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Abstract

Standard deep learning based object detectors suffer

from catastrophic forgetting, which results in performance

degradation on old classes as new classes are incrementally

added. There has been a few recent methods that attempt

to address this problem by minimizing the discrepancy be-

tween individual object proposal responses for old classes

from the original and the updated networks. Different from

these methods, we introduce a novel approach that not only

focuses on what knowledge to transfer but also how to effec-

tively transfer for minimizing the effect of catastrophic for-

getting in incremental learning of object detectors. Towards

this, we first propose a proposal selection mechanism using

ground truth objects from the new classes and then a rela-

tion guided transfer loss function that aims to preserve the

relations of selected proposals between the base network

and the new network trained on additional classes. Exper-

iments on three standard datasets demonstrate the efficacy

of our proposed approach over state-of-the-art methods.

1. Introduction

Deep Convolutional Neural Network (CNN) based ob-

ject detectors [9] have achieved state-of-the-art results on

datasets such as PASCAL VOC [7]. While they perform

very well on standard benchmark datasets, a challenge for

real world applications is learning object detectors incre-

mentally, where new classes are added over multiple train-

ing sessions. One strategy for training models with new

classes is to fine-tune networks on the new data. While the

performance of a finetuned network on the new classes is

satisfactory, its performance on old classes degrades signif-

icantly [20]. This is a well known problem that occurs when

training CNNs called catastrophic forgetting [26].

A number of recent works have addressed the issue of

catastrophic forgetting in CNNs. Most of the work is either

model-based [1, 3, 17] or data-based [20, 6, 37]. In model

based approaches, existing works look at different methods

Figure 1. Overall framework of our proposed approach. Incre-

mental learning of network Ns+1 trained from a base network

Ns which consists of i) proposal selection for what knowledge

to transfer and ii) relation transfer for how knowledge is used for

guiding the network training for incremental object detection.

to preserve important weights of the network for the previ-

ously learnt categories and use the remaining neurons for

learning new classes [17]. On the other hand, data-based

approaches mainly use some measure of the data represen-

tation in the network, for example knowledge distillation

[12] and its variants. Distillation loss [12] is mainly adapted

to maintain the responses of the network on the old tasks

whilst updating it with data for the new training classes [20].

Alternatively, few works [19, 2] also store some part of the

old data which can be used during the new training to partly

alleviate the problem of catastrophic forgetting.

Most of the works in incremental learning focus on im-

age classification, and not much work has been done in the

domain of object detection. Incremental object detection is

more challenging [37] since it has an additional challenge

of localizing the objects. Furthermore, in image classifica-

tion old and new class examples are usually distinct while in

object detection it is likely that both old and new classes co-

occur in the same image. Thus during training, the network

has to learn to detect old classes that might be present in new

data. A recent work that tackles incremental learning of ob-

ject detectors [37] uses a variant of knowledge distillation

on a selected set of object proposals that guide the learn-
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ing of new categories over a base model that is previously

trained on a set of categories. However the object propos-

als which guide the learning process (i.e what knowledge to

be transferred from old to the new network), are randomly

selected which severely affects the overall performance the

newly learned object detector.

Objects in images show natural relations, for example a

television is more likely to be present in front of the couch

and less likely to be present in an image containing horse.

Such object relations can serve as useful priors for object

detection. Thus, using not only the representation of ob-

jects but also the relations that objects exhibit is a more

comprehensive way of showing the model how to trans-

fer knowledge. Motivated by this, we propose a relation-

based loss to transfer knowledge from base network to new

network. Specifically, we introduce a similarity preserving

knowledge transfer loss that guides the training of the new

network such that the relationship between objects are pre-

served in the new network. To effectively transfer relations,

we additionally introduce a proposal selection mechanism

by exploiting the ground truth of new classes as well as the

high confidence proposals from the old network. The over-

all approach is illustrated in Figure 1.

Our approach works as follows. We first use pre-

computed proposals from Edge Boxes [46] to train a Fast-

RCNN object detector [9] on a set of base classes. Given

a set of new classes, the incremental learning phase trans-

fers knowledge from the base model that was trained on the

old set of classes to the new model while also learning the

new classes. A subset of object proposals are selected from

the pre-computed proposals such that these proposals cap-

ture the most informative regions in the image related to the

classes. This selection mechanism ensures that proposals

related to both new and old classes are used for determining

the relations between proposals. Based on the selected pro-

posals, a relation matrix is computed using the Euclidean

distance and the associated loss is used to penalize the di-

vergence between base and new network.

