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Abstract

Deep convolutional neural networks (CNN) have been

applied for image dehazing tasks, where the residual net-

work (ResNet) is often adopted as the basic component

to avoid the vanishing gradient problem. Recently, many

works indicate that the ResNet can be considered as the

explicit Euler forward approximation of an ordinary dif-

ferential equation (ODE). In this paper, we extend the ex-

plicit forward approximation to the implicit backward coun-

terpart, which can be realized via a recursive neural net-

work, named IM-block. Given that, we propose an efficient

end-to-end multi-level implicit network (MI-Net) for the sin-

gle image dehazing problem. Moreover, multi-level fus-

ing (MLF) mechanism and residual channel attention block

(RCA-block) are adopted to boost performance of our net-

work. Experiments on several dehazing benchmark datasets

demonstrate that our method outperforms existing methods

and achieves the state-of-the-art performance.

1. Introduction

Images captured from the harsh environment are often

hazy and exhibit a reduced visibility of scenery [15] with

the loss of contrast, color fidelity and edge information.

Such degradation of images may greatly decrease the ac-

curacy and robustness for the subsequent high-level com-

puter vision tasks [8,30], which makes the single-image de-

hazing an urgent but challenging task [7, 13]. Existing ap-

proaches, either exploiting the physical prior [1, 15, 25, 32]

or learning the inverse mapping of degradation with large

datasets [3, 11, 20, 28], have been extensively investigated.
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(a) Hazy Image (b) Ours (0.628M )

(c) FFA-Net (4.46M ) (d) GRID-Net (0.958M )

Figure 1. Visual comparison of our method and other state-of-the-

art works, FFA [26] and GRID-Net [24]. The numbers in brackets

indicate the size of the networks.

For CNN-based image dehazing methods, residual block

(Resblock) [16] is widely applied [24, 26, 28, 42]. Zhang

et al. [42] introduce a densely connected pyramid network

with residual block, Liu et al. [24] has leveraged the residual

dense block in their GRID-Net and Qin et al. [26] develop a

residual attention block in their FFA-Net. Overall, residual

block is not only widely applied in high-level tasks but also

low-level tasks as image dehazing. On the other hand, we

notice that many recent works relate ResNet with explicit

Euler forward approximation of ODE.

Researching CNNs’ theoretical properties and behavior

has drawn considerable attention from the perspective of

ODE [6, 29, 34]. Chen et al. [6] introduce the relation be-

tween CNN and ODE. Ruseckas et al. [29] prove that not

only residual networks, but also feedforward neural net-

works with small nonlinearities can be related to the dif-



ferential equations. Thorpe et al. [34] propose that residual

neural network model is a discretization of an explicit Euler

ODE and the deep-layer limit coincides with a parameter es-

timation problem for a nonlinear ordinary differential equa-

tion. These works are all closely associated with ResNet,

which is an explicit Euler scheme. However, focusing on

parameters convergence and system stability, implicit Euler

has been proved to be better than explicit one since implicit

Euler is unconditionally stable [19]. Moreover, considering

that the original objective of Resblock applied in deep neu-

ral network is to overcome vanishing gradient problem, it’s

suboptimal to directly apply Resblock in low-level tasks as

image dehazing.

In this work, we propose a novel efficient network, multi-

level implicit network (MI-Net), for single image dehazing.

Specially, the structure of MI-Net is shown in Fig. 2. We in-

troduce an implicit block (IM-block) combining the merits

of implicit Euler scheme and CNN to realize implicit dis-

cretization of an implicit Euler ODE issue. In network’s

architecture, we cascade three IM blocks to learn the map-

ping relation between hazy image and clean image. Inspired

from [23], we integrate features from three IM blocks with

different weight coefficients generated from MLF block.

Noting that the fused feature would inevitably incorporate

artifact, the fused feature is fed into RCA-block to suppress

artifact of channels. As we shall see in the experiments, our

method achieves the best balance between the performance

and size.

In summary, our contributions are as follows:

• We propose a simple yet effective implicit scheme

framework for single image dehazing, which simpli-

fies the net significantly but boosts the dehazing per-

formance compared to the residual framework.

• We propose a residual channel attention block based

on attention mechanism to alleviate the artifact but re-

tain abundant texture features.

