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Abstract

Road scene analysis is a fundamental task for both

autonomous vehicles and ADAS systems. Nowadays,

one can find autonomous vehicles that are able to prop-

erly detect objects present in the scene in good weather

conditions but some improvements are left to be done

when the visibility is altered. People claim that using

some non conventional sensors (infra-red, Lidar, etc.)

along with classical vision enhances road scene analy-

sis but still when conditions are optimal. In this work,

we present the improvements achieved using polarimet-

ric imaging in the complex situation of adverse weather

conditions. This rich modality is known for its abil-

ity to describe an object not only by its intensity but

also by its physical information, even under poor illu-

mination and strong reflection. The experimental results

have shown that, using our new multimodal dataset,

polarimetric imaging was able to provide generic fea-

tures for both good weather conditions and adverse

weather ones. By combining polarimetric images with

an adapted learning model, the different detection tasks

in adverse weather conditions were improved by about

27%.

1. Introduction

The development of autonomous driving and ADAS

systems those past few years has been possible thanks

to the great improvements in understanding road scenes.

Object detection is a fundamental step to achieve a re-

liable road scene analysis. Deep neural networks have

shown great performances to accomplish this task with a

high accuracy and by processing several frames per sec-

ond. One can cite the example of Faster R-CNN [24],

which achieved a high precision and more recently SSD

[19], RetinaNet [17] and YOLOv3 [23] which were able

to be as precise as Faster R-CNN with a higher frame

rate. Nowadays, autonomous vehicles can be found in

some parts of the world like the Waymo car in Ari-

zona [13] and the Rouen Normandy autonomous lab1

in France. Those systems achieved a high autonomy in

driving especially in good weather conditions and urban

areas at a cost of low speed limit. However, when it

comes to adverse weather conditions, object detection is

still an issue that autonomous vehicles are facing. In-

deed, in such weather conditions, the visibility of an ob-

ject is altered and the conventional imaging, which re-

lies mostly on an object’s color and shape to achieve a

good detection, fails to characterize them properly. This

is the reason why non conventional sensors could be

the best alternative to conventional ones for improving

road scenes analysis [6]. Aldibaja et al. used Lidar to

improve localization accuracy under snowy and rainy

weather conditions [3]. Pinchon et al. showed that by

using an infra-red camera, vehicles could be detected at

a larger distance range under foggy weather conditions

[22]. However, their results were limited because of the

noise in adverse weather that had to be removed prior to

process the Lidar data and because of the impossibility

to detect vehicle lights, road markings and traffic signs

1https://www.rouennormandyautonomouslab.com/
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using infra-red camera in foggy weather.

Polarimetric imaging is a rich modality that enables

to characterize objects not only by their color or their

shape but also regarding their physical information.

Each pixel of a polarimetric image encodes information

about the nature of the object’s roughness, its orienta-

tion and its reflection [28]. Polarimetric imaging has

many applications in a wide range of fields. In the 3D

vision field, the use of polarisation by Berger et al. [5]

helped to enhance indoor autonomous navigation. Po-

larization was also used by Zhu et al. [29] to estimate

the depth map of an object and by Morel et al. [21] to

reconstruct 3D objects using the angle and degree of po-

larization (respectively the orientation and quantity of

polarized light in the wave) and the normal surface. The

link between polarization parameters and the fog granu-

larity was exploited by Schechner et al. [25] to achieve

scene restoration and in the same time depth estimation

with high accuracy. Finally, in the field of autonomous

driving and ADAS systems, recent works have came up

with new polarization-based features showing a signif-

icant improvement in road scene analysis. Fan et al.

