
Dropout as an Implicit Gating Mechanism For Continual Learning

Seyed Iman Mirzadeh

Washington State University

seyediman.mirzadeh@wsu.edu

Mehrdad Farajtabar

DeepMind

farajtabar@google.com

Hassan Ghasemzadeh

Washington State University

hassan.ghasemzadeh@wsu.edu

Abstract

In recent years, neural networks have demonstrated an

outstanding ability to achieve complex learning tasks across

various domains. However, they suffer from the “catas-

trophic forgetting” problem when they face a sequence

of learning tasks, where they forget the old ones as they

learn new tasks. This problem is also highly related to the

“stability-plasticity dilemma”. The more plastic the net-

work, the easier it can learn new tasks, but the faster it

also forgets previous ones. Conversely, a stable network

cannot learn new tasks as fast as a very plastic network.

However, it is more reliable to preserve the knowledge it

has learned from the previous tasks. Several solutions have

been proposed to overcome the forgetting problem by mak-

ing the neural network parameters more stable, and some of

them have mentioned the significance of dropout in contin-

ual learning. However, their relationship has not been suf-

ficiently studied yet. In this paper, we investigate this rela-

tionship and show that a stable network with dropout learns

a gating mechanism such that for different tasks, different

paths of the network are active. Our experiments show that

the stability achieved by this implicit gating plays a very

critical role in leading to performance comparable to or

better than other involved continual learning algorithms to

overcome catastrophic forgetting.1

1. Introduction

The stability-plasticity dilemma is a well-known prob-

lem for both artificial and biological neural networks [19].

Intelligent systems need plasticity to learn new knowledge

and adapt to new environments while they require stability

to prevent forgetting previous knowledge. If a network is

very plastic but not stable, it can learn new tasks faster, but

it also forgets the previous ones easily. This is known as the

catastrophic forgetting problem [18]. On the other hand,

a network can be very stable and preserves the knowledge

of the previous tasks, but it cannot easily adapt to unseen

1The code and the appendix is available at:
https://github.com/imirzadeh/stable-continual-learning

1 2 3 4 5
Tasks

60

70

80

90

100

V
al

id
at

io
n 

A
cc

ur
ac

y

SGD + Dropout
SGD

Figure 1. Networks trained with dropout tend to forget at a slower

rate. The lines represent the evolution of the validation accuracy

of the first task, as networks learn new tasks

environments and learn new tasks.

We motivate our paper by illustrating the stability-

plasticity dilemma in a standard continual learning dataset

in Figure 1. The tasks in this dataset are generated by con-

tinually rotating the MNIST digits. The red and blue lines

represent the two algorithms, respectively: (1) Stochastic

Gradient Descent (SGD) with Dropout [10] and (2) SGD

without Dropout. The network trained without dropout can

quickly pick up new tasks (plasticity); however, forgets pre-

vious ones as we move forward to subsequent tasks. On

the other hand, the network that is trained with dropout re-

tains the previous knowledge significantly better (stability)

by paying a small cost of performance drop.

To the best of our knowledge, the work by [8] is the

first to empirically study the importance of the dropout

technique in the continual learning setting. They hypoth-

esize that dropout increases the optimal size of the net-

work by regularizing and constraining the capacity to be

just barely sufficient to perform the first task. However,

by observing some inconsistent results on dissimilar tasks,

they suggested dropout may have other beneficial effects

too. More recently, the effectiveness of dropout is demon-

strated in a comprehensive study on several architectures

and datasets [13, 26]. However, many important ques-

tions about the relationship between the dropout method

and catastrophic forgetting are unanswered. One such ques-

1



tion is “How does the dropout help the network to overcome

the catastrophic forgetting besides regularization?”. It is

well established that dropout works as a regularizer [25].

But, several other regularizers (e.g., L2 norm) fail to help

the network in a continual learning setting[12].

In this paper, we analyze the impact of dropout on net-

work stability and study its behavior in the presence of

dropout. We show that the dropout networks behave like

a network with a gating mechanism, and the crated task-

specific pathways are retained and consistent during the se-

quential learning of tasks. Finally, we show that training

with dropout gives a stable and flexible network that outper-

forms several other methods when they do not use dropout

even if they are equipped with an external memory of pre-

vious examples.

