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Abstract

Within the remote sensing domain, a diverse set of acqui-

sition modalities exist, each with their own unique strengths

and weaknesses. Yet, most of the current literature and open

datasets only deal with electro-optical (optical) data for

different detection and segmentation tasks at high spatial

resolutions. optical data is often the preferred choice for

geospatial applications, but requires clear skies and little

cloud cover to work well. Conversely, Synthetic Aperture

Radar (SAR) sensors have the unique capability to pene-

trate clouds and collect during all weather, day and night

conditions. Consequently, SAR data are particularly valu-

able in the quest to aid disaster response, when weather and

cloud cover can obstruct traditional optical sensors. De-

spite all of these advantages, there is little open data avail-

able to researchers to explore the effectiveness of SAR for

such applications, particularly at very-high spatial resolu-

tions, i.e. < 1m Ground Sample Distance (GSD).

To address this problem, we present an open Multi-

Sensor All Weather Mapping (MSAW) dataset and chal-

lenge, which features two collection modalities (both SAR

and optical). The dataset and challenge focus on map-

ping and building footprint extraction using a combination

of these data sources. MSAW covers 120km2 over multi-

ple overlapping collects and is annotated with over 48, 000

unique building footprints labels, enabling the creation and

evaluation of mapping algorithms for multi-modal data. We

present a baseline and benchmark for building footprint ex-

traction with SAR data and find that state-of-the-art seg-

mentation models pre-trained on optical data, and then

trained on SAR (F1 score of 0.21) outperform those trained

on SAR data alone (F1 score of 0.135).

1. Introduction and Related Work

The advancement of object detection and segmenta-

tion techniques in natural scene images has been driven

largely by permissively licensed open datasets. For exam-

ple, significant research has been galvanized by datasets

such as ImageNet [5], MSCOCO [18] and PASCALVOC

[10], among others. Additionally, multi-modal datasets

continue to be developed, with a major focus on 3D chal-

lenges, such as PASCAL3D+ [36], Berkeley MHAD [24],

Falling Things [30], or ObjectNet3D [35]. Other modalities

such as radar remain generally unexplored with very few

ground based radar datasets, most of which are focused on

autonomous driving such as EuRAD [20] and NuScenes [2].

Although these datasets are immensely valuable, the mod-

els derived from them do not transition well to the unique

context of overhead observation. Analyzing overhead data

typically entails detection or segmentation of small, high-

density, visually heterogeneous objects (e.g. cars and build-

ings) across broad scales, varying geographies, and often

with limited resolution - challenges rarely presented by nat-

ural scene data.

Ultimately, few high-resolution overhead datasets ex-

ist for mapping and detection of objects in overhead im-

agery. The majority of these datasets are specifically fo-

cused on leveraging electro-optical (optical) imagery. For

example, the permissively licensed SpaceNet [9, 33] cor-

pus presently covers 10 cities, with 27, 000km2 of optical

imagery, > 800, 000 building footprints, and 20, 000 km

of road labels. Less permissively licensed datasets such as

xView [15], xBD [13], A Large-scale Dataset for Object

DeTection in Aerial Images (DOTA) [34], and Functional

Map of the World (FMOW) [4] are impressively expansive,

each addressing different tasks using optical data. However,

lacking from each of these datasets are other modalities of



Figure 1. Building footprints outlined in red overlaid upon visualized SAR Intensity with three polarizations (HH, VV, HV) dis-

played through the Red, Green, and Blue color channels.

data common to remote sensing. One of the most prominent

overhead sensor types is synthetic aperture radar (SAR).

SAR sensors collect data by actively illuminating the

ground with radio waves rather than utilizing the reflected

light from the sun as with passive optical sensors. The sen-

sor transmits a wave, it bounces off of the surface, and then

returns back to the sensor (known as backscatter) [22]. Con-

sequently, SAR sensors succeed where optical sensors fail:

They do not require external illumination and can thus col-

lect at night. Additionally, radar waves pierce clouds, en-

abling visualization of Earth’s surface in all weather con-

ditions. SAR data differs greatly from optical. For ex-

ample, the intensity of the pixels in a radar image are not

indicative of an object’s visible color, but rather represent

how much radar energy is reflected to the sensor. Reflec-

tion strength provides insights on the material properties or

physical shape of an object. Depending on the target prop-

erties and the imaging geometry, the radar antenna will re-

ceive all, some, or none of the radio wave’s energy [22].