[11] showed that fusing polarimetric features with RGB

ones enhanced car detection. They first performed a se-

lection among five relevant polarimetric features to get

the most informative one. After experiments, it turned

out that the Angle Of Polarization (AOP) was the best

feature to achieve this task. They trained an AOP and

a color-based Deformable Part Models (DPM) [12] in-

dependently producing two different score maps. The

polar-based model was taken as a confirmation to the

color-model using an AND-fusion scheme in order to

get the final detection bounding boxes. By taking these

two complementary information, it was proven that the

false alarm rate was largely reduced and the detection

accuracy improved. Kamman et al. [15] used a radar

and a reflective system to capture the polarization of the

electromagnetic wave to reduce the detection of ghost

objects by radar. Their reflective system enabled to char-

acterize the nature of the object detected and to avoid

the confusion between an object and its ghost equiva-

lent. Recently, Blin et al. [7] used polarimetric images

in order to improve object detection in road scenes in

adverse weather conditions. New data formats with po-

larimetric features were constitued to best characterize

objects. By using polarimetric imaging and an adapted

learning model, both vehicles and pedestrian detection

were improved under adverse weather conditions while

other methods failed. In this work, the experiments

were extended by proposing a large variety of labelled

polarimetric road scenes but also their equivalent in

RGB format in order to reiterate the experiment on both

modalities for fair comparison. A new dataset contain-

ing multimodal RGB and polarimetric images for road

scene analysis in adverse weather conditions is then pro-

posed. The whole acquired dataset for our experiments

is available at: http://pagesperso.litislab.

fr/rblin/databases/

The contributions of this paper are threefold:

• as far as our knowledge can go, we propose the first

multimodal dataset, containing pairwise RGB and

polarimetric version of the same road scene,

• we propose new polarimetric image formats opti-

mizing object detection in adverse weather,

• we enhance object detection in road scenes in ad-

verse weather conditions.

2. Polarization formalism

In its propagation plan, the electrical field of a pro-

gressive transverse wave, with a pulsation ω and a phase

φ, in the orthonormal basis B = {ux, uy}, is given by:

~E(t) = Ex(t) cos(−k~z + ωt) ~ux

+ Ey(t) sin(−k~z + ωt+ φ(t)) ~uy ,
(1)

where k is the wave number, ~z the direction of propaga-

tion and Ex, Ey are respectively the amplitudes of ~E(t)
according to ux and uy .

Polarization is the property of light waves able to de-

scribe the direction in which the wave is travelling. It is

better understood by introducing the three states of po-

larization of the light [4]:

• the wave is totally polarized when the direction of

its electrical field is well determined, i.e. elliptic,

linear or circular,

• the wave is unpolarized in the case the light waves

oscillate in totally random directions,

• it is partially polarized when it is a combination of

a polarized part and an unpolarized part.

Polarimetric imaging consists in the giving of the po-

larization state of the reflected light (Stokes vector) for

each pixel of a scene. It is used to dissociate metal-

lic object from dielectric surface [8]. In the mecha-

nism of the polarization, when an unpolarized light is

being reflected by an object, it becomes partially linearly

polarized. The reflected wave light can be described

by a measurable vector, called the linear Stokes vector,

S =
[

S0 S1 S2

]⊤
. It is defined as the co-variance

parameters of the Electrical field components of equa-

tion 1:





S0

S1

S2



 =





〈E2

x〉+ 〈E2

y〉
〈E2

x〉 − 〈E2

y〉
2〈ExEy cos(φ)〉



 ,



where σx and σy are respectively the components ac-

cording to ux and uy of the phase of the electromagnetic

wave. 〈.〉 is referred to the temporal mean of the signal.

By its construction, the Stokes parameters satisfy the

physical admissibility constraints defined by:

S0 > 0 and S2

0
> S2

1
+ S2

2
.

It is important to notice that the first constraint means

that any object reflects an energy. The second constraint

means that the total energy is always greater than the

sum of the partial ones. The wave is thus totally polar-

ized if the equality holds meaning that S2

0
= S2

1
+ S2

2
.

It is partially polarized if we have strict inequality and

unpolarized if S0 > 0, S1 = 0, S2 = 0.

In order to obtain polarimetric images, a polarizer

oriented at a specific angle αi is placed between the

scene and the sensor. The sensor measures an intensity

according to each polarizer rotation angle αi. To get the

three Stokes parameters, at least three different orienta-

tions of the polarizer are needed. For our acquisition, a

Polarcam 4D Technology polarimetric camera is used.

The technology of such a sensor uses 4 linear polarizers

oriented at four different angles (0◦, 45◦, 90◦ and 135◦)

enabling to get simultaneously four different intensities

I(αi)i=1:4 of the same scene. The relationship between

each intensity I(αi) and the Stokes parameters is :

I(αi) =
1

2

[

1 cos(2αi) sin(2αi)
]





S0

S1

S2



 ,

∀i = 1, . . . , 4 .