2. Related Work

Several continual learning methods have been proposed

to tackle catastrophic forgetting. We can categorize these

algorithms into three general groups, followed by by [13].

The first group consists of replay based methods that

build and store a memory of the knowledge learned from

old tasks, known as experience replay. iCaRL [23] learns

in a class-incremental way by having a fixed memory that

stores samples that are close to the center of each class. Av-

eraged Gradient Episodic Memory (A-GEM) [6] is another

example of these methods which build a dynamic episodic

memory of parameter gradients during the learning process.

Very recently, the Hindsight Anchor Learning (HAL) [5]

proposed to keep some “anchor” points of past tasks and

use these points to update knowledge on the current task.

The methods in the second group use explicit regular-

ization techniques to supervise the learning algorithm such

that the network parameters are consistent during the learn-

ing process. Elastic weight consolidation (EWC) [12] uses

the Fisher information matrix as a proxy for weights’ im-

portance and guide the gradient updates. Orthogonal Gradi-

ent Descent (OGD) [7] uses the projection of the prediction

gradients from new tasks on the subspace of previous tasks’

gradients to protect the learned knowledge. The idea of us-

ing knowledge distillation [11, 20, 21] is also found to be a

successful regularizer in several works [15, 14].

Finally, in parameter isolation methods, in addition to

potentially a shared part, different subsets of the model pa-

rameters are dedicated to each task. This approach can be

viewed as a flexible gating mechanism, which enhances

stability and controls the plasticity by activating different

gates for each task. [17] proposes a neuroscience-inspired

method for a context-dependent gating signal, such that

only sparse, mostly non-overlapping patterns of units are

active for any one task. PackNet [16] implements a con-

trolled version of gating by using network pruning tech-

niques to free up parameters after finishing each task and

thus sequentially “pack” multiple tasks into a single net-

work. Gating mechanisms found to be very efficient in sev-

eral works. In the comprehensive set of experiments, Pack-

Net is shown one of the most reliable methods [13] and

adding the context-dependent-gates to other methods such

as EWC improved their performance drastically [17].

In the following sections, we show that a stable network

trained with dropout will learn a reliable gates mechanism.

We note that the majority of the mentioned methods need

extra computation and memory costs, while a stable dropout

network is a much more memory and computation efficient.

3. Dropout and Network Stability

Dropout [10] is a well-established technique in deep

learning, which is also well-studied theoretically [2, 24, 9,

25]. It was originally designed to prevent the co-adaptation

of neurons in a network. It increases the stability of neu-

ral networks and has been employed successfully in various

domains. In the training phase of a dropout network, at each

example presentation, neurons are deleted with probability

1−p, and the network will be trained in a standard way. For

the inference phase, the weights are re-scaled proportional

to the dropout probability.

There are various viewpoints to dropout. In this pa-

per, we are interested in regarding dropout as a method for

sparse coding and regularization and leveraging the associ-

ated theoretical insights to study the relationship between

dropout and continual learning.

Consider the neuron i of the layer h in a neural network

and define the activity of the neuron by:

Sh
i =

∑

l<h

∑

j

whl
ij S

l
jδ

l
j S0

j = Ij , (1)

where, I is the input vector and whl
ij represents weight from

neuron j of layer l to neuron i of layer h. δlj is the gating

binary Bernoulli random variable which is indicating if the

neuron is disabled by the dropout (i.e., P (δlj = 1) = plj)

or not. Under the assumption that δlj’s are independent, and

dropout has not been applied to previous layers, [2] showed

that if we apply dropout to layer h the variance of the acti-

vation for each neuron follows:

Var(Sh
i ) =

∑

l<h

(whl
ij )

2σ(Sl
j)

2plj(p
l
j − 1). (2)

Where σ(Sl
j) denotes the output of neuron j at previous

layer l. Therefore, to obtain a stable activation behavior, the

variance of the activation of a neuron should be minimized.

This happens if plj is close to either 0 or 1 (so plj(p
l
j − 1)

will be small). Note that we can not directly control w as it

will be updated by the loss function objective.



One consequence of Equation (2) is that in a stable

dropout network, the neural activation is very sparse. This

yields to a skewed asymmetric distribution for neuron ac-

tivity inside a network [2]. This skewed asymmetric dis-

tribution has close connections to the gating mechanism.

