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Abstract

Directly processing 3D point clouds using convolutional

neural networks (CNNs) is a highly challenging task pri-

marily due to the lack of explicit neighborhood relation-

ship between points in 3D space. Several researchers have

tried to cope with this problem using a preprocessing step

of voxelization. Although, this allows to translate the ex-

isting CNN architectures to process 3D point clouds but, in

addition to computational and memory constraints, it poses

quantization artifacts which limits the accurate inference of

the underlying object’s structure in the illuminated scene.

In this paper, we have introduced a more stable and effec-

tive end-to-end architecture to classify raw 3D point clouds

from indoor and outdoor scenes. In the proposed method-

ology, we encode the spatial arrangement of neighbouring

3D points inside an undirected symmetrical graph, which

is passed along with features extracted from a 2D CNN to

a Graph Convolutional Network (GCN) that contains three

layers of localized graph convolutions to generate a com-

plete segmentation map. The proposed network achieves on

par or even better than state-of-the-art results on tasks like

semantic scene parsing, part segmentation and urban clas-

sification on three standard benchmark datasets.

1. Introduction

With recent successes of convolutional neural network

(CNN) architectures in processing 2D structured data, there

is an increasingly growing interest of researchers in de-

veloping similar architectures to directly process 3D point

clouds. For instance, there has been many attempts to ex-

tend the traditional CNNs [18, 22, 24, 27], that are best

fit for data that lie in a structured Euclidean space to 3D

Figure 1. Examples of outdoor scenes from Semantic3D bench-

mark dataset [10]. Our architecture assigns a correct semantic

label to each object with on par state-of-the-art accuracy. The re-

sults are visualized using PPTK viewer. Best viewed in color.

point clouds. However, 3D datasets do not lie on a regu-

lar grid and thus lacks the implicit neighborhood relation-

ship. Owing to this, there does not exist a single well-

defined notion that enables convolution on unstructured 3D

data. Furthermore, many approaches [18, 29, 23] transform

the 3D datasets into regular 3D structures like voxels and

meshes to apply convolution, but the transformed regular

structures loses most of the spatial information that lies be-

tween neighbouring points and thus struggles to obtain the

local feature representations that can improve the overall

classification results [33].

To encode the neighbourhood relationships, few re-
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searchers have used graph representations to capture the lo-

cal features more effectively. In this context, Bronstein et

al. [3] first used the term geometric deep learning and gave

an overview of the deep learning methods for datasets that

lie in non-Euclidean domain. However, the first prominent

research that defines convolutional GNN in a spectral do-

main was given by Bruna et al. [4]. They have provided

evidence of the possible generalizations of CNNs to sig-

nals in other domains without taking 3D translational fac-

tors into account. Defferrard et al. [6] proposed a gener-

alized formulation of CNNs for spectral graphs. Their ap-

proach used the recursive form of Chebyshev polynomials

to propose a fast convolution for high-dimensional unstruc-

tured datasets such as social networks or protein-interaction

networks. Furthermore, it is sometimes desirable to use

a kernel-based approach [17, 30]. This property of us-

ing graph-kernels is favourable because the local structure

of the graph contains meaningful information. However,

kernel-based approaches are computationally expensive and

have quadratic training complexity.

Inspired by the idea of graph based representation to

propagate local features, we have used a Graph Convolu-

tional Network (GCN) to encode spatial information or lo-

cal neighbourhood features into symmetrical graph models.

In the proposed 3D representation, each point is represented

by three coordinates (x, y, z). In addition to our local fea-

ture encoder or GCN, we have used a global feature ex-

tractor similar to [22], that extracts a vector of high dimen-

sional features by taking the raw point cloud as input. Us-

ing the global features, summarizes most of the information

and provides geometric invariance [22] that increases the

overall performance and reliability of our network (See Sec-

tion 5 for details). The graph convolution refines these high

order features using the local spatial features from graph

representation and outputs a global signature summarizing

each point inside the graph. Therefore, our proposed archi-

tecture learns the complete local structure embedded in the

graph to achieve faster convergence and better classification

results. Our GCN or spatial-temporal graph neural network

[33] achieves on par or even better results compared to state-

of-the-art architectures. Specifically, following are the main

contributions proposed in this work:

• A novel graph based convolutional network has been

proposed that uses both local and global features for

semantic segmentation of 3D point clouds;

• It is evidently showed how using the spatial informa-

tion in the local neighbourhood of points in 3D space

offers stability and increased performance;

• The proposed architecture been compared with the

state-of-the-art approaches and achieved competitive

performance on three standard benchmark datasets in-

cluding S3DIS [1], ShapeNet [35], and Semantic3D

[10] datasets. For reference, Figure 1 provides the vi-

sualization of two different outdoor scenes.