(2)

In a more compact way, equation 2 can be written as:

I = AS , (3)

where I =
[

I0 I45 I90 I135
]⊤

refers to the four

intensities according to each angle of the polarizer. S =
[

S0 S1 S2

]⊤
is the Stokes vector and A ∈ R

4×3 is

the calibration matrix of the linear polarizer, defined as:

A =
1

2









1 cos(2α1) sin(2α1)
1 cos(2α2) sin(2α2)
1 cos(2α3) sin(2α3)
1 cos(2α4) sin(2α4)









=
1

2









1 1 0
1 0 1
1 −1 0
1 0 −1









.

(4)

Knowing the intensities I(αi)i=1:4 reaching the cam-

era and the calibration matrix A, the only unknowns in

equation 3 are the Stokes parameters. As the matrix A is

not square, the most used solution in the literature to get

the Stokes parameters for each pixel is the least mean

square solution. The Stokes vector is then calculated by:

S = ÃI , (5)

where Ã = (AtA)−1At the pseudo-inverse matrix of

A. The proposed mean square solution is submitted to

some additional constraints on the acquired intensities.

Indeed, if we combine equations 3 and 5, we get:

I = AÃI . (6)

This equality holds if and only if:

I0 + I90 = I45 + I135 . (7)

Note that from equations 3 and 5 and 7, the Stokes

vector can be given by:

S =





I0 + I90
I0 − I90
I45 − I135



 . (8)

Other physical parameters can be obtained from the

Stokes parameters, the Angle Of Polarization (AOP )

and the Degree Of Polarization (DOP ) [2]. They can

be determined with the following formulas:

AOP =
1

2
arctan

(

S2

S1

)

, (9)

DOP =

√

S2

1
+ S2

2

S0

. (10)

The DOP ∈ [0, 1] is one of the most important phys-

ical properties. It refers to the quantity of polarized light

in a wave. It is equal to one for a totally polarized light,

between 0 and 1 for the partially polarized light and up

to zero for an unpolarized light. The AOP ∈
[

−π
2
; π
2

]

is the orientation of the polarized part of the wave with

regards to the incident plan. Figure 1 illustrates an exam-

ple of a road scene and its representation with different

polarimetric parameters. From now on AOP and DOP

are respectively referred as φ and ρ.

3. The proposed method

In this section, we are going to introduce the new ac-

quired dataset named PolarLITIS. The different formats

that constitute the dataset are presented followed by the

whole protocol used for the detection purpose.

3.1. The PolarLITIS dataset

In a previous work [7], a first version of a polarimet-

ric dataset containing diverse polarimetric encoded road



Figure 1: From left to right and from top to bottom: I0,

I45, I90, I135, S0, S1, S2, φ and ρ.

scenes in sunny and foggy weather conditions was pre-

sented. This dataset was limited as the RGB counter-

part of the polarimetric image was missing . In order

to carry out a fair comparison between the detection in

both modalities, the new dataset acquired in this work is

more diverse and contains a couple of polarimetric and

RGB images for each scene. The training, validation and

testing sets come from this new dataset.

For the acquisition setup, a GoPro and a polarimet-

ric camera were embedded behind the windshield of a

car. The different acquisitions were done in various

places, including highways, cities, small villages, park-

ings and academic areas. The images contain scenes

under three different weather conditions ; foggy, sunny

and cloudy. The training set is composed of sunny and

cloudy scenes, the validation set of cloudy scenes and

the testing set is exclusively composed of foggy scenes.

We chose to process by this way because the foggy

scenes were taken in the same place which limits the

variability of this set. By including foggy images into

the training set, there is a high risk of overfitting in the

training process. Also, knowing that the polarimetric

features are robust to lighting variations, the detection

on adverse weather conditions scenes should be possible

even by using a network trained only on good weather

conditions. Figure 2 illustrates this variety.

To sort the dataset, the number of frames per second

(fps) each camera could capture was taken into account.