Such a distribution for the neural activity of several animals

is believed to be responsible for an optimal trade-off be-

tween stability and plasticity [3]. This firing pattern imple-

ments a gating mechanism inside the brain that is not only

plastic enough to learn new tasks but also stable enough to

preserve the knowledge it has learned from different tasks.

[3] showed the neural activity of several biological brains,

which is in line with the neural activity in dropout networks,

as shown by [2] and our experiments.

Training with dropout also has another consequence:

dropout most heavily regularizes the neurons that contribute

to uncertain predictions (i.e., semi-active neurons that are

not close to either 0 or 1) [25, 2]. Intuitively, for a net-

work of gates and switches, it means that dropout regu-

larization pushes neurons to be either active or deactivate.

EWC [12] also is built upon the same intuition of penal-

izing the changes to certain weights and allowing the less

certain parameters to handle learning new tasks. When the

model finishes task t and reaches task t+1, this regulariza-

tion would create new gates by either enabling or disabling

such neurons. Decaying the learning rate during the con-

tinual learning experience also helps dropout increase the

model stability since by preserving the gates for a longer

time.

In conclusion, dropout regularization helps to create

gates in the network by pushing the neurons to be either

highly active or highly inactive during the learning experi-

ence. In addition, when facing new tasks, the regularization

mechanism will change the semi-active neurons more com-

pared to active or inactive neurons, which helps to preserve

the task-specific pathways when learning subsequent tasks.

4. Experimental Setup

4.1. Datasets

We perform our experiments on two standard continual

learning benchmarks: Permuted MNIST [8], and Rotated

MNIST. Each task of the permuted MNIST dataset is gen-

erated by shuffling the pixels of images such that the permu-

tation would be the same between images of the same task

but is different across the tasks. Each permutation is cho-

sen randomly; thus, the difficulty of tasks is the same. We

used the first task to be the original MNIST images. Ro-

tated MNIST is generated by the continual rotating of the

original MNIST images. Here, task 1 is to classify stan-

dard MNIST digits, and each subsequent task will rotate

the previous task’s images by 10 degrees (e.g., task 2 by 10

degrees, task 3 by 20 degrees, and so on).

4.2. Training Settings

In this section, we first describe our training setting for

Sections 5.1, 5.2, and 5.4. We use PyTorch [22] for the

implementation of all experiments and reported the average

and standard deviation of the validation accuracy for five

runs. For all experiments, we use a multi-layer perceptron

(MLP) with two hidden layers, each with 100 ReLU neu-

rons. Moreover, each network is only trained on each task

for five epochs to be consistent with several other bench-

marks [7]. We compare the standard SGD training with

Elastic Weight Consolidation (EWC) [12], A-GEM [6],

and Orthogonal Gradient Descent (OGD) [7]. Multi-Task

Learning (MTL) serves as an upper bound and that the net-

work is trained in a multi-task setting (i.e., data of previ-

ous tasks are always available and used for training). All

the results except the SGD with dropout were directly cited

from [7] as datasets, training epochs, and optimizers were

the same. For SGD with dropout, we use the batch size of 64

and the standard SGD optimizer with a learning rate of 0.01
and 0.8 for momentum. Furthermore, we found that learn-

ing rate decay helps network stability dramatically, and we

reduced the learning rate by 0.8 after finishing each task.

We have experimented with different dropout probabili-

ties and found that values between 0.2 and 0.6 work well.

However, for simplicity, we have used 0.5 for the dropout

probability for all reported results unless stated otherwise.

We note that all the methods except the SGD+Dropout are

trained without dropout and learning rate decay since our

main goal is to measure the performance gain of the meth-

ods that are not due to these stability techniques.

For our scaled experiment (Section 5.3), we extend the

number of tasks to 20 rather 5 to verify our analysis holds.

We used a two-layer MLP with 256 ReLU neurons in each

layer. For each task, the network will be trained for 5

epochs. The dropout parameter and learning rate decay will

remain the same as the previous section. For this experi-

ment, we use two metrics from [4, 6] to evaluate continual

learning algorithms when the number of tasks is large:

1. Average Accuracy: The average validation accuracy

after the model has been trained sequentially up to task

t, defined by:

At =
1

t

t∑

i=1

at,i, (3)

where, at,i is the validation accuracy on dataset i when

the model finished learning task t.