Furthermore, SAR sensors can transmit in up to 4 polar-

izations by transmitting in a horizontal or vertical direction

and measuring only the horizontally- or vertically-polarized

(HH, HV, VH, VV) part of the echo. Each polarization

can help distinguish features on the ground by measuring

the most prevalent types of scattering for objects of interest

[22].

SAR imagery presents unique challenges for both com-

puter vision algorithms and human comprehension. In par-

ticular, SAR imagery is considered a non-literal imagery

type because it does not look like an optical image which

is generally intuitive to humans. These aspects must be un-

derstood for accurate image interpretation to be performed.

Because SAR is a side-looking, ranging instrument, the

backscattered returns will be arranged in the image based

on how far the target is from the antenna along the slant

plane (radar-image plane). This causes some interesting ge-

Figure 2. Examples of layover in urban SAR imagery. In this

detail of Rotterdam, there is land to the north (top) and water to

the south (bottom). This image was recorded by aircraft from the

south. The three skyscrapers near the riverbank appear to jut into

the water because of layover.

ometrical distortions in the imagery, such as foreshortening

or layover. Tall objects with a slope, such as a mountain,

do appear steeper, with a thin bright “edge” appearance at

the peak. Layover is an extreme example of foreshorten-

ing where the object is so tall that the radar signal reaches

the top of an object before it reaches the bottom of it. This

causes the returns from the top of the structure to be placed

on the image closer to the sensor (near range) and obscure

the bottom (Figure 2). Such complex geometric issues will

present a unique challenge to computer-vision algorithms to

comprehend and interpret.

A few SAR-specific datasets exist. Notably, the Mov-

ing and Stationary Target Acquisition and Recognition



(MSTAR) dataset [6] focuses on classifying military vehi-

cles. The recently released SARptical [32] dataset also fo-

cuses on SAR and optical data fusion for foundational map-

ping purposes. However, both SARptical and MSTAR are

distributed in small tiles, are non-georeferenced, and lack

scalability to broader areas. Coarser datasets such as the

Sen12MS dataset [28] provide a valuable global dataset of

multi-spectral optical and SAR imagery as well as land-

cover labels at 10m resolution spanning hundreds of loca-

tions. While such coarser resolution datasets are incredibly

useful, to our knowledge no high-resolution (<= 1 m GSD)

multi-modal SAR datasets are publicly available with per-

missive licenses (the 2012 IEEE Geoscience and Remote

Sensing Society (GRSS) Data Fusion challenge [1] built an

excellent dataset, using a combination of high-resolution

SAR, optical, and LIDAR over downtown San-Francisco;

however these data have a limited license and are no longer

publicly available).

Although SAR has existed since the 1950s [22] and stud-

ies with neural nets date back at least to the 1990s [3], the

first application of deep neural nets to SAR was less than

five years ago [23]. Progress has been rapid, with accuracy

on the MSTAR dataset rising from 92.3% to 99.6% in just

three years [23, 12]. The specific problem of building foot-

print extraction from SAR imagery has been only recently

approached with deep-learning [29, 37]. Further research is

required to investigate the combination of SAR and deep-

learning for this task.

To address the limitations detailed above, we introduce

the Multi-Sensor All Weather Mapping (MSAW) dataset.

This dataset features a unique combination of half-meter

quad-polarized X-band SAR imagery (Figure ) and half-

meter optical imagery over the port of Rotterdam, the

Netherlands. The dataset covers a total area of 120km2

and is labeled with 48,000 unique building footprints, along

with associated height information curated from the 3D Ba-

sisregistratie Adressen en Gebouwen (3DBAG) dataset [7].

Presently, no other open datasets exist that feature near-

concurrent collection of SAR and optical at this scale with

sub-meter resolution. Although limited to a single loca-

tion, the MSAW dataset represents the first step in creat-

ing an openly available very-high resolution repository of

SAR data. Moreover, the MSAW dataset joins the existing

SpaceNet data corpus, further expanding the geographic di-

versity and the number of cities to 11. Additionally, we

present a deep-learning baseline model for the automated

extraction of building footprints using a combination of

SAR and optical imagery. Such a baseline is important to

demonstrate the performance of state-of-the-art segmenta-

tion models for working with SAR data.