• Experimental results on several widely used bench-

mark datasets show superior performance of our

method compared to state-of-the-art methods, which

verifies the effectiveness of our method.

2. Related Work

2.1. Image Dehazing

Prior-driven Methods: The procedure of classical de-

hazing task is the reverse procedure of the atmospheric scat-

tering model described as I(p) = t(p)R(p) + A(1− t(p)),
where I(p) is the hazy image, t(p) represents transmission

map, R(p) is the clean image, p represents the pixel loca-

tion and A is the global atmospheric light constant value.

The traditional methods use assumptions which derive from

the statistical characteristics of hazy image to compensate

for the loss information in the atmospheric model. Tan et

al. [33] builds Markov random field cost function to obtain

the clean image by maximizing the contrast of corrupted

image ,assuming that the contrast of clean image is higher

than that of hazy image and the smoothness of global atmo-

spheric light. He et al. [15] proposes the dark channel prior,

which is based on a statistical observation that at least one of

color channels in the non-sky regions of a hazy image has a

value close to zero, to estimate the transmission map. Fattal

et al. [12] uses a color-line method line for dehazing based

on observation that the color distribution of small patches

of image in the RGB space is one-dimensional. Although

these methods could handle the problem to some extent, the

priors they based on would be invalid in some real scenes,

which enables the methods struggle.

CNN-based Methods: Recently, many CNN-based

methods have been applied in the dehazing by leveraging

the advancement of powerful GPU and large-scale datasets.

Early CNN-based methods still are based on global atmo-

spheric scattering model and recover clean image by esti-

mating the transmission map and global atmospheric light.

Ren et al. [27] design a coarse-to-fine multiscale network to

estimate a refined transmission map. Cai et al. [3] develop

a Dehaze-Net embedded with feature layers for prediction

of transmission map. However, the transmission map is

susceptible to the noise and hence reduces the quality of

dehazing performance. Therefore, end-to-end CNNs have

been proposed to output a clean image from a hazy im-

age directly without global atmospheric scattering model.

Chen et al. [5] use an encoder-decoder net with smoothed

dilated convolution in the net to alleviate the gridding arti-

facts. Zhang et al. [42] propose a densely-connected pyra-

mid densely network (DCPDN) to jointly learn clean im-

age, atmospheric light and transmission map. Although the

DCPDN improves the performance to some extent, it en-

larges the size of model greatly. Deng et al. [10] develop

a net that fuses the atmospheric scattering model with ex-

tracted haze together to improve the dehazing results. We

note that most recent works still rely on deepening the net

to improve the quality whatever the principles they based

on. Being a low-level task, image dehazing depends more

on low-level features compared to high-level features. We

consider the dehazing network could be simplified into a

low-level network.

2.2. CNN from Ordinary Differential Equation

Along with the development of CNN, many researches

study networks’ theoretical properties from the perspective

of ordinary differential equation (ODE) [2, 9, 17]. Weinan

et al. [38] firstly view ResNet [16] as an approximation to

ODE, which exploits the possibility of using computational

theory from ResNet’s dynamic system. Similarly, Chang

et al. [4] connect ResNet with nonlinear ODE, and extend



Figure 2. The architecture of multi-level implicit network (MI-Net). IM-block is illustrated in dashed box. IN and DCONV in MLE denotes

instance normalization and dilated convolution respectively. ×N in MLE represents the dilated rate and the dilated rates are different for

each IM-block. TCONV in DECODER represents fractionally-strided convolution. MLF and RCA-block will be illustrated in proposed

methods section.

three reversible network architectures. Chen et al. [6] pro-

pose ODE-Net that combines ODE and CNN. Based on

above, we speculate that network designed with certain the-

oretical basis has great potential for exploration. Thorpe et

al. [34] considered that the deep layer limit coincides with

a parameter estimation problem for nonlinear ODE [9]. In

reality, convergent parameters means stable system which

is closely related to model performance. Haber et al. [14]

also associated gradient explosion and disappearance about

neural networks with the stability of discrete ODE and sug-

gested that stable networks generalize better. In fact, al-

though implicit Euler scheme has larger computational cost

compared to explicit Euler scheme, implicit one allows

greater step size and is more stable since implicit scheme

is unconditionally stable. Moreover, for low-level task as

image dehazing, the increased computational cost could be

ignored. Considering these all factors, we adopt the implicit

Euler scheme in CNN to determine the dehazing model.