2. Related Work

Deep Learning on 3D Point Clouds Many approaches

utilize 3D shapes to apply deep learning, for example Vol-

umetric CNNs [23, 38, 21], is the pioneer work that applies

3D convolutions on voxelized shapes. However, Volumet-

ric CNNs have a higher computational cost due to the spar-

sity of 3D data in volumetric representations. This problem

has been addressed through careful engineering of CNNs

[20, 31]. However, the problem still persists due to signifi-

cantly sparse volumes in very large point clouds. Multiview

CNNs [28], integrate multiple views of a 3D point cloud

together and apply 2D convolution for classification. With

efficient 2D convolutions, they can process very high reso-

lution data. Furthermore, these architectures can achieve

state-of-the-art results in object classification on datasets

like ModelNet [38], but they cannot be extended to more

complex tasks like 3D scene understanding.

Recently, many new approaches have been proposed that

directly consume raw 3D point clouds and are used for tasks

like semantic segmentation, object classification and detec-

tion etc. PointNet [22] is the pioneer work that applies deep

learning on raw 3D point clouds with significant improve-

ments in performance. However, PointNet does not general-

ize well on complex scenes due to its inability to capture the

local structure induced by the 3D space. The local structure

is exploited by PointNet++ [24], which is an extension of

PointNet. In their proposed methodology, they were able to

capture the local features with increasing contextual scales.

SPLATNet [27], sparse lattice networks, used bilateral con-

volutions as building blocks to apply 3D convolution only

on the occupied parts of the lattice that reduces memory

and computational cost. PointConv [32] uses dynamic fil-

ters to apply convolution on point clouds. They treat convo-

lutional kernels as non-linear functions of the point coordi-

nates comprised of density and weight functions.

Deep Learning on Graphs or spectral CNNs were first

introduced by [4] and extended by [6]. Many approaches

like ours that applies convolution in a spectral domain uses

ideas from graph signal processing [26] to apply localized

filters on graphs. Recently, many approaches [6, 15, 37] ap-

proximate the spectral convolution using Chebyshev poly-

nomials, because transforming the signal back and forth be-

tween spectral domains can be expensive. Our approach

uses Chebyshev polynomials for spectral convolutions in a

similar way as [37, 26].

3. Proposed Methodology

Suppose, we are given a set of m training examples

{Xm, Ym} with Xi = {Pj |j = 1......n}, where n is the



number of points P ⊂ R
3 in Xi, and Ym = {1......n} is the

associated semantic label of each point Pj in the ith train-

ing example. Furthermore, each point Pj in Xi consists of

a vector of 3D coordinates (x, y, z).

In our proposed methodology, we extend the traditional

graph based convolutions [26, 37], that works on latent

graph signals to output a global signature which is then

used for classification. Most of these architectures, over-

look the underlying spatial information between points in-

side a 3D space, which plays a crucial role in identifying

objects. Keeping in mind the importance of local features,

we propose a unified architecture that jointly use both lo-

cal and global features to give a more stable and reliable

network for semantic segmentation of 3D point clouds. Us-

ing the global feature extractor before graph convolutional

network summarizes most of the information and provides

geometric invariance [22] which in turn increases the over-

all performance or our network. In the following sections,

we will explain the key components of our proposed archi-

tecture and will provide evidence as to how using both local

and global features can give better results.