Alongside the dataset, MSAW also features a public

challenge portion, encouraging participants and researchers

to produce innovative algorithmic solutions to address chal-

lenging foundational mapping problems. The dataset and

challenge results may serve as a baseline and reference

benchmark for future research with both overhead SAR and

optical imagery. The lessons learned from such a chal-

lenge and future experiments with the dataset will pro-

vide insights to the broader computer vision community,

and enable the design of robust algorithms for a variety

of tasks. Finally participants of the challenge and users

of the dataset will be invited to participate at the IEEE

GRSS EarthVision 2020 workshop (www.grss-ieee.

org/earthvision2020/) to gather, discuss, and help

advancing the remote sensing computer vision field. The

workshop will take place during the 2020 Conference on

Computer Vision and Pattern Recognition (CVPR).

2. Dataset

MSAW contains CC-BY-SA 4.0-licensed optical and

SAR imagery over the port of Rotterdam, the Netherlands.

Rotterdam is the largest port in Europe, and features thou-

sands of buildings, vehicles, and boats of various sizes,

making for an effective test bed for data-fusion experi-

ments between SAR and optical. MSAW covers an ex-

tent of approximately 120km2. The dataset covers het-

erogeneous geographies, including high-density urban en-

vironments, rural farming areas, suburbs, industrial areas

and ports resulting in various building size, density, con-

text and appearance. Additionally, the MSAW dataset is

built to mimic real-world scenarios where historical optical

data may be available, but concurrent collection of SAR and

optical data is not possible. For example, cloud-cover and

adverse weather conditions often complicate remote sens-

ing activities such as disaster response. However, historical

high-quality optical data is often available for any area of

the earth. As such, the MSAW dataset includes both optical

and SAR in the training dataset, but only includes SAR data

in the testing dataset. When the dataset is structured in such

a fashion the optical data can be used for pre-training or pre-

processing, but cannot be used to directly map features. The

dataset is available for free download through Amazon Web

Services’ Open Data Program, with download instructions

available at www.spacenet.ai.

2.1. Synthetic Aperture Radar

The SAR data featured in SpaceNet MSAW is provided

by Capella Space, in partnership with Metasensing, via an

aerial sensor. This sensor mimics the space-borne sen-

sors that will be present on Capella’s future constellation

of satellites. The aerial collect captures the same area of

Rotterdam multiple times and features 204 individual image

strips captured over a three day span: August 4th, 23rd, and

24th 2019. Each strip features four polarizations (HH, HV,

VH, and VV) of data in the X-band wavelength. Data are

captured from an off-nadir perspective at a relative look an-



Figure 3. Three areas from the SpaceNet 6 MSAW dataset: Left: SAR Intensity in decibels (HH, VV, VH). Center: Visible Spectrum

Imagery (R,G,B). Right: False Color Composite Imagery (NIR, R, G).

gle of 53.4◦ to 56.6◦ from both north- and south-facing di-

rections. These extremely oblique look-angles can present

real challenges to traditional computer vision algorithms

[33].

The MSAW dataset is processed from Single look com-

plex (SLC) data. By definition SLC data are loosely georef-

erenced and retain the complex data properties inherent to

SAR collections. We further process these SLC images for

each of the four polarizations by co-registering and crop-

ping each to the same extent for each image strip. Next,

all polarizations are finely co-registered (< 1 pixel) to one

another using a truncated sinc interpolation. The intensity

of backscatter (the amount of transmitted radar signal that

the imaging surface redirects back to the sensor) is calcu-

lated for each polarization. Data are multilooked (noise re-

duction process) using an average convolution with a 2× 2



kernel. Any negative intensity value is then set to 0. Fi-

nally, the logarithm of raw intensity is calculated for each

polarization and multiplied by 10. Any value that again falls

below 0 is set to 10−5 and areas containing non-valid im-

agery are set to 0. This stretches data to a range between

10−5 and 92.88, falling within the 8-bit range of 0− 255 to

improve usability for challenge participants. These data are

then geo-registered and ortho-rectified (correcting imagery

for the Earth’s complex topography) to the earth’s surface

using the openly available Shuttle Radar Topography Mis-

sion (SRTM) Digital Elevation Model (DEM) and resam-

pled with a lanczos interpolation to a spatial resolution of

0.5m× 0.5m per pixel.