3. Proposed Methods

As shown in Fig. 2, we build an end-to-end network to

establish mapping relation between hazy image and clean

image. In this section, we illustrate the function of each

component in MI-Net’s architecture. Firstly, the hazy im-

age input Ihazy will be encoded from RGB space to feature

space. The encoded features will be enhanced by three cas-

caded IM-block. Additionally, the features x1, x2, x3 out-

put from each IM-block will be fused in MLF block. MLF

block is an operation block, three features are input into

Figure 3. IM-block: Implicit scheme with specific function f .

MLF then MLF learns the weight coefficient of each fea-

ture xi, and the output of MLF is a fusion of three features

combined with different weights. The fused feature is input

to RCA-block to refine the feature. Lastly, the refined fea-

ture will be decoded into RGB space to get the clean image

Iclean.

3.1. From Resblock to IM-block

Convolutional neural network (CNN) has been applied

to tackle the single image dehazing problem. By increas-

ing the depth of CNN, it is possible to improve the percep-

tual fields and increase the expressive ability, thus leading

to better dehazing performance [11, 26]. Residual neural

network (ResNet) [16] has been widely used in both high-

level and low-level tasks to overcome the vanishing gradient

problem for deep neural networks. Recently, from the point

view of ODE, Resblock can be considered as the explicit

Euler forward discretization of the continuous-time ODE:

ẋ(t) = f(x(t)) [6] and the relation between two consecu-

tive layers can be expressed as

Resblock: xk+1 = xk + ηf(xk), (1)



Ix1
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Figure 4. The visual comparison of Ix1
, Ix2

, Ix3
. Ix1

has clear

detail information but still has hazy area. Ix3
has gridding effect

and color distortion area, i.e. the edge of ceiling lamp. Please

zoom in for a better illustration.

where η denotes the discretization step.

On the other hand, implicit Euler backward scheme [19]

has been proven to be more stable and accurate compared

to the explicit counterpart (1). From this point, the implicit

scheme that bridges two consecutive layers can be written

as

IM-block: xk+1 = xk + ηf(xk+1). (2)

However, the above implicit algebraic equation cannot

be solved analytically in general, and Newton iteration

method is generally used to find xk+1. Letting g0 ≜ xk,

the following iterations can be applied to approximate the

solution:

gκ+1 = g0 + ηf(gκ) (3)

and xk+1 = g∗, with g∗ the equilibrium point of (3), i.e.

g∗ = g0 + ηf(g∗) (4)

Then we have the following theorem,

Theorem 1 Let ∂xf(x) ∈ R
n×n be the partial derivative

of the vector field f(x) at x, and note λi as its eigenvalue

for 1 ≤ i ≤ n. Then (3) is stable if

|λi| < 1/η (5)

for all 1 ≤ i ≤ n.

The proof is straightforward. The above theorem implies

that the vector field f(x) should be well defined to guaran-

tee the convergence of (3). Thus in our proposed MI-Net,

the instance normalization [35] IN is exploited to ensure (5),

as shown in Fig. 2. On the other hand, iterative approxima-

tion usually uses a large finite number as infinite iterations

and we illustrate the unfolded form of (3), named IM-block

in Fig. 3, which is exploited as the basic block instead of

ResNets to construct our proposed MI-Net.

One can easily find that the ResNet (1) actually equals

to IM-block when it contains only one recursion (3) with

κ = 0. While the implementation of IM-block shown in

Fig. 3 exhibits many recursions with shared weights for

different layers. Theoretically, IM-block is equivalent to

one layer implicit Euler approximation (2). In some sense,

the IM-block could possess the perceptual field as large as

the whole image but with a very shallow depth, and thus

could be a more efficient structure than ResNet to capture

low-level features. This property is favorable for low-level

tasks [31] and motivates us to turn to IM-block for the im-

age dehazing problem.

Consequently, we stack three IM-blocks as shown in

Fig. 2 to capture features with different level of scales. To

achieve this target, the multi-level feature fusion strategy is

exploited in next subsection.