The polarimetric camera is able to capture 25 fps and the

GoPro was set at 30 fps. In order to get diverse enough

frames in the final dataset, one out of 50 frames for the

Figure 2: Examples of the scenes contained in our

dataset. First row is the the intensity I0 of the polari-

metric scene and second row is the RGB equivalent.

Class Train Val Test

Images 1640 420 509

car 6061 2102 9265

person 527 134 442

bike 39 7 7

motorbike 14 5 0

Table 1: Dataset features. Here the number of instances

of each object is given. Those properties are available

for both RGB and polarimetric datasets.

polarimetric camera and one out of 60 frames for the

GoPro were kept.

It is important to note that the output of the polarimet-

ric camera has a resolution of 500 × 500 pixels and the

GoPro images are 3648×2736. Moreover, unlike the po-

larimetric camera, the GoPro is equipped with a fisheye

lens. To get the closest content possible, the RGB im-

ages were cropped into 906 × 945 pixels so they could

have the same content. The deformation caused by the

fisheye lens is also reduced because the interesting con-

tent of the images is mostly located at their center.

Four different classes were labeled in this dataset.

The first class, named ’car’, contains all kinds of vehi-

cles, including trucks, buses and vans. The second class,

named ’person’, contains all kind of road users, except

car drivers. The third and fourth classes are respectively

’bike’ and ’motorbike’. Table 1 sums up all the proper-

ties of each class over the dataset.

3.2. Encoding polarimetric images for machine
learning

In order to compare polarimetric images to RGB

ones, it is important to give images constituted of three

channels, each one corresponding to a polarimetric in-

formation. Because pre-trained networks are used for

the experiments, it is important to keep three channels

for polarimetric data to achieve efficient training. To

this end, five different polarimetric data formats are con-



Figure 3: Intensity image. I0, I45 and I90 are placed

respectively as the RGB configuration.

stituted. In order to get more homogeneous images,

each channel of the polarimetric images is normalized

between 0 and 255. This way, the polarimetric data is

coded in the same range as the RGB ones to be pro-

cessed in the same way by neural networks.

3.2.1 Intensities images

This data format gathers three intensities I(αi)i=1:3 as-

sociated to three angles of the linear polarizer αi. The

choice of three angles instead of four comes from equa-

tion 7 meaning that the fourth channel could be deduced

from the three others. This is the reason why the inten-

sities I0, I45 and I90 are considered to contain all the

necessary information for the learning process and that

I135 would be redundant. The data format referred to

as intensities images is I0, I45 and I90. An example of

such coding is illustrated in Figure 3.

3.2.2 Stokes images

The linear Stokes vector is a rich polarimetric feature

that directly describes information on the reflected light

wave. The three Stokes parameters are thus chosen to

constitute another data format. We will refer to them as

the Stokes images and an illustration of this data format

can be found in Figure 4.

3.2.3 Pauli inspired images

This data format is a mix between the intensities

I(αi)i=1:4 and the linear Stokes vector. It is inspired

by the Pauli decomposition of the polarimetric infor-

mation contained in polarization-encoded SAR images.

The Pauli decomposition has shown high performances

in image classification [20], [26]. Unlike, the four inten-

sity images I0, I45, I90 and I135, the polarimetric SAR

imaging are rather encoded as IHH , IHV , IV H and IV V

Figure 4: Stokes image. S0, S1 and S2 are placed re-

spectively as the RGB configuration.

Figure 5: Pauli inspired image. S1, I45 and S0 are

placed respectively as the RGB configuration.

which respectively refer to orientations H (horizontal)

and V (vertical) of the received and the transmitted light

wave. For instance, the crossed polarization IHV repre-

sents the intensity of an horizontal transmitted light by

a source and a vertical received light wave by the sen-

sor. The original Pauli decomposition is carried out for

IHH − IV V , IHV and IHH + IV V components placed

respectively as the R, G and B coding of the image.

According to the rotation of the polarizer, similarities

between IHH and I0 could be noticed meaning that the

polarizer oriented at an angle of 0◦ can be assimilated to

an horizontal polarization filter. In the same way, IV V

can be assimilated to I90 for the vertical filter. We chose

to assimilate IV H to I45 as it corresponds to the mean

orientation between the horizontal and the vertical fil-

ters. From equation 8, the Stokes parameters S0 and S1

are calculated as S0 = I0 + I90 and S1 = I0 − I90. Fol-

lowing the Pauli inspired format, the data were encoded

as (I0 − I90, I45, I0 + I90) which means (S1, I45, S0)

respectively coded in the same (R, G, B) configuration.