3.1. Transforming 3D Point Sets to Weighted Graph
Signals

A graph convolutional network performs convolution on

input that is supported on a graph G = {V,E,W}, with a

finite number of nodes vi ∈ V , edges eij = {vi, vj} ∈ E,

and Wi,j ∈ W corresponding to the weighted graph sig-

nal or an entry into the adjacency matrix indicating a con-

nection between vi and vj . In order to find the value of

Wi,j , we find all the neighbouring nodes of node i using k-

nearest neighbors, and then use a Gaussian kernel to weight

the edge ei,j connecting node i and a neighbouring node j:

Wi,j =

{
exp(−

‖vi−vj‖
2

2σ2 ) if ‖vi − vj‖ < κ

0 otherwise
(1)

for some value of σ > 0 and parameter κ. In equation

1, ‖vi − vj‖ represent the Euclidean distance between two

feature vectors of node vi = {xi, yi, zi} and node vj =
{xj , yj , zj}, with node vj as a neighbor of node vi.

Given the undirected graph with adjacency matrix W ∈
R

N×N , we apply graph filtering techniques [15, 37] us-

ing normalized Laplacian matrix L = In − D− 1

2WD− 1

2 ,

where D corresponds to the diagonal matrix in which Dij =
Σj{Wi,j}. The normalized Laplacian matrix can also be

interpreted using the eigenvectors as L = UΛUT , where

U corresponds to the matrix of eigenvectors and Λ corre-

sponds to the diagonal matrix of U . Let’s restate our graph

mapping function f(x) with input x, as a linear graph filter

transformation function with coefficients µ1, µ2, ......µn as,

f(x) = gµ(L)x =
K∑

i=0

µiL
ix (2)

The mapping function f(x) can also be approximated

using the eigen decomposition form of normalized Lapla-

cian matrix with eigenvalues Λ as,

f(x) = gµ(L)x = Ugµ(Λ)U
Tx (3)

Spectral based graph filtering methods [12, 7, 26] also

use Chebyshev polynomials to approximate graph filters.

ChebyNet [7] uses the diagonal matrix of eigen values,

f(x) = gθ(L)x =

K∑

i=0

θiTi(L)x (4)

Additionally, equation 4 can also be defined recursively

with T0(x) = 1 and T1(x) = x as,

Ti(x) = 2xTi−1 − Ti−2(x) (5)

The goal of graph convolutional layer is to learn a set

of graph filtering coefficients {µ} or {θ} using any type

of graph filtering method. However, using the normalized

Laplacian with eigen decomposition has a high computa-

tional cost compared to ChebyNet [7]. Furthermore, Def-

ferrard et al. [6] demonstrated the effectiveness of using

Chebyshev graph filtering approximation (graph convolu-

tion) on homogeneous graphs, for tasks like image classifi-

cation and 2D scene understanding. We adapt a similar ap-

proach to [7], using the Chebyshev polynomials as a graph

filtering method, but in our approach we have applied con-

volution on heterogeneous graphs with global features (ex-

tracted from 2D convolutional layers) as input.

3.2. Model Architecture

Our segmentation network consists of three main mod-

ules: 1) Feature extraction that inputs the N×3 dimensional

point coordinate vector and outputs an N ×D dimensional

global feature vector; 2) Graph signal processing that also

takes an N × 3 dimensional coordinate vector as input and

outputs a weighted graph in the form of an adjacency matrix

W ; 3) Graph convolutional network with learnable param-

eter θ of order k, takes as input the N × D dimensional

feature vector along with weighted graph signals W and

extracts the local features corresponding to the spatial ar-

rangement of nodes in the graph, which is then passed to

fully connected layers for per-point classification. The ar-

chitecture diagram can be visualized in figure 2.

3D Feature Extraction Many techniques have been de-

veloped in order to obtain global feature descriptors for 3D

point sets [13, 22, 14, 8]. Johnson et al. [14] developed a



Figure 2. Network Architecture: The network takes as input N points with coordinates (x, y, z). The input is passed to graph signal

processing module to generate a re-scaled normalized graph vector and is also passed to deep convolutional feature extraction layers to

output a global feature vector N × D. Both the normalized weighted graph and global features goes as input to graph convolutional

network to output a global feature signature which is passed to a fully connected layer that scales down the features and assign one of k

output classes to each point. GCN uses ReLU activation function and dropout regularization after each layer.

method to extract local feature descriptors from 3D point

sets called spin images. The distance (α, β) between a fea-

ture point in spin image with coordinate p, a surface normal

n and a neighbouring point q is given by α = nq.(p−q) and

β =

√
‖p− q‖

2
− α2. The final spin image contains the

neighbors of feature points accumulated in a discontinuous

2D bin which is robust to occlusion and clutter. Flint et al.