3.2. Multi-Level Feature Fusion

Dilated convolutions [41] support exponential expansion

of the receptive field without loss of resolution or coverage,

which can be utilized in IM-block to further enlarge the re-

ceptive field in MI-Net. Thus we adopt a dilated convolu-

tional block to serve as f in (3). To overcome the gridding

effect of dilated convolution, Wang et al. [36] proposed hy-

brid dilated convolution (HDC). Therefore, we adopt HDC

structure that with coprime dilated rates, e.g. 1,2,5, to gain

the best result for each IM-block. In order to help the con-

vergence of (3), we adopt instance norm layers instead of

setting the discretization step η a small value [22]. And

the layers with dilated convolutions and instance normaliza-

tions are grouped as the multi-level extraction (MLE) block,

as shown in Fig. 2, where the DCONV represents dilated

convolutions and the IN layer denotes instance normaliza-

tion [35].

However, the HDC structure can only suppress the grid-

ding effects, color distortion still exists in the third IM-

block. We visualize the difference among features of

each IM-block, we extract the output features of IM-blocks

x1, x2, x3 with xi ∈ R
c×h×w, where c represents channel

number, h and w represents image’s height and width of

input images. Without being fed into MLF, the features

are directly input into DECODER block to transform fea-

tures into images, i.e Ix1
, Ix2

, Ix3
. The corresponding re-

constructions are plotted in Fig. 4. Note that feature from

MI-Net at first IM block contains detail information but the

non-haze details of image reconstructed from this feature

would still be corrupted with haze severely. Third IM block

of MI-Net has a larger receptive field but ignore background

details. Hence, we adopt the attention based multi-level fu-

sion block (MLF), and this block leverages convolutional

layer to obtain a weight coefficient matrix W ∈ R
3×h×w of

each pixel of feature x ∈ R
c×h×w. In this case, the gridding

effect area, the hazy area and the color distortion area will

have a small weight coefficient but the weight coefficient of

clean area will be larger.

Specially, as shown in Fig. 2, MLF block obtains out-

put features of three IM-blocks in three different lev-

els x1, x2, x3, the concatenation of three features X =
[x1, x2, x3] where X ∈ R

3c×h×w is fed into MLF layer

to output weight coefficient W = [W1,W2,W3] where



Table 1. Quantitative comparisons of image dehazing on SOTS dataset from RESIDE, TestA and MiddleBury.

PSNR (dB)
DCP

[15]

AOD-Net

[20]

DCPDN

[42]

GFN

[28]

GRID-Net

[24]

FFA-Net

[26]

FD-GAN

[11]
OURS

SOTS 16.62 20.86 28.13 21.14 32.16 36.12 23.15 35.51

TestA 13.91 20.46 23.27 20.02 22.33 19.96 18.82 29.45

MiddleBury 11.94 13.94 14.31 14.01 12.83 13.76 14.63 17.44

SSIM
DCP

[15]

AOD-Net

[20])

DCPDN

[42]

GFN

[28]

GRID-Net

[24]

FFA-Net

[26]

FD-GAN

[11]
OURS

SOTS 0.8179 0.8788 0.9592 0.8500 0.9836 0.9886 0.9207 0.9841

TestA 0.8642 0.8379 0.8398 0.8160 0.9123 0.7715 0.8614 0.9394

MiddleBury 0.7620 0.7426 0.7643 0.7545 0.6755 0.6983 0.7812 0.8465

Figure 5. The schematic structure of Residual Channel Attention

block.

W ∈ R
3×h×w :

W = MLF(X) (6)

where MLF is a group convolutional layer.

Finally, we generate fused feature x by element-wise

multiplying ◦, Hadamard product, x1, x2, x3 with weight

coefficient W1,W2,W3 linearly in each c channel:

x = W1 ◦ x1 +W2 ◦ x2 +W3 ◦ x3 (7)

Then the fused feature x will be fed into RCA-block.

3.3. Residual Channel Attention block

The fused feature x is inevitably mixed up with artifacts

generated during the process of CNN, which would degrade

the final performance significantly. We note that the existed

disturbance would reduce the information of each channel

in feature map has and the distribution of artifacts in each

channel is uneven. The channel attention mechanism pro-

vides insight into this problem. Inspired by [18], we pro-

pose a modified residual attention block (RCA-block) to

mitigate this. RCA-block generates an attention map to

reweigh feature map of each channel, which treats chan-

nel unequally thus provides extra flexibility in suppressing

background disturbance.