2.2. Electro­Optical Imagery

The optical imagery is provided by the Maxar

Worldview-2 satellite. A single, cloud-free image strip was

collected on August 31, 2019 at 10:44AM from a look an-

gle of 18.4◦ off-nadir with an overall area of 236km2. The

collection is composed of three different sets of data with

different spatial resolutions:

• one band panchromatic (0.5m)

• four multi-spectral bands (2.0m): blue, green, red, and

near-infrared (NIR)

• four pan-sharpened bands (0.5m): blue, green, red,

and NIR

Pan-sharpening is the process that merges high spatial reso-

lution panchromatic and lower spatial resolution multispec-

tral imagery to create a single high spatial resolution color

image. Additionally, each dataset is atmospherically com-

pensated to surface-reflectance values by Maxar’s AComp

[25] and ortho-rectified using the SRTM DEM. As with the

SAR imagery, areas containing non-valid imagery are also

set to 0.

2.3. Annotations

We use previously produced high-quality annotations

provided openly via the 3DBAG dataset [7]. These la-

bels comprise both building footprints and addresses across

all of the Netherlands. The polygon building footprint la-

bels are produced and curated by the Netherlands Cadas-

tre, Land Registry and Mapping Agency (Kadaster). The

dataset is updated regularly as new buildings are registered,

built, or demolished. We use the dataset update from Au-

gust 28, 2019 containing over 10 million buildings or ad-

dresses with 97% containing valid height information.

The 3D component of the 3DBAG dataset comes from

an openly available DEM derived from aerial LiDAR called

the Actueel Hoogtebestand Nederland (AHN). The height

information is matched to each building polygon with best-

fit RMSE averageing between 25cm−100cm based upon a

random sample of buildings. Although the height informa-

tion will not be used in the challenge, such data can be valu-

able for future research and analysis on the value of SAR or

optical to detect the height of objects from an overhead per-

spective.

We further refine the dataset by cropping to our area

of interest. Next, we perform manual quality control to

add buildings that are missed in the imagery, remove build-

ings that do not exist in the imagery, and drop certain areas

(< 6.5 km2 total) from our training and testing sets where

a significant number of buildings are not labeled accurately.

Finally we dissolve individual addresses (i.e. apartments

and town-homes) that co-exist within a single building. We

then remove buildings smaller than 5m2. The final dataset

is comprised of 48,000 unique building footprints.

2.4. Additional Pre­processing

We tile all data to 450m×450m (900pixels×900pixels)

tiles. We first tile the SAR imagery, and then tile the optical

collects to match the corresponding SAR extent and pixel

grid. We then mask the optical data using the extent of each

SAR image that contains valid imagery. Finally we clip our

polygon labels to match each tile extent, again removing

polygons that do not contain any valid SAR imagery.

We split the tiled data into three sets: 50% for training,

30% for testing, and 20% for final scoring for the challenge.

The SpaceNet training dataset contains both SAR and opti-

cal imagery, however the testing and scoring datasets con-

tain only SAR data. In February 2020 we publicly released

SAR, optical, and labels for the training set, SAR only for

the public test set, and held back the entire final scoring set.

As mentioned above, we structure the dataset in this way in

order to mimic real-world scenarios where historical opti-

cal data is available, but concurrent collection with SAR is

often not possible due to inconsistent orbits of the sensors,

or cloud cover that will render the optical data unusable.

3. Baseline Building Extraction Experiments

In conjunction with the MSAW dataset, a baseline algo-

rithm for the MSAW public challenge has been released.

The goal of the challenge is to extract building footprints

from SAR imagery, assuming that coextensive optical im-

agery is available for training data but not for inference.