2. Forgetting Measure: The average forgetting after the

model has been trained sequentially on all tasks. For-

getting is defined as the decrease in performance at

each of the tasks between their peak accuracy and their

accuracy after the continual learning experience has



1 5 10 15 20 25
Epochs

60

70

80

90

100
V

al
id

at
io

n 
A

cc
ur

ac
y

(a)

1 5 10 15 20 25
Epochs

60

70

80

90

100
(b)

1 5 10 15 20 25
Epochs

50

60

70

80

90

(c)

Task
1
2
3
4
5

Figure 2. Permuted MNIST- Increasing the stability and reducing the plasticity from left to right by increasing the the dropout rate and

learning rate decay.

1 5 10 15 20 25
Epochs

60

70

80

90

100

V
al

id
at

io
n 

A
cc

ur
ac

y

(a)

1 5 10 15 20 25
Epochs

60

70

80

90

100
(b)

1 5 10 15 20 25
Epochs

50

60

70

80

90

(c)
Task

1
2
3
4
5

Figure 3. Rotated MNIST- Increasing the stability and reducing the plasticity from left to right by increasing the the dropout rate and

learning rate decay.

finished. For a continual learning dataset with T se-

quential tasks, it is defined as:

F =
1

T − 1

T−1∑

i=1

maxt∈{1,...,T−1} (at,i − aT,i). (4)

Finally, in our code repository, we provide scripts to re-

produce the results with suggested hyper-parameters.

5. Results

In this section, we perform several experiments to show

the impact of dropout on model stability.

5.1. Forgetting Curve in Stable Networks

In our first experiment, we show that it is feasible to in-

crease the stability of a network by compromising its plas-

ticity a little bit but getting a considerable amount of stabil-

ity in return. Figures 2 and 3 show the evolution of vali-

dation accuracy throughout the continual learning over five

tasks on permuted MNIST and rotated MNIST, respectively.

For each dataset, we train networks for three different set-

tings:

• (a) Training the network without dropout and learning

rate decay and obtain a highly plastic network.

• (b) Training the network with small dropout probabil-

ity (p = 0.25) and also learning rate decay to obtain a

more stable network than the one in part(a).

• (c) Training with moderate dropout (p = 0.5) and ap-

plying learning rate decay which yields a highly stable

network.

We would like to clarify that the x-axis in both figures de-

notes the time in the continual learning experience. Since

the learning experience consists of five tasks, each for five

epochs, the x-axis time denotes the time, which would be

between one and twenty-five. The reported numbers at each

step are calculated by averaging the accuracy over five dif-

ferent runs. We can observe from Figures 2 and 3 that plas-

tic networks in (a) learn new tasks better and faster than

more stable ones, but they also forget old tasks very quickly.

Networks with moderate plasticity in (b) learn slower than

the highly plastic ones in (a), but they also forget at a slower

rate. Finally, highly stable networks in (c) have the slow-

est forgetting curve thanks to the switching gates of the

dropout. However, the stability comes with its cost: com-

promising flexibility, which yields to learning new tasks at

a slower rate.

We emphasize our main goal of this experiment: It

is possible to obtain stable networks by compromising

the right amount of plasticity, and unlike OGD [7] and

AGEM [6], with no additional techniques such as replay

memory and correcting gradient directions. We will see in

Section 5.4 that improving stability plays a much more im-

portant role than the mentioned techniques. We will show

that stable networks trained with SGD can outperform other

continual learning methods when they do not exploit these

simple yet effective stability techniques.

5.2. Dropout and Gating Mechanism

In this experiment, we show that training with dropout

will implicitly produce different gates in the network such

that for each task, only a certain subset of the network pa-

rameters is active.



Nuerons(w/o dropout)

1
2

3
4

5
Ta

sk
s

0 10 20 30 40 50 60 70 80 90 10
0

Nuerons(w dropout)

1
2

3
4

5
Ta

sk
s

0.0
0.2
0.4
0.6
0.8
1.0

Figure 4. The effect of dropout on the activation(firing) pattern of neurons

0 10 20 30 40 50 60 70 80 90 10
0

Nuerons(w dropout)

1
5Ta

sk
s

0.0
0.2
0.4
0.6
0.8
1.0

Figure 5. Stable Network - Consistency between activation patterns of neurons for task 1, after learning task 1 and task 5

We counted the number of times a specific neuron was

active (fired) for each task, and compare this behavior

throughout the sequential learning process for all the tasks.