Specially, as illustrated in Fig. 5, RCA-block firstly gen-

erates attention map Ψ from the fused features x:

Ψ = sigmoid(MLP(GAP(conv(x)),Ψ ∈ R
c×1×1 (8)

where conv is 1× 1 convolutional layers. Then Global Av-

erage Pooling (GAP) (Rc×h×w → R
c×1×1) is applied to

convert the global spatial information into a channel de-

scriptor. To obtain the attention map, channel descriptor

passes through multi-layer perceptron (MLP), which con-

sists of two fully connected layers, and sigmoid activation

function.

Then the input x element-wise multiplies ◦ with the at-

tention map Ψ then adds input x to get the refined feature

xr:

xr = Ψ ◦ x+ x (9)

where each weight in attention map Ψ where Ψ ∈ R
c×1×1

reflects the information in the corresponding channel. A

higher value of weight indicates more information channel

has. Therefore, multiplying feature with attention map Ψ

can suppress background noise effectively.

Considering the back propagation, operation of adding

allows network firstly rely on the cue of the local feature

then gradually learn parameters of attention map Ψ in a

global view.

4. Experiments

4.1. Datasets and Metrics

We use the benchmark synthetic dataset RESIDE [21],

TestA [42] and Middlebury [39] for the evaluation of our

method. Indoor Training Set (ITS) and Synthetic Objec-

tive Testing set (SOTS) from RESIDE are adopted in our

experiment. ITS which contains 13,500 synthetic indoor

hazy images is applied as the training set. SOTS consists

of 500 indoor images and 200 outdoor images with light,

medium and high level of haze. TestA is a synthesis dataset

introduced by DCPDN. Due to the low resolution and sim-

ilar scene of images in the SOTS testing set and TestA, we

adopt Middlebury synthetic dataset, a high-resolution stereo

datasets with subpixel-accurate ground truth, as an assis-

tant testing set. The high resolution of image in Middlebury

can provide abundant processing details. Besides, we have

done evaluation on real-world images to validate the perfor-

mance of our proposed network. The dehazing performance
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13.35
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(b) DCP [15]

20.20

19.90

20.84

15.45
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15.42

(c) AOD-Net [20]

27.21

26.08

20.68

16.37

15.97

11.28

(d) GRID-Net [24]

34.59

33.67

18.87

14.50

14.23

13.27

(e) FFA-Net [26]

34.61

35.34

25.43

19.42

19.86

17.64

(f) OURS

∞

∞

∞

∞

∞

∞
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Figure 6. Qualitative comparisons with different state-of-the-art dehazing methods for indoor synthesis hazy images. The top two rows are

from SOTS, the third row is from TestA dataset and the bottom three rows are from MiddleBury dehazing dataset. The numbers below

image are PSNR (dB) value of each image.

on synthetic dataset is evaluated with Peak Signal-to-Noise

Ratio (PSNR) and Structural Similarity (SSIM) [37]. Due to

the lack of groundtruth of the real-world images, real-world

images are evaluated by visualization.

4.2. Implementation Details

For training, we directly use RGB images as input in-

stead of using image patches since image patches will lose

structure information of original image. The parameter set-

tings for our proposed MI-Net are as follows. For the en-

coding and decoding blocks shown in Fig. 2, the convo-

lutional layers have 3 filters of size 3 × 3. While for the

other blocks, each convolution layer has 64 filters of size

3 × 3. Besides, The dilated rate of MLE blocks are ×1,

×2, and ×5 respectively. The zero padding is adopted to

fix the size of feature maps. We use Adam optimizer with

β1 = 0.99, β2 = 0.999 to train our MI-Net for 350, 000
iterations. The learning rate is initially set to 1e−3, and then



(a) INPUT (b) DCP [15] (c) GRID-Net [24] (d) FFA-Net [26] (e) FD-GAN [11] (f) OURS

Figure 7. Qualitative comparisons with different dehazing state-of-the-art methods for real hazy images.

Figure 8. Performance and processing time curve for MI-Net with

different recursion number T for IM-blocks. The processing time

is tested with NVIDIA GTX 1060 GPU.