[8] propose a method called THRIFT that extends the fea-

ture extraction techniques applied to 2D images like SIFT

and propose a 3D feature descriptor that successfully iden-

tifies keypoints in range data.

Recently, convolutional neural networks have been used

in general for feature extraction in both 2D and 3D domains.

The most recent work that employ CNNs to extract global

features from raw 3D point clouds is PointNet [22]. Point-

Net architecture uses a stack of 2D convolutional layers for

feature transformation and ensures invariance to permuta-

tions, geometric transformations and also considers the in-

teraction among points using a localized convolution oper-

ation. PointNet outperformed all the existing methods used

for classification of 3D points which either required conver-

sion to other irreversible representations [23, 38, 21] or used

raw 3D point clouds [18].

In this paper, we take motivation from PointNet [22] and

extend our graph convolutional network to be more robust

using global features. So, instead of taking the point coor-

dinates (x(i), y(i), z(i)) as input feature vectors [37], we use

2D convolutional layers to output an {x
(1)
i , x

(2)
i , ....x

(D)
i } ∈

R
N×D global feature vector, where D represents the num-

ber of features per point.

Using the global feature extraction with graph convolu-

tional network speeds up the training process and increases

the overall performance of our network which is demon-

strated in Sections 4 and 5.

Graph Convolutional Network (GCN) takes as input

the feature vector {x
(1)
i , x

(2)
i , ....x

(D)
i } ∈ R

N×D, where

D corresponds to the number of features and the weighted

graph signals W ∈ R
N×N , and the goal of GCN is to learn

a set of K trainable graph-filter coefficients. Moreover, a

GCN learns a mapping function that can translate the input

graph signals to capture the local features corresponding to

the relative position of points in 3D space. So, a GCN can

be written as a non-linear function σ of input graph signals

W (l) and X(l), where l corresponds to the activations of lth

layer.

f(X(l),W ) = σ (θ(l)X(l)W )) (6)

where the learnable parameter θ is of order K. The map-

ping function in equation 6 contains an unnormalized graph

representation W , because the range of values can vary for

heterogeneous graphs, the unnormalized GCN cannot gen-

eralize well on graphs that lie in different spectral domains

[33]. In order to overcome this problem, the input graph

signal is to be normalized in such way that adding all the



rows of W sum to one [15]. In our proposed methodol-

ogy, we have used a graph Laplacian L = I−D− 1

2WD− 1

2

using the diagonal matrix D such that Dii =
∑

j Wij for

symmetric normalization,

f(X(l),W ) = σ (θ(l)D̂− 1

2 Ŵ D̂− 1

2X(l))) (7)

where Ŵ = W+I , and I is the identity matrix. Further-

more, using the Laplacian normalization, the eigenvalues of

L lie in the range [−1, 1].
In order to obtain the local features at each layer l, we

use Chebyshev polynomials 4, and take as input the global

feature vector {x
(1)
i , x

(2)
i , ....x

(D)
i } for the first layer. Fur-

thermore, in order to define a single graph convolution oper-

ation between the input feature vector xi and a graph signal

g, we use the inverse graph Fourier transform [33] as,

x ∗G g = U(UTx⊙ UT g) (8)

where U is the matrix of eigenvectors and ⊙ represents

the pointwise product of inverse graph Fourier transform of

x as UTx and g as UT g.

In our proposed architecture, we have used the Cheby-

shev graph filtering representation given by equation 4, with

K-neighbourhood at each point to learn the localized fea-

ture maps with three layers of graph convolutions.

3.3. Training

The architecture is trained using Adam optimizer with

a learning rate that starts at 1 × 10−3 and is reduced to

half after every 20 epochs, but always stays in the range

[1× 10−3, 1× 10−7]. We have used a batch size of 16 and

dropout regularization of 0.8 for GCN layers and 0.4 for

fully connected layers to prevent overfitting. Our network

uses four layers of 2D convolutional layers with kernel sizes

[64, 64, 128, 1024] respectively. Furthermore, to avoid ad-

ditional complexity in our model, we have used a weight

decay of magnitude 2× 10−4.