Figure 4 shows the heatmap of the activation behavior of

neurons of the first layer of two networks (with and without

dropout) that are trained using the SGD method after finish-

ing five permuted MNIST tasks. We indexed 100 neurons

on the x-axis (from 0 to 99) and plotted the heatmap of their

activation on the y-axis indexed by tasks. In other words, it

represents the frequency of activation on validation data of

that task. We note that the number of times that a neuron

can fire for each MNIST task will be between 0 and 10000

(size of validation set). For better representation, we have

normalized this number by dividing each value by 10000 so

that all numbers are between 0 and 1.

The first interesting observation from Figure 4 is that

the activity pattern of neurons of the network trained with

dropout is sparser than the case without dropout. Some neu-

rons are very active, and some very inactive. This is in con-

trast to the behavior of the network without dropout, where

almost all the neurons are very active for all tasks. More-

over, if we focus on the behavior of a single neuron of a

network with dropout, we see that the neuron is active for

some tasks but is inactive for the others. Only a few of them

are always active for all tasks. This behavior shows the gat-

ing mechanism of the network trained with dropout. The

second interesting observation is the evolution of activation

sparsity as the model learns more and more tasks. In other

words, fewer and fewer neurons remain free to be activated

for later tasks. This is due to the fact that the network’s

remaining capacity fills up as training continues.

It’s notable that the gating mechanism is most useful

when the pathways for a task remains consistent and al-

most invariant while training on subsequent tasks and so

on. When the network is learning task t, dropout helps to

produce some gating for the forward propagation. How-

1 5 10 15 20
Tasks

50

60

70

80

90

100

V
al

id
at

io
n 

A
cc

ur
ac

y

SGD + Dropout
SGD

Figure 6. Comparison of average accuracy at the end of each task

for several methods

ever, if the gates for this task are not preserved throughout

the sequential learning process and change while the net-

work is learning task t+1, then the network will forget task

t. Figure 5 shows the activation patterns of task 1 for the

first layer of a network trained with dropout, at two differ-

ent times: (1) right after learning the first task (beginning of

the continual learning), and (2) after learning the final task

(end of the learning). As illustrated, the activation behav-

ior and the gating is fairly consistent, and the pathways are

preserved through time.

Finally, we note that although the illustrated examples

are only for five tasks of permuted MNIST, the same pattern

of behavior exists for the networks trained on the rotated

MNIST task and when the number of tasks increases.

5.3. Increasing Tasks

In this section, we show that the stability of dropout

training remains effective in the case of an increased num-

ber of tasks.

Figure 6 compares the evolution of average accuracy

(Equation (3)) for a stable versus plastic network. The

graph consists of the average and three standard deviations



Accuracy ± std (%)

Task 1 Task 2 Task 3 Task 4 Task 5

MTL 93.2 ± 1.3 91.5 ± 0.5 91.3 ± 0.7 91.3 ± 0.6 88.4 ± 0.8

OGD 79.5 ± 2.3 88.9 ± 0.7 89.6 ± 0.3 91.8 ± 0.9 92.4 ± 1.1

A-GEM 85.5 ± 1.7 87.0 ± 1.5 89.6 ± 1.1 91.2 ± 0.8 93.9 ± 1.0

EWC 64.5 ± 2.9 77.1 ± 2.3 80.4 ± 2.1 87.9 ± 1.3 93.0 ± 0.5

SGD 60.6 ± 4.3 77.6 ± 1.4 79.9 ± 2.1 87.7 ± 2.9 92.4 ± 1.1

SGD+Dropout 88.2 ± 1.6 90.3 ± 1.1 91.2 ± 2.0 90.3 ± 1.2 89.9 ± 1.4

Table 1. Permuted MNIST: The validation accuraficy of the model

for each task, after being trained on all tasks in sequence.

