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Abstract

Many real-world machine learning systems require the

ability to continually learn new knowledge. Class incre-

mental learning receives increasing attention recently as a

solution towards this goal. However, existing methods of-

ten introduce some assumptions to simplify the problem set-

ting, which rarely holds in real-world scenarios. In this pa-

per, we formulate a Generalized Class Incremental Learn-

ing (GCIL) framework to systematically alleviate these re-

strictions, and introduce several novel realistic incremental

learning scenarios. In addition, we propose a simple yet ef-

fective method, namely ReMix, which combines Exemplar

Replay (ER) and Mixup to deal with different challenges in

realistic GCIL setups. We demonstrate on CIFAR-100 that

ReMix outperforms the state-of-the-art methods in differ-

ent GCIL setups by significant margins without introducing

additional computation cost.

1. Introduction

The ability to continually acquire and accumulate new

knowledge is a hallmark of general intelligence. Many real-

world machine learning applications require learning from

data that arrive continually over time [8]. For example, a

robot needs to continually learn new objects it has never

seen before without forgetting the ones it has already seen.

To this end, Incremental Learning, a.k.a Continual Learn-

ing or Lifelong Learning, that learns from data arriving se-

quentially receives increasing attention. A widely studied

setting in this field is on image classification tasks, namely

Class Incremental Learning (CIL) [21, 5, 13, 3], where the

data of new classes arrive phase by phase1.

In CIL, a set of new classes need to be learned in each

phase, as depicted in Figure 1 (upper row). The follow-

ing three assumptions often exist: (i) the number of classes

across different phases is fixed; (ii) classes appearing in
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1[17, 18] refer to ‘phase’ as ‘batch’. To avoid the confusion with the

‘batch’ in the model optimization stage, we use ‘phase’ instead.

Figure 1: Comparison between GCIL and CIL. In each

phase of CIL, the model observes a fixed number of bal-

anced classes, and classes appeared in previous phases will

not appear again. These restrictive assumptions are re-

moved in our GCIL setting.

earlier phases will not appear in later phases again; (iii)

training samples are well-balanced across different classes

in each phase. However, these assumptions rarely hold

in real-world applications. For example, in the Internet

of Things (IoT) era, a deployed object recognition model

needs to incrementally and periodically refine its model

through data collected from different input devices (e.g.

surveillance cameras) [23]. The number of different objects

in an update phase is hardly balanced (e.g. a “truck” might

appear more often than a “taxi”), and objects might reap-

pear continuously (e.g. a “truck” might appear in multiple

update cycles).

As shown in Figure 1 (lower row), we propose a

framework, namely Generalized Class Incremental Learn-

ing (GCIL), that alleviates the limitations of CIL by allow-

ing classes to appear in a realistic manner across multiple

phases. Specifically, we characterize each phase with the

following three quantities: the appearing class number, the

appearing classes and the sample sizes of each appearing

class. In our GCIL setting, these quantities are sampled

from probabilistic distributions. Thus different realistic

scenarios can be simulated by varying these distributions.

Apart from the catastrophic forgetting challenge [20, 10]

in previous CIL settings, we identify two other challenges,

namely sample efficiency and imbalanced classes in real-



istic GCIL settings. To this end, we propose a simple

yet effective solution ReMix that combines Exemplar Re-

play(ER [21, 5]) and Mixup [26]. To the best of our knowl-

edge, this is the first time that Mixup is adopted in incre-

mental learning scenarios.

By simulating different realistic scenarios on CIFAR-

100, we empirically show that (i) methods incorporating

ER are superior to regularization methods; (ii) our proposed

ReMix outperforms evaluated state-of-the-art methods by a

margin of 5-10%, and it successfully deals with the two new

challenges in GCIL. Altogether, our work is the first to gen-

eralize CIL to be realistic through a systematic probabilis-

tic formulation, and the superior performance of ReMix can

lead to interesting future explorations.

2. Related work

In general, two groups of incremental training protocols

are considered in current class incremental learning (CIL)

literature: (i) Multi-epoch CIL: new classes or patterns ar-

rive phase by phase, and only data in the current phase are

available for the model training. During training, data of

each phase can be passed by multiple epochs [21, 5, 13, 24];

(ii) Online CIL: although training data still arrive sequen-

tially, this setup only allows the model to be trained on each

sample once [19, 6, 2].