The speed and stability of GCN depends heavily on the

order K of Chebyshev polynomial 4. The model performs

optimal at K = 1, and as we increase the order of K, the

size of Ti(L) increases which diminishes the speed and in-

creases the time required to train the network.

4. Performance Measures

We have evaluated our architecture on a variety bench-

mark datasets including S3DIS containing indoor 3D

scenes[1], ShapeNet part segmentation [35] and Seman-

tic3D benchmark dataset [10]. Our methodology, outper-

forms the existing architectures on all the benchmarked

datasets, and most of the performance gain is due to encod-

ing the local spatial features of the 3D point cloud inside a

graph model.

Method mean IOU mean Accuracy

PointNet [22] 47.71 48.98

SEGCloud [29] 48.92 57.35

Ours (GCN Only) 47.22 56.44

Ours (FGCN) 52.17 63.22

Table 1. Results of Semantic scene parsing on Stanford 3D

dataset. The mIOU is calculated as an average over IOUs of all

13 classes containing indoor structural objects.

class average

SSCNN [36] 82.0

Kd-net [16] 77.4

PointNet [22] 80.4

PointNet++ [24] 81.9

SpiderCNN [34] 82.4

SPLATNet3D [27] 82.0

PointConv [32] 82.8

Ours (GCN Only) 78.2

Ours (FGCN) 83.1

Table 2. Results on ShapeNet part segmentation: The metric

is mIOU similar to the one used by PointNet [22]. We have com-

pared our architecture with existing architectures on ShapeNet part

segmentation. Our network achieves slightly better results than

state-of-the-art.

4.1. Semantic Scene Parsing

In our first experiment, we have used Stanford 3D dataset

[1], that contains 3D scans from 6 different areas and 271
rooms collectively acquired using an individual Matterport

Scanner. The dataset contains 13 classes, so each point can

be assigned 1 out of 13 semantic labels.

In order to split the data into training and testing sets, we

have used the same method and statistics as used by Point-

Net [22]. We first divide the areas into rooms and then split

points in each room using 1m by 1m blocks. Furthermore,

each point contains a 9-dimensional vector containing XYZ

coordinates, RGB color channels and a normal or an equi-

rectangular projection per room.

We train our model using a point size N of 4096 per

training example and a batch size of 16, where each point

contains only the XYZ coordinates. The comparison be-

tween our architecture and existing architectures on S3DIS

dataset is shown in table 1, and the results can be visual-

ized in figure 3. Our methodology outperforms the existing

architectures by a significant margin.

4.2. ShapeNet Part Segmentation

ShapeNet [35] provides a large-scale repository that con-

tains richly annotated 3D shapes. The ShapeNet part dataset

from [35] contains 16, 881 3D shapes from 16 different cat-

egories, labelled with 50 parts in total. In object’s part seg-



Figure 3. Qualitative results on semantic scene parsing. The images on the top contains the ground truth labels and on the bottom are the

predictions by FGCN on the Stanford’s indoor semantic scene parsing dataset [1]. The point clouds are viewed using MeshLab software.

Best viewed in color.

mentation, the goal is to assign a correct semantic label to

each point of the 3D shape, where the labels are salient re-

gions or functional parts of the objects like wing, engine,

tail, handle, roof etc.

In order to evaluate our model on ShapeNet part dataset

we pre-compute the Graph filters using Chebyshev polyno-

mials 4 and train our model on each of the 16 object cat-

egories. Furthermore, for a fair comparison we have used

the same evaluation metric as used by PointNet [22]. We

compute the intersection-over-union (IOU) over each ob-

ject category and then compute the mIOU by averaging the

IOUs of each individual category.

The results are shown in table 2, we have used a batch

size of 16 and the Chebyshev order or K = 1 for graph

filtering. We have compared our methodology with exist-

ing architectures that directly consume raw 3D point clouds,

and have achieved a class average of 83.1 which is on par

with state-of-the-art.

4.3. Semantic3D Benchmark

There has been a long tradition of benchmark evalua-

tion in the geospatial dataset domain particularly ISPRS.