An illustration of this format can be found in Figure 5.

3.2.4 HSV images

From the polarimetric features, it is possible to obtain

the HSV (Hue, Saturation, Value) format of the scene

[27]. This equivalence between the HSV encoding and



Figure 6: HSV image. φ, ρ and S0 are placed respec-

tively as the RGB configuration.

the polarization parameters is based on the intuition that

the angle of polarisation φ corresponds to the Hue chan-

nel, the degree of polarization ρ to the Saturation one

and the total intensity S0 to the Value of each pixel. An

illustration of this data format can be found in Figure 6.

It is important to note that to respect the HSV format,

the Hue channel is normalized between 0 and 180.

3.2.5 Poincaré inspired images

This data format is inspired by the representation of the

Stokes vector, normalized by its first component S0, in

the Poincaré sphere [1]. In the case of linear polariza-

tion, the normalized Stokes vector is of dimension three

instead of dimension four in a general Stokes formalism.

The Stokes vector normalized by its first element is no

longer represented in a Poincaré sphere, but in a unitary

circle. An illustration of this representation can be found

in Figure 7. This representation illustrates equations 9

and 10 as well. The projection of ρ on the x and y axes

of the unit circle results in two components, ρ cos(2φ)
and ρ sin(2φ). These two components are the ones used

to constitute this new data format defined S0, ρ cos(2φ)
and ρ sin(2φ) respectively encoded in the same R, G

and B configuration. An illustration of this data format

can be found in Figure 8.

To sum up, we came up with five polarimetric data

formats which are adapted to be processed by deep neu-

ral networks. Tabular 2 recaps the content of each chan-

nel of the five polarimetric data formats.

4. Experimental setup

In order to compare the detection in road scenes in

adverse weather conditions using RGB and polarimetric

encoded images, we carried the following experiment.

Before going into further details regarding the descrip-

tion of this experiment, it is important to remind the

composition of our dataset. Because our training set is

composed of 1640 images, it is impossible to train the

model from scratch without over-fitting a deep neural

Figure 7: Representation of the polarized light wave in

the unitary circle.

Figure 8: Poincaré image. S0, ρ cos(2φ) and ρ sin(2φ)
are placed respectively as the RGB configuration.

Data format Channel 1 Channel 2 Channel 3

I I0 I45 I90
S S0 S1 S2

Pauli S1 I45 S0

HSV φ ρ S0

P S0 ρ cos(2φ) ρ sin(2φ)

Table 2: Summary of the different polarimetric data for-

mats. Here I , S, Pauli, HSV and P stand respectively

for intensities images, Stokes images, Pauli inspired im-

ages, HSV images and Poincaré inspired images.

network [9]. This is the reason why we chose to fine-

tune a network, pre-trained on another dataset. By us-

ing a network that has already converged into a larger

dataset as a basis for our experiments, we make sure the

network learns the general features of our dataset while

saving some computation time.



The goal of the experiment is to evaluate the best

modality for describing a road scene in adverse weather

conditions. We chose to use RetinaNet network using a

ResNet50 [14] as a backbone for this task. From now

on, this architecture will be referred as RetinaNet-50.

The choice of this architecture was motivated by the

fact it has a frame rate of 14 fps and because it out-

performs Faster R-CNN on PASCAL VOC 2007 [10],

which was known for its high accuracy. As mentionned

previously, a network pre-trained on a larger dataset is

needed for this task. We selected a publicly available

model of RetinaNet-50 pre-trained on the MS COCO

dataset [18] as a basis for the experiments. In order to

find the best data format, the pre-trained network is fine-

tuned on each one of them separately and evaluated on

their respective test set. In order to be able to have a

strong basis for the comparison, the same operation was

also carried out on the RGB dataset. Figure 9 sums up

the different experiments.

Regarding the training hyperparameters, the ones

suggested in RetinaNet’s article [17] were selected, i.e. a

learning rate of 10−5 and the Adam optimizer [16]. Be-

cause the fine tuning process doesn’t need a lot of epochs

to converge, all the networks were trained on 20 epochs

each. The optimal weights were found according to the

lowest value of the validation loss.

