Races

datasets.

For face recognition, we first test our performance on

balanced datasets VGGFace2 1200 and VGGFace2 1200

Races. We compare our results on RFW [20] using three

different loss functions; Softmax, CosFace [41] and Ar-

cFace [37] as shown in Table 1. Proposed facial image

augmentation approach improves performance in all three

methods by 0.38-1.51 %. As non-Caucasian results are im-

proved, the standard deviation among groups is decreased.

We also share LFW results in Table 1 to show the improve-

ment of our solution on the imbalanced dataset. Second, we

use the imbalanced dataset with the ArcFace as shown in

Table 2. While LFW verification performance remains the

same, RFW African and Asian performances are improved,

and the standard deviation declines from 2.91 to 2.45.

Training Dataset LFW
RFW

African Asian Caucasion Indian Average STDV

VGGFace2 99.51 89.45 87.61 94.71 91.21 90.75 2.91

VGGFace2 8631 Races 99.51 90.10 87.73 93.72 90.50 90.51 2.45

Table 2. Verification performance (%) of ArcFace using ResNet-

101 [44] trained on VGGFace2 [42] and VGGFace2 8631 Races

with syntesised images of non-Caucasian subjects on VGGFace2,

tested on LFW [46] and RFW [20].

Method African Asian Caucasian Indian AVG STDV

Softmax 67.95 73.5 77.77 75.78 73.75 4.24

CosFace 77.15 78 82.8 80.42 79.59 2.55

ArcFace 74.75 77.63 83.18 80.97 79.13 3.71

Table 3. RFW dataset verification performance using the LFW

protocol [46] for state-of-the-art algorithms trained on per-subject,

per-race and per-gender balanced data.

5.1. Ablation Study

Q: This study provides experiments on both balanced and

imbalanced training datasets. Why do you not use only the

imbalanced datasets? Does balancing datasets help to de-

crease bias?

A: Imbalanced data may seem to be the main reason for face

recognition bias. However, when we train algorithms on

completely equally distributed data, the results still appear

to exhibit performance bias. To show this, we downsam-

ple VGGFace2 and obtain 1000 subjects with 100 images

on each subject. We also keep the race and gender groups

balanced. As shown in Table 3, there is still about eight

per cent gap between African and Caucasian on average.

Another study experiments on a large and nearly balanced

dataset and again differs on Caucasians and non-Caucasians

[21]. Subsequently, we focus on a novel per-subject racial

data balancing approach to understanding its impact on the

face recognition bias.

Q: How does the training of CycleGAN affect overall accu-

racy?

A: We assess the quality of our synthesised images by test-

ing them using a race classifier (Section 4.2). We would

expect the race classifier to recognise them as the correct

transformed racial label. Our overall accuracy is 49% across

all transformations, but when we increase this accuracy us-

ing more pairs, and longer training, this results in an overall

reduction in face recognition performance. The trade-off

is complex because after transforming the main racial at-

tributes of the face such as skin colour, eye structure and

hair colour, CycleGAN proceeds to translate all facial fea-

tures including those which implicitly encode unique sub-

ject identity. Other notable negatives are variations in pose

and illumination on the synthesised images which could al-

ternatively be addressed via [17] in future work.

6. Conclusion

Although the usage of face recognition applications is in-

creasing every day, state-of-the-art-methods are still suffer-

ing from racial bias in terms of performance. To address this

issue, in this study, we explore racial bias in face recogni-

tion and present a novel adversarial derived data augmenta-

tion methodology. Transferring racial attributes of a human
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Figure 4. A selection of successful (top) and failure (bottom) examples of the CycleGAN racial domain transformation of VGGFace2

dataset. Each column contains an original and sythesised face images of the same subject where the green (top) and red (bottom) borders

indicate the original image and the corresponding race labels are laid out on the y-axis.

face whilst preserving identity features in the face recogni-

tion datasets makes face recognition algorithms more robust

and less race-dependant. We demonstrate that our proposed

technique improves face recognition accuracy on minor-

ity groups by 1% using imbalanced and balanced training

datasets. On our manually balanced dataset, we also com-

pare three significant face recognition variants: Softmax

[43], CosFace [41] and ArcFace [37] loss functions with

a common convolutional neural network backbone ResNet-

101 [44]. Although illumination, pose, and light challenge

the quality of the image transformation; our technique not

only improves the overall face recognition accuracy but also

suppresses inter-group performance variation.
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