For example, the ISPRS-EuroSDR benchmark on High Den-

sity Aerial Image Matching, which evaluates dense match-

ing algorithms [9, 5] on aerial imagery. The ISPRS Bench-

mark on Urban Object Detection and Reconstruction that

contains a variety of challenges including object detection,

semantic segmentation and 3D reconstruction of geospatial

aerial imagery [25].

In this paper, we have used the Semantic3D benchmark

dataset [10] for evaluating our architecture. This dataset

is the most recent, and by far the largest labeled 3D point

cloud dataset of outdoor scenes containing both urban and

rural environments like villages, churches, railway roads,

squares, streets etc. It contains nearly 4 billion points

collected with 30 terrestrial laser scanners across Central

Europe depicting the European architecture in most of its

scenes. The results shown in table 3 are on the reduced-8

dataset of the benchmark that has the following 8 classes:

1) natural terrain; 2) buildings; 3) low vegetation; 4) high

vegetation; 5) man made terrain; 6) scanning artifacts; 7)

cars and trucks; and 8) remaining hard scape.

Additionally, Semantic3D [10] benchmark proposed a

baseline 3D-CNN architecture for 3D point cloud classifi-

cation that takes as input 3D voxel-grids per scan point at

5 different resolutions. Their pipeline uses VGG-like ar-

chitecture that uses 3D convolutions with softmax layers to

output per-point classifications of the 3D point cloud. How-

ever, their approach converts the original 3D point clouds to

voxel representations that renders the input dataset highly

voluminous and increases the overall computation cost of

the network. Following this approach, many architectures

were evaluated on Semantic3D dataset, SEGCloud [29] is

an end-to-end architecture that jointly uses the advantages

of fully Convolutional Neural networks (FCN), trilinear in-

terpolation (TI), and fully connected Conditional Random

Fields (FC-CRF) to provide fine grained semantics per point

inside a 3D point cloud. SEGCloud outperformed exist-

ing architectures on Semantic3D benchmark by a signifi-

cant margin, nearly 2.2 mIOU points and 2.28% increase in

accuracy.

We evaluate our architecture on Semantic3D benchmark

dataset using the similar intersection over union (IOU) met-

ric as defined in [10], and the results are shown in table

3. The mIOU is calculated as an average over IOUs of all

8 classes. Our architecture achieves on par state-of-the-art



category TMLC-MSR [11] DeePr3SS [19] SnapNet [2] SEGCloud [29] Ours (GCN only) FGCN

man-made terrain 89.80 85.60 82.00 83.90 79.20 90.30

natural terrain 74.50 83.20 77.30 66.00 62.10 65.20

high vegetation 53.70 74.20 79.70 86.00 82.30 86.20

low vegetation 26.80 32.40 22.90 40.50 36.20 38.70

buildings 88.80 89.70 91.10 91.10 86.20 90.10

hard scape 18.90 18.50 18.40 30.90 34.70 31.60

scanning artefacts 36.40 25.10 37.30 27.50 29.00 28.80

cars 44.70 59.20 64.40 64.30 66.40 68.20

mean IOU 54.20 58.50 59.10 61.30 59.50 62.40

mean Accuracy 68.95 88.90 70.80 73.68 76.80 89.30

Table 3. Results on Semantic3D reduced-8 dataset: The mIOU and mAcc are calculated as mean over all categories of Semantic3D

dataset. Our approach achieves state-of-the-art results on Semantic3D benchmark dataset.

Figure 4. Test Loss comparison on S3DIS dataset [1]. The com-

parison is between PointNet [22] and our proposed architectures.

The graph indicates a faster convergence rate and a more stable

learning curve for our approach. Best viewed in color.

performance on Semantic3D benchmark dataset and com-

bining the local spatial information with global features in-

side a GCN accounts for most of the performance increase.

The results can be visualized in figure 5.

5. Architecture Design Goals

In this section, we evaluate the performance of our archi-

tecture with respect to speed and stability using S3DIS [1]

dataset. We also show the effect of using local feature ex-

traction and how adding the global features to our network

gives best performance for our network.

Effect of Using Local Feature Extraction: Many ap-

proaches transform the input 3D point cloud to a structured

3D form [18, 29, 23, 38, 21] losing most of the spatial infor-

mation that is beneficial for identifying objects inside a 3D

space. Recently, the interest is towards consuming the point

clouds directly [22, 24, 32, 27], but many of these architec-

tures try hard to improve the local feature extractor by ap-

plying convolution directly to the unstructured point cloud.