The major challenge for multi-epoch CIL is catastrophic

forgetting [20, 10], where optimization over classes of the

current phase leads to performance degradation on classes

in previous phases. Regularization [16, 14, 25, 4] and Ex-

emplar Replay [21, 7, 5] are two major lines of research

targeted at mitigating catastrophic forgetting. Regulariza-

tion methods add specific regularization terms to consol-

idate knowledge from previous phases. In this direction,

[21, 5, 24, 13, 27] adopt knowledge distillation [12] to pe-

nalize model logits changes on classes in previous phases.

[14, 25, 1] measure the importance of each model parameter

and penalize changes on parameters that are crucial to pre-

vious phases. Exemplar Replay methods store and replay

past samples (a.k.a exemplars) selectively and periodically

to prevent model forgetting classes or patterns in previous

phases. As for exemplar selection, [21] adopt the Herd-

ing technique [22], which is based on the distance to the

mean feature vector of each class and soon becomes pop-

ular [5, 24, 13, 27]. In order to maintain a feasible mem-

ory footprint, usually only a small number of exemplars are

stored. This leads to the imbalanced class issue since the

class sample size of the current phase is usually larger than

that of the exemplars. To combat this imbalance, [5] fine-

tune the output layer with a balanced subset of samples of

all classes. [13, 27] propose to normalize parameters of the

output layer; [24] uses another network to adjust the bias in

the output layer. In this paper, we focus on the multi-epoch

CIL setting and refer to it as CIL to avoid verbosity.

3. Generalized Class Incremental Learning

We firstly identify three key properties in GCIL, based

on which we propose a probabilistic formulation.

3.1. Key Properties of GCIL

We denote the complete set of available classes as S with

size n. The sample sizes (the number of samples) of differ-

ent classes appearing in phase t are modeled as a random

vector Ct ∈ Rn. Each entry Ct,i is a random variable de-

noting the sample size of class i in this phase. The size of

phase t is nt = ||Ct||1. In the generalized form, Ct is gen-

erated from a phase-dependent distribution H(t)

Ct ∼ H(t) . (1)

We summarize the following three properties that often

hold in realistic incremental learning scenarios.

Property 1: The number of classes in a phase is not fixed.

Suppose Kt is the number of classes in phase t, we have:

Kt = |{i ∈ S : Ct,i > 0}| ∼ K(t) , (2)

where K(t) is some phase-dependent distribution.

Property 2: Classes appearing in different phases could

overlap. For two phases t and t′, t 6= t′, we have:

P (Ct ⊙Ct′ 6= 0) > 0 , (3)

where ⊙ denotes element-wise multiplication of two vec-

tors with the same dimension.

Property 3: In one phase, sample sizes of different classes

could be different. That is, for phase t, we have

∀i, j ∈ N, i 6= j, P (Ct,i 6= Ct,j |Ct,i 6= 0, Ct,j 6= 0) > 0 .
(4)

However, these three properties are not satisfied in pre-

vious CIL setups, where old classes in earlier phases do not

reappear, and a fixed number of new classes appear in each

phase with balanced class sample sizes

3.2. Our GCIL Formulation

We consider a GCIL setting that satisfies the above three

properties. A probabilistic formulation of H(t) can be

formed through three steps:

Kt ∼ D(t)

St ∼ R(W1

t ,Kt)

Ct ∼ M(W2

t ,St)

(5)

We explain these three steps separately below.

Class number Kt. The number of classes Kt to appear

in phase t follows a phase-dependent discrete distribution



D(t). Therefore, Kt is a random quantity (c.f. a fixed con-

stant in CIL setting) that satisfies Property 1. Different sce-

narios regarding the number of appearing classes in each

phase can be simulated through different choices of D(t).

Appearing Classes St. Classes appearing in phase t are

modeled as a random vector St ∈ Rn. St is a binary indi-

cator vector with ones corresponding to classes appearing

in t. This vector is sampled from distribution R(W1

t ,Kt)
across phases such that Property 2 is satisfied. Moreover,

R depends on the class number Kt and a class appearance

weight vector W1

t ∈ Rn. Each entry of W1

t represents the

appearing probability of the class in phase t. Classes with

larger weights are more likely to appear in the phase. In

Section 5, we choose sampling without replacement as a

realization of R.