(a) Origin (b) IM-Net (OTS) (c) IM-Net (ITS)

Figure 9. The evaluation of our model trained on indoor training

set (ITS) and outdoor training dataset (OTS) from RESIDE. For

IM-Net (OTS), the haze in foreground is removed but not for the

background.

decays by 0.1 every 20, 000 iterations. Two NVIDIA TI-

TAN RTX are used for the training phase and one NVIDIA

GTX 1060 is used for testing. The recursion number T of

IM-blocks shown in Fig. 3 is determined by compromising

between the dehazing performance and the processing time.

As shown in Fig. 8, increasing T will boost the performance

but increase the processing time, and vice versa. Finally, we

choose T1 = T2 = T3 = 12 as recursion number for each

of three IM-blocks.

4.3. Quantitative and Qualitative Evaluation

We compare the proposed method with previous state-of-

the-art methods, including DCP [15], AOD-Net [20],GFN

[28], DCPDN [42], GRID-Net [24], FD-GAN [11], and

FFA-Net [26]. We leverage the pre-trained models trained

on RESIDE to reproduce the image comparison. In order

to present our model’s generality, all the aforementioned

test datasets are evaluated using model trained on RESIDE

training dataset. As shown in Tab. 1, our method outper-

forms previous methods except FFA on the SOTS synthetic

dataset. Fig. 6 shows the visual comparisons on the RE-

SIDE, Fig. 7 shows the comparison on real hazy image.

The most of synthesis datasets [21] are based on at-

mospheric scattering model [15], where depth information

plays a crucial role. However, depth of transmission map

is hard to measure from outside scene using depth teleme-

ter. Without accurate depth information, outdoor synthesis

hazy images are produced by setting depth information as a

constant value. Compared to the outdoor synthesis hazing

image, the indoor synthesis hazy image contains structure

information due to accurate depth information measurement

using depth telemeter. As shown in Fig. 9, the IM-Net

(ITS) performs much better on background area. Based on

this observation, different from [24,26,42], the quantitative



Figure 10. Performance of state-of-the-art methods versus the number of parameters on SOTS. The aforementioned methods are tested

with NVIDIA GTX 1060 GPU. The results show that our work gets the best balance between performance and model size.

Table 2. Ablation study on SOTS dataset.

IM-block " " " "

Resblock-1 "

Resblock-T "

RCA " " " "

OA "

MLF " " " " "

PSNR (dB) 32.61 34.79 34.63 34.92 35.31 35.51

comparisons of outdoor synthesis dataset are not presented

in Table. 1.

Furthermore, in order to evaluate the computational effi-

ciency of our proposed method to the aforementioned state-

of-arts, we visualize the model size and running time per

image versus performances with respect to PSNR on SOTS

dataset, as shown in Fig. 10. Obviously, the results show

that our proposed method gets the best balance between

performance and model size, and thus can process very ef-

ficiently.

4.4. Ablation Study

To demonstrate the effectiveness of three mechanism re-

ferred in proposed methods section, we conduct ablation ex-

periments to test the performance of model with and without

specific component in MI-Net on SOTS dataset.

According to different scheme structure, we compare the

implicit scheme structure, i.e. IM-block and the explicit

scheme structure, ResNet (1). To develop an explicit struc-

ture, we directly replace the IM-block with Resblock, de-

noting Resblock-1 with -1 denoting only 1 Resblock. More-

over, in order to conduct a fair comparison, we also replicate

the Resblock for T times (not shared) to achieve a com-

parable computational complexity as IM-block, denoting

ResNet-T.

From Tab. 2, the results are improved by introducing

RCA-block into framework, which verifies the effective-

ness of RCA-block. Additionally, we have done an ab-

lation experiment between ordinary attention block (OA-

block) [40] and our RCA-block, RCA-block’s final PSNR

increases 0.2dB compared to ordinary attention block.

Lastly, to demonstrate the function of multi-level fusion

(MLF), we design a structure that directly fed x3 into RCA-

block without fusing multi-level features. The result indi-

cates that combining these three mechanism can improve

performance by a large margin.

5. Conclusion

We propose an end-to-end multi-level implicit network

(MI-Net) for single image dehazing. The crucial idea of

this work is to introduce a novel efficient implicit block that

substitutes Resblock in image dehazing tasks. Moreover,

MLF mechanism and RCA-block that modify the ordinary

attention block are adopted to boost performance. Exten-

sive experimental results demonstrate our method’s superior

performance over state-of-the-art methods.
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