Consider figure 4, which shows the fluctuations in test loss

during training on S3DIS dataset [1], because of the sensi-

tivity to initial weights. This problem is especially severe

for PointNet [22] that only seeks the latent representations

with more emphasis on the overall global signature of the

3D object, without considering the meaningful local fea-

tures that exists between points. On the other hand, our fi-

nal architecture uses both global features (that also provides

geometric invariance [22]) and local point features and thus

has a relatively faster convergence rate and is more stable

towards the unstructured nature of 3D point clouds. How-

ever, using only the local features is not sufficient because

of varying geometry of 3D objects in different 3D scenes.

(See figure 4, GCN Only)

Effect of Using Global Feature Extraction: One of

the key problems in working with unstructured 3D data is

the geometry of the 3D object. The semantic segmenta-

tion should be able to generalize well on all the possible

permutations of 3D objects, and in order to do so we have

used a stack of 2D convolutional layers to extract high or-

der features given the 3D point coordinates [22]. There-

fore, our final architecture reforms the raw 3D point cloud

to a vector of high dimensional features before passing it

on to the graph convolutional network. This adds to the

overall stability and reliability of our model across differ-

ent scenes with objects of varying geometries. (See Figure

4, FGCN). Additionally, our architecture also preserves the

spatial position of points since we combine information us-

ing k-nearest neighbor with K hops and encode this infor-

mation into graphs which are symmetric by default.

6. Conclusion

In this paper, we have presented FGCN, a novel feature

based graph convolutional network for semantic segmenta-

tion of 3D point clouds. The proposed architecture achieves

on par or even better performance than state-of-the-art ap-

proaches on tasks like semantic scene parsing, part segmen-



Figure 5. Qualitative results of testing on Semantic3D benchmark dataset. The point clouds are visualized using the PPTK viewer.

In order to produce these visualizations, we have further reduced the training set by three examples (scenes). Furthermore, the network

outputs a sparse prediction which we interpolate to produce a dense point cloud prediction using Open3D’s k-NN hybrid search with radius

of 0.2. The most prominent classification errors are indicated by the rectangles drawn on FGCN output. Best viewed in color.

tation and classification of objects in natural scenes such

as in Semantic3D benchmark dataset. In this work, we

have shown the importance of using local features and how

using the spatial position of points can increase the over-

all performance of the segmentation task when it comes to

identifying objects in 3D scenes. In addition to increased

performance, the proposed architecture is invariant to geo-

metric distortions and preserves the local structures of ob-

jects using the graph models. Although the proposed net-

work achieves better results in terms of accuracy but re-

quires more memory footprint compared to the existing ar-

chitectures. In future, we intend to optimize the memory

usage by using subgraphs (or using dynamic construction

of subgraphs during training). In addition to optimizing

the memory, we would develop a module for propagating

global information between subgraphs which could add an

extra boost in accuracy.
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[7] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Proceedings of the 30th

International Conference on Neural Information Processing

Systems, NIPS’16, page 3844–3852, Red Hook, NY, USA,

2016. Curran Associates Inc. 3

[8] A. Flint, A. Dick, and A. v. d. Hengel. Thrift: Local 3d

structure recognition. In 9th Biennial Conference of the Aus-

tralian Pattern Recognition Society on Digital Image Com-

puting Techniques and Applications (DICTA 2007), pages

182–188, Dec 2007. 3, 4

[9] Norbert Haala. The landscape of dense image matching al-

gorithms. 2013. 6

[10] Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K.

Schindler, and M. Pollefeys. SEMANTIC3D.NET: A new

large-scale point cloud classification benchmark. In ISPRS

Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, volume IV-1-W1, pages 91–98, 2017.

1, 2, 5, 6

[11] Timo Hackel, Jan Wegner, and Konrad Schindler. Fast se-

mantic segmentation of 3d point clouds with strongly vary-

ing density. ISPRS Annals of Photogrammetry, Remote

Sensing and Spatial Information Sciences, III-3:177–184, 06

2016. 7

[12] David K. Hammond, Pierre Vandergheynst, and Rémi Gri-
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