Accuracy ± std (%)

Task 1 Task 2 Task 3 Task 4 Task 5

MTL 92.1 ± 0.9 94.3 ± 0.9 95.2 ± 0.9 93.4 ± 1.1 90.5 ± 1.5

OGD 75.6 ± 2.1 86.6 ± 1.3 91.7 ± 1.1 94.3 ± 0.8 93.4 ± 1.1

A-GEM 72.6 ± 1.8 84.4 ± 1.6 91.0 ± 1.1 93.9 ± 0.6 94.6 ± 1.0

EWC 67.9 ± 2.0 78.1 ± 1.8 89.0 ± 1.6 94.4 ± 0.7 93.9 ± 0.6

SGD 65.9 ± 1.8 77.5 ± 1.5 88.6 ± 1.4 95.1 ± 0.5 94.1 ± 1.1

SGD+Dropout 81.1 ± 1.1 89.3 ± 2.4 92.1 ± 2.2 93.4 ± 1.8 92.8 ± 0.5

Table 2. Rotated MNIST: The validation accuracy of the model for

each task, after being trained on all tasks in sequence.

over five different runs. The stable networks have the fi-

nal average accuracy of 78.7 (±0.2) with forgetting statis-

tic (Equation (4)) of 0.13 (±0.02) while these metrics for

plastic networks are 59.2 (±2.7) and 0.39 (±0.03), respec-

tively.

In the appendix section, we compare the stable dropout

networks with various state of the art continual learning set-

tings for 20 tasks.

5.4. Comparison with Other Methods

In this experiment, we compare the stable SGD+Dropout

network with several other continual learning methods. The

goal is to compare the significance of the “network stabil-

ity” compared to the methods that focus on the other aspects

of the catastrophic forgetting to tackle this problem.

Table 1 and 2 compare several continual learning al-

gorithms on the permuted and rotated MNIST datasets.

SGD+Dropout outperforms all the continual learning meth-

ods on old tasks and achieves an acceptable accuracy on

new tasks for both permuted and rotated MNIST datasets.

One interesting observation from both tables is the fact that

SGD+Dropout achieves near-optimal accuracy even on new

tasks but is not the best. The reason is that the network is

very stable, and because of the stability-flexibility trade-off,

it has lost some part of its flexibility.

Finally, we note that all the other methods except SGD,

EWC, and SGD+Dropout are using some 200 data points

per task to calculate gradient information from previous

tasks (e.g., OGD) or in the form of episodic memory (e.g.,

A-GEM).

6. Conclusion and Future Work

In this paper, we studied the relationship between

dropout and continual learning. We showed that the key

to understanding this relationship is studying network sta-

bility. Furthermore, our analysis and experiments demon-

strated that the dropout method could be viewed as an im-

plicit gating mechanism, which yields a stable and plastic

network. Our experiments showed that the consistent gat-

ing mechanism resulted from dropout can outperform vari-

ous popular continual learning methods.

The effectiveness of the dropout method suggests that

focusing directly on the stability of neural networks is an

effective approach to tackle catastrophic forgetting. One in-

teresting research direction is to modify the dropout method

to gain more control over the gating mechanism, possibly by

exploiting the structural similarity between sequential tasks

and neural activation patterns, the same as proposed ideas

in the transfer learning literature [1]. Studying the effect of

dropout on network behavior in different continual learning

settings is also a promising direction. Our preliminary re-

sults show that dropout networks will remain robust even

when trained on an increased number of sequential tasks.

Acknowledgement

Authors Mirzadeh and Ghasemzdeh were supported in

part, under grants CNS-1750679 and CNS-1932346 from

the United States National Science Foundation. Any opin-

ions, findings, conclusions, or recommendations expressed

in this material are those of the authors and do not neces-

sarily reflect the views of the funding organizations. The

authors would like to thank the anonymous reviewers for

their helpful comments.

References

[1] Parastoo Alinia, Seyed-Iman Mirzadeh, and Hassan

Ghasemzadeh. Actilabel: A combinatorial transfer learning

framework for activity recognition. ArXiv, abs/2003.07415,

2020. 6

[2] Pierre Baldi and Peter J Sadowski. Understanding dropout.