Class sample sizes Ct. The last step is to determine the

sample size of each appearing class in St, which is en-

coded as random vector Ct. Ct follows a distribution

M(W2

t ,St), which depends on the appearing class St and

a class sample size weight vector W
2

t ∈ Rn. W
2

t deter-

mines the sample size of each class appearing in phase t,

and it can model different degrees of class imbalance within

a phase. Therefor, Property 3 is satisfied. We stress that

W
2

t is intrinsically different from W
1

t . For example, a class

might appear frequently among different phases (i.e. with a

large weight in W
1

t ) but it only appears with a small quan-

tity per phase (i.e. with a small weight in W
2

t ). In Section 5,

we choose multinomial distribution as a realization of M.

With the above realistic GCIL formulation, two more

challenges other than catastrophic forgetting need to be

tackled. First, GCIL allows sample size of appearing

classes to be much smaller than that in CIL to reflect po-

tential data scarcity of some classes. Therefore, sample effi-

ciency needs to be improved to learn from a limited amount

of data. Second, GCIL allows classes to be imbalanced

within a phase, therefore, the model needs to handle im-

balanced classes.

4. Proposed Solution for GCIL – ReMix

We propose a simple yet effective method ReMix that

combines Exemplar Replay and Mixup.

Exemplar Replay (ER) based on Herding. ER meth-

ods [21, 5, 13, 24] have shown great success in standard

CIL settings to mitigate the catastrophic forgetting issue.

ER stores a couple of exemplars for all experienced classes

until the current phase. Exemplars are combined with data

in the current phase to update the model in each phase. We

adopt the Herding [22, 21] technique to select exemplars.

For each class, Herding selects samples that best approxi-

mate the average feature vector over all training exemplars

of this class till the current phase.

Mixup. ER addresses catastrophic forgetting, but the is-

sues of sample efficiency and imbalanced classes remain

unsolved. Next, we introduce a data augmentation tech-

nique Mixup [26] as a complementary component on top of

ER to address these two challenges.

The idea of Mixup is simple: it creates virtual training

samples through a linear interpolation between raw training

samples in order to learn smooth decision boundaries be-

tween all classes to improve the model generalization abil-

ity. Formally, a virtual training sample (x̃, ỹ) is generated

by a convex combination between a pair of raw samples

(xi, yi) and (xj , yj) by:

x̃ = λxi + (1− λ)xj , ỹ = λyi + (1− λ)yj .

where λ ∼ Beta(α, α), with hyperparameter α ∈ (0,∞).

ReMix. We propose to use Exemplar Replay together with

Mixup, referred to as ReMix, to deal with all three chal-

lenges of GCIL. In each incremental training phase, ex-

emplars of different classes are selected using the Herd-

ing technique. Then Mixup is applied to the training mini-

batches containing both samples in the current phase and

exemplars as in ER. In Section 5.3, we show that ReMix

significantly outperforms both ER and Mixup when they are

used separately.

Three nice properties of ReMix are analyzed below.

First, as a data augmentation method, ReMix generates vir-

tual samples based on samples from both the current phase

and the stored exemplars. Thus the limited number of ex-

emplars in memory can be augmented to further mitigate the

catastrophic forgetting challenge. Similarly, classes with in-

sufficient samples can also be augmented to improve sam-

ple efficiency. Second, the regularization effect of ReMix

helps to deal with imbalanced classes. It prevents the model

from overfitting dominant classes in the current phase by

smoothing decision boundaries among all classes. Last but

not the least, ReMix can be easily applied to GCIL scenar-

ios as it does not rely on any restrictive assumptions on the

data distribution of incoming phases. Also, it introduces

minimal computation overhead with neither extra training

epochs nor extra data.

5. Experiments

In this section, we evaluate ReMix and a wide range of

state-of-the-art methods in different GCIL setups.

5.1. Baseline Methods

• Finetune: The model is updated with only data in the

current phase without using exemplars.