5. Discussion and results

Due to the fact the classes ’bike’ and ’motorbike’

don’t have a lot of instances in the dataset, the experi-

ments are evaluated only on classes ’car’ and ’person’.

For this section, the following formulas for the mean

average precision (mAP ) and the error rate evolution

(ER) [10] were used:

mAP d =
AP d

p +AP d
c

2
,

where mAP d is the mean average precision associated

to the data format d, AP d
p and AP d

c are the average pre-

cision respectively for the classes ’person’ and ’car’ for

the related data format d,

ERd
o =

1−AP d
o − (1−APRGB

o )

1−APRGB
o

× 100 ,

where ERd
o is the error rate evolution associated to the

polarimetric data format d for object o ∈ {′person′,
′car′}, APRGB

o is the average precision for object o

with the RGB data format while AP d
o denotes the aver-

age precision on the object o and the related polarimetric

data format d.

After fine tuning RetinaNet-50 pre-trained on MS

COCO on all the data formats, the obtained models were

Format RGB I S Pauli HSV P

car 73.28 77.18 72.43 75.09 30.86 39.10

person 80.97 89.27 86.01 88.45 57.52 69.14

mAP 77.13 83.23 79.22 81.77 44.19 54.12

Table 3: Comparison of the detection using RetinaNet-

50 on the different data formats described in Table 2.

In blue we have the RGB detection scores in percentage

and in bold the detection scores that overcome it.

evaluated on the testing set. As a reminder, the train-

ing process focused on sunny and cloudy scenes and the

testing process on foggy scenes. The idea behind this

configuration is to prove that the polarimetric features

learnt in good weather conditions were invariant in ad-

verse weather conditions. The obtained results of this

training are summed up in Table 3.

The obtained results showed that three out of five po-

larimetric data formats overcame RGB in terms of detec-

tion in adverse weather conditions. Regarding the Inten-

sities images, we can notice a 15% augmentation regard-

ing vehicles detection, a 44% augmentation regarding

pedestrian detection which leads to a 27% augmentation

in the mAP . For the Stokes images, there’s an augmen-

tation of 26% regarding pedestrian detection that leads

to a 9% augmentation of the mAP . As for the Pauli in-

spired images, there’s a 7% augmentation regarding car

detection and a 39% augmentation regarding pedestrian

detection that leads to a 20% augmentation of the mAP .

Figure 10 illustrates the detection results on the same

scene, showing the differences between RGB detection

and its polarimetric equivalent in each data format.

The added value of polarimetric-encoded imaging for

detecting objects in road scenes in adverse weather con-

ditions is proven by this experiment. Because it charac-

terizes an object not only regarding its shape but by its

reflection, polarimetry provides strong features to well

describe an object. Because these features are invariant

to strong illumination and altered visibility, they are a

strong asset to analyze road scenes in adverse weather

conditions, where we can no longer rely on basic fea-

tures such as color or shape to describe an object.

6. Conclusion and perspectives

In this work polarimetric features associated to deep

neural networks proved to be a real added value to detect

objects in a road scene, especially in adverse weather

conditions where the visibility is altered. Experiments

showed that when using polarimetric encoded data, a

44% augmentation regarding pedestrian detection and a

15% augmentation regarding car detection are noticed

compared to RGB detection. These results are encour-

aging and promising to achieve better results regarding



Figure 9: Experimental setup to evaluate each data format and compare their results to the RGB dataset. Here

RetinaNet-50 pre-trained on MS COCO is fine tuned on each data format separately.

Figure 10: Detection of RetinaNet-50 on the same scene. From left to right, RGB, I , S, Pauli, HSV and P .

road scene analysis in any visibility condition.

We aim in the close future to study the best fusion

scheme between polarisation and RGB images, enabling

to process all the polarimetric features to provide a better

detection of road scenes. More adverse weather condi-

tions should be incorporated into the training process in

order to improve the detection results. The polarimetric

dataset should then be extended in order to characterize

a road scene in other weather conditions as in presence

of a heavy rain or in snowy days where the reflection of

the scene could be strong.
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