In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

and K. Q. Weinberger, editors, Advances in Neural Informa-

tion Processing Systems 26, pages 2814–2822. Curran Asso-

ciates, Inc., 2013. 2, 3

[3] György Buzsáki and Kenji Mizuseki. The log-dynamic

brain: how skewed distributions affect network operations.

Nature Reviews Neuroscience, 15:264–278, 2014. 3

[4] Arslan Chaudhry, Puneet Kumar Dokania, Thalaiyasingam

Ajanthan, and Philip H. S. Torr. Riemannian walk for in-

cremental learning: Understanding forgetting and intransi-

gence. In ECCV, 2018. 3

[5] Arslan Chaudhry, Albert Gordo, Puneet Kumar Dokania,

Philip H. S. Torr, and David Lopez-Paz. Using hindsight

to anchor past knowledge in continual learning. ArXiv,

abs/2002.08165, 2019. 2

[6] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with a-

gem. ArXiv, abs/1812.00420, 2018. 2, 3, 4



[7] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li.

Orthogonal gradient descent for continual learning. ArXiv,

abs/1910.07104, 2019. 2, 3, 4

[8] Ian J. Goodfellow, Mehdi Mirza, Xia Da, Aaron C.

Courville, and Yoshua Bengio. An empirical investigation

of catastrophic forgeting in gradient-based neural networks.

CoRR, abs/1312.6211, 2013. 1, 3

[9] David P. Helmbold and Philip M. Long. Surprising prop-

erties of dropout in deep networks. J. Mach. Learn. Res.,

18:200:1–200:28, 2016. 2

[10] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Improving neural

networks by preventing co-adaptation of feature detectors.

ArXiv, abs/1207.0580, 2012. 1, 2

[11] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.

Distilling the knowledge in a neural network. ArXiv,

abs/1503.02531, 2015. 2

[12] James N Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz,

Joel Veness, and et. al. Overcoming catastrophic forgetting

in neural networks. Proceedings of the National Academy of

Sciences of the United States of America, 114 13:3521–3526,

2017. 2, 3

[13] Matthias Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot,

Xu Jia, Alevs. Leonardis, Gregory G. Slabaugh, and Tinne

Tuytelaars. Continual learning: A comparative study on

how to defy forgetting in classification tasks. ArXiv,

abs/1909.08383, 2019. 1, 2

[14] Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee.

Overcoming catastrophic forgetting with unlabeled data in

the wild. In ICCV, 2019. 2

[15] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 40:2935–2947, 2018. 2

[16] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-

tiple tasks to a single network by iterative pruning. 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7765–7773, 2017. 2

[17] Nicolas Y. Masse, Gregory D. Grant, and David J. Freedman.

Alleviating catastrophic forgetting using context-dependent

gating and synaptic stabilization. Proceedings of the Na-

tional Academy of Sciences of the United States of America,

115 44, 2018. 2

[18] Michael McCloskey and Neal J. Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. 1989. 1

[19] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin.

The stability-plasticity dilemma: investigating the contin-

uum from catastrophic forgetting to age-limited learning ef-

fects. In Front. Psychol., 2013. 1

[20] Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, and

Hassan Ghasemzadeh. Improved knowledge distillation via

teacher assistant: Bridging the gap between student and

teacher. ArXiv, abs/1902.03393, 2019. 2

[21] Hossein Mobahi, Mehrdad Farajtabar, and Peter L. Bartlett.

Self-distillation amplifies regularization in hilbert space.

ArXiv, abs/2002.05715, 2020. 2

[22] Adam Paszke, Sam Gross, Francisco Massa, and et. al. Py-

torch: An imperative style, high-performance deep learning

library. In Advances in Neural Information Processing Sys-

tems 32, pages 8024–8035. Curran Associates, Inc., 2019.

3

[23] Sylvestre-Alvise Rebuffi, Alexander I Kolesnikov, Georg

Sperl, and Christoph H. Lampert. icarl: Incremental clas-

sifier and representation learning. 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

5533–5542, 2016. 2

[24] Nitish Srivastava. Improving neural networks with dropout.

2013. 2

[25] Colin Wei, Sham M. Kakade, and Tengyu Ma. The im-

plicit and explicit regularization effects of dropout. volume

abs/2002.12915, 2020. 2, 3

[26] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. Proceedings of

machine learning research, 70:3987–3995, 2017. 1