Releasing a baseline algorithm serves several purposes in

the context of the challenge. First, it demonstrates a com-

plete working solution to the task and illustrates the format

for participant submissions. Second, it gives participants an

optional starting point for their own ideas and/or their own

code-base. Third, it serves to set expectations for what is

within reach of competitive solutions.



3.1. Baseline Model

The baseline algorithm is built around a U-Net [27] neu-

ral network with a VGG-11 encoder, an arrangement called

a TernausNet[14]. The model is trained with an AdamW

optimizer [19] against a loss function that’s a weighted sum

of Dice [21] and focal loss [17] which can help with the

identification of small objects. The neural network’s out-

put is a segmentation mask (building or not building), from

which individual vector formatted building footprints are

extracted.

It’s possible to train the model to extract building foot-

prints from SAR imagery without using optical data at all.

However, model performance can be increased by making

use of both modalities. For the baseline, this is done with

a transfer learning approach. The model is first trained on

optical imagery, then the final weights from that process are

used as the initial weights for training on SAR. Since quad-

polarization SAR is four-channel, the process is simplified

by duplicating a channel in RGB imagery to make it four-

channel as well.

To further improve model performance, all SAR imagery

is rotated, so that the direction from which the data was col-

lected (and hence the direction of layover) is the same in ev-

ery case. Finally, buildings of less than 20m2 (80 total pix-

els) are ignored during training on SAR data. These struc-

tures, mostly backyard outbuildings, are not readily distin-

guishable amidst the clutter, and training on their footprints

is deleterious to model performance on larger buildings.

3.2. Metrics

We used the SpaceNet Metric (F1 score) as defined in

Van Etten et al. [9]. The F1 score uses an intersection-over-

union (IOU) threshold to calculate precision P and recall R

of model predictions. We set our IOU threshold at 0.5 to

define a positive detection of a building footprint.

The SpaceNet Metric is defined as:

F1 =
2× P ×R

P +R
(1)

This metric is much more robust versus pixel-wise met-

rics as it measures the model’s ability to delineate build-

ing footprints on a per-instance basis, and enables detailed

counts of the number and size of buildings present within

specific areas.

3.3. Results and Discussion

Using the metric described above, the baseline algorithm

achieves a score of 0.21±.02 on the MSAW dataset. For

comparison, this is almost identical to the score of a base-

line algorithm for a similar building extraction challenge us-

ing overhead optical data from a few years ago [9]. Even

recent state-of-the-art models achieve similar performance

on optical data that is as far off-nadir as this SAR data [33].

Figure 6 shows some sample predictions from two testing

tiles within the test set.

Score comparison among different versions of the base-

line itself show whether different aspects of the baseline

design improve performance. In the absence of trans-

fer learning with optical data, the model’s score drops to

0.135±.002. If, in addition, rotational alignment is replaced

by random rotations, the score sinks further to 0.12±.03

(Table 3.3). These experimental results show that trans-

fer learning from optical and consistent treatment of SAR

viewing direction provide performance benefits.

Ultimately, the baseline algorithm is just one way to ap-

proach the problem, and other approaches also merit in-

vestigation. For example, another way to incorporate op-

tical data is a domain adaptation approach where a gen-

erative adversarial network is trained to convert SAR im-

ages into optical-style images [31, 16]. SAR to optical im-

age translation is shown to improve land-use classification

Figure 4. The effects of building size on model performance

(recall). Recall for the baseline model is plotted in blue with the

number of buildings in the dataset by size plotted in red.

Figure 5. The effects of building height on model performance

(recall). Recall for the baseline model is plotted in green with the

number of buildings in the dataset by height plotted in red. Height

is derived from the LiDAR collection associated with the dataset.



Figure 6. Predictions from the MSAW Baseline. Left: SAR imagery (HH, VV, HV) overlaid with model predictions colorized in orange.

Right: Visible spectrum imagery of the same areas.

performance, remove cloud-cover, and boost image quality

assessment metrics. Conversely, other studies have found

that applying traditional domain adaptation approaches to

translate SAR to EO imagery can harm performance for

certain tasks [11]. Ultimately, such approaches are still

quite nascent in the SAR domain and further research is re-

quired to understand best practices. Alternative approaches,

such as existing algorithms for extracting building foot-

prints from SAR [26, 38] could be used to generate the neu-

ral network’s input, instead of just sending SAR intensity

directly into the neural net. The baseline algorithm is in-

tended as a first step to the broader exploration of solutions

in the MSAW public challenge.