• GEM [19]: For each update, current gradients are pro-

jected to a feasible region formed by exemplar gradients.

A ring buffer stores 200 exemplars for each phase to keep

a memory size equivalent to that in ER.
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Figure 2: Performances with varying W
2

t on CIFAR-100. At each incremental training phase, mean top-1 accuracy and

standard deviation averaged over 5 runs with different random seeds are plotted.

• ER [7, 21]: Exemplar Replay updates the model with

data in the current phase and exemplars in previous

phases selected by Herding. For methods (ER, CN,

ReMix) using Herding, 20 exemplars per class are stored.

• CN [13]: Cosine Normalization is applied to the output

layer in ER to deal with imbalanced classes. Two other

tricks used in [13] are not evaluated because they are not

compatible with the GCIL setup.

• Full: In each phase, the model is trained with data from

the current phase and all previous phases. This is a com-

mon performance “upper bound” in CIL.

5.2. Dataset and Implementation Details

In our experiments, we use CIFAR-100 [15] dataset. 20

phases are tested with 1,000 images in each phase. At

each incremental training phase, a 32-layer ResNet [11] is

trained by stochastic gradient descent with 100 epochs. λ

of ReMix is set to 1. The learning rate starts from 0.1 and is

divided by 10 after 60 and 80 epochs; weight decay is 5e-4

and momentum is 0.9. Models are evaluated by TOP-1 ac-

curacy on the balanced test set consisting of all classes that

appeared so far.

We set D(t) as a uniform distribution U(1, 100), W1

t as

a uniform distribution over all classes. Three variations of

W
2

t are tested: UNIFORM: W2

t is a fixed uniform distribu-

tion overall all classes in S. TASK-VARIED: W
2

t varies

across different phases by adding independent Gaussian

noises (0 mean and 20% of uniform class weight as standard

deviation) to each class weight of UNIFORM. LONGTAIL:

W
2

t is a fixed long-tailed distribution. The weight W 2

t,i for

class i in the long-tailed distribution is generated by an ex-

ponential function W 2

t,i = µi [9]. Different µ’s correspond

to different degrees of class imbalance. In our setting, the

largest weight is 5 times larger than the smallest.

5.3. Results on CIFAR­100

In Figure 2, we present the Top-1 accuracy of differ-

ent methods at each phase under three GCIL setups. Sev-

eral interesting observations can be noted: First, Exemplar

ReMix ReMix-v1 ReMix-v2 Mixup ER

36.27% 34.52% 32.39% 15.93% 30.93%

Table 1: Ablation study for ReMix. Reported by Top-1

accuracy averaged over 20 phases when W
2

t =LONGTAIL.

Replay methods (ER, CN) based on Herding perform bet-

ter than GEM. CN significantly outperforms ER in CIL se-

tups [13, 24], nevertheless, it only achieves comparable per-

formance to ER in realistic GCIL setups. Second, ReMix

outperforms the state-of-the-art methods by large margins

(5%-10%) in different GCIL setups. Specifically, ReMix

shows multiple advantages: (i) better sample efficiency, as

indicated by its superior performance over Full in early

phases; and (ii) robust to imbalanced classes phenomenon

under W2

t = LONGTAIL. More detailed analyses of ReMix

compared to ER are included in the Appendix.

Ablation Study for ReMix. In Table 1, three variants

of ReMix are evaluated. The fact that Mixup (w/o exem-

plars) alone fails badly shows that exemplars are crucial for

ReMix. In ReMix-v1, Mixup is only performed among ex-

emplars, while data in the current phase are raw. In ReMix-

v2, Mixup is only performed on data in the current phase,

while exemplars are raw. Although ReMix-v1 and ReMix-v2

outperform ER, they are both inferior to ReMix. These ex-

periments justify the importance of keeping exemplars and

interpolating exemplars with data in the current phase.

6. Conclusion

In this paper, we revisit the oversimplified setup in the

current class incremental learning research and propose

a Generalized Class Incremental Learning (GCIL) frame-

work. Moreover, we propose a simple yet effective method,

ReMix, which consistently outperforms previous methods

by significant margins across different scenarios. We hope

our exploration of the realistic GCIL could motivate more

research ideas in this direction.
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