We conduct further analysis on the dataset by evaluat-

ing model performance based upon building-footprint size

(Figure 4). We find that recall scores achieve a performance



Method F1

Optical + SAR 0.21± .020

Rotated SAR 0.14± .002

SAR 0.12± .030

Table 1. Baseline Performance Results. We test performance of

the baseline and evaluate performance (F1 score) for the semantic

segmentation of building footprint in SAR imagery. We report re-

sults for a transfer learning approach (optical + SAR), SAR data

that has been rotated for a consistent viewing angle (Rotated SAR),

and SAR data that has not been rotated to have a consistent view-

ing angle (SAR).

Figure 7. Feature importances. RF model feature importances

for building properties as a predictor of IOU.

of 0.1 at approximately 100m2. Any building smaller than

this are nearly impossible to detect. Furthermore, we find

that performance rises and plateaus at roughly 0.5 recall

for much larger buildings, with such buildings becoming

increasingly rare in the dataset. Building height also influ-

ences model performance (Figure 5). Performance gradu-

ally increases as buildings become taller. We see a peak

again around 0.5 recall at a height of approximately 20

meters. Recall then begins to decline for any buildings

larger than 20 meters. The reasons of this could be the

results of geometric distortions (layover or foreshortening)

which become more extreme as building height increases.

The majority of taller structure (> 30m) have an average

area of 1400m2. Based upon the size analysis, these struc-

tures should have an average recall of approximately 0.3 or

greater, however average recall for these taller buildings is

actually less than 0.2.

While building a performant baseline is a difficult and

complex task, we can also ask a far simpler question: are

building features predictive of the IOU score achieved by

the baseline? For this question we follow [8] and fit a ran-

dom forest model to the baseline IOU score using the avail-

able building properties (height, area, and volume) as input

variables. This random forest model provides a good fit to

the provided data with R2 = 0.91. As expected, a random

variable shows no predictive power. While the Spearman

rank correlation coefficients between IOU and height, area,

volume are not particularly high (+0.16, +0.12, +0.14, re-

spectively) we nevertheless note relatively high predictive

feature importance for building height, with a value of 0.39

(out of 1.0), see Figure 7. Even though the baseline model

does not explicitly use building height, this feature never-

theless is highly predictive (and positively correlated) with

IOU score. This is likely due to the correlation between

building height and area (Spearman coefficient of 0.59),

with small buildings being much more difficult than larger

ones. For very tall buildings the layover greatly complicates

building footprint extraction, so height is also predictive of

low scores for tall buildings.

4. Conclusion

We introduced the Multi-Sensor All Weather Mapping

(MSAW) dataset, baseline, and challenge focused on build-

ing footprint extraction from an overhead perspective. This

novel multi-modal dataset contains both SAR and optical

imagery as well as 48, 000 attendant building footprint la-

bels, each tagged with height estimates from a Light De-

tection and Ranging (LiDAR) sensor. In this paper, we

describe the dataset, explain the evaluation metrics, and

present a state-of-the-art baseline and quantitative bench-

marks for building footprint extraction with SAR and opti-

cal data. We find that state-of-the-art segmentation models

trained with multiple modalities outperform those trained

with only a single type of data. Our experiments indicate

that pre-training on optical data and using a transfer learning

approach can provide a 55% increase in performance over

training on SAR data alone. Regardless of this improve-

ment, the relatively low overall F1 score of 0.21 showcases

the value that future research could provide for extraction

of various features in high-resolution SAR data.

Our aim in producing the MSAW dataset is to enable fu-

ture research around the analysis of multi-modal data and

provide techniques that could be applicable in the broader

computer vision field. In particular, we hope that MSAW

will enable new data-fusion techniques, the evaluation of

the detection of small objects, and the testing of domain

adaptation algorithms across unique modalities of data. Fur-

thermore, we hope that the further analysis of SAR data

will broaden its usefulness in usability, particularly in disas-

ter response scenarios where cloud-cover can often obstruct

tradition optical sensors.
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