We evaluate our proposed approach on multiple bench-

mark datasets [7, 22] to show the benefit of relation-guided

knowledge transfer for incremental learning of object detec-

tors. Additionally we evaluate our approach with multiple

episodic training of the network, i.e, multiple instances of

new classes being added to the existing set of classes. Our

results show that the performance of base classes are pre-

served effectively even in the case of multiple episodes by

using our proposed approach as compared to the baselines.

Our main contributions can be summarized as follows.

• We use a proposal selection mechanism that utilizes

ground truth as priors for selecting what knowledge to

transfer in incremental object detection.

• We introduce a novel relation guided transfer loss for

how knowledge from the old network is used to super-

vise the training of the new network.

• We show competitive performance on three datasets

and use different measures that present a fair way to

evaluate models for incremental object detection.

2. Related Work

Our work relates to three major research directions: ob-

ject detection, incremental learning and knowledge distil-

lation. Here, we focus on some representative methods

closely related to our work.

2.1. Object Detection

There is a continued interest in the vision community

on learning object detection models using deep CNNs [10,

9, 11] as they significantly outperform traditional meth-

ods [8, 33, 41]. Generally, modern CNN-based object de-

tection frameworks fall into two groups. One is the two-

stage detectors like R-CNN [10], Fast R-CNN [9], Faster

R-CNN [32], Deformable CNN [5], Mask R-CNN [11],

etc. The second one is one-stage detectors such as Over-

Feat [35], YOLO [31], SSD [23] and RetinaNet [21], etc

which have also been proposed driven by the requirement

of real time inference in many applications. Anchor free

detectors have also been proposed that use keypoint estima-

tion for efficient object detection [18, 45]. However, all of

these methods focus on learning detectors with a fixed set

of classes unlike the problem domain we consider where the

number of classes keeps growing. Incremental learning of

object detectors still remains as a novel and largely under-

addressed problem in computer vision.

2.2. Incremental Learning

Incremental (a.k.a continual) learning has been studied

from multiple perspectives (see [27] for a recent survey).

Broadly speaking, the existing works can be divided into

two main types: one is task-incremental learning where the

number of tasks (i.e., datasets) keeps growing [1, 3, 17,

20, 13]. Another is class-incremental learning where the

number of class labels keeps growing [30, 6, 19, 2]. The

class-incremental problem is more difficult than the task-

incremental problem as the model can often confuse the

new class with a base class [3]. Various strategies have

been studied for both incremental learning scenarios includ-

ing model-based approaches that constraint the network up-

dates to be around the original values [1, 3, 17], data-based

approaches [6, 20] that keep the knowledge of the previous

tasks by knowledge distillation [12] and a combination of

both for the better performance [16]. Memory-based ap-

proaches [25, 14] or generative models [36] have also been

proposed for incremental learning. However, all these ap-

proaches consider incremental learning of image classifiers



unlike the problem domain we consider. Specifically, we

focus on the more challenging incremental object detec-

tion task, where it is very common for the old and the new

classes to co-occur, unlike the classification task.

The most relevant work to ours is the incremental object

detection work (IOD-KD) proposed in [37] that uses distil-

lation loss [12] to preserve the knowledge of base classes

without storing the data of base classes. However, our ap-

proach and the work IOD-KD in [37] have significant differ-

ences. First, the object proposals (what) selected for trans-

ferring knowledge in IOD-KD are chosen at random. In

contrast, our approach selects proposals that overlap with

ground truth objects by avoiding large amount of noise from

unrelated areas. The intuition is that object detectors care

more about local regions that overlap with ground truth ob-

jects and hence exploiting ground truth bounding boxes as

priors for selecting what knowledge to transfer can be help-

ful in incremental object detection. Second, we intend to

use object proposal relations in an incremental setup, in-

stead of only knowledge distillation [12], to transfer more

comprehensive knowledge of base classes from the old

model to the new model (How). We hypothesize that pro-

posal relationships encode a detector’s representation more

precisely. Hence, constraining the proposal relationship us-

ing a relation guided transfer loss, to minimize the diver-

gence of the representations of new detector from that of

an old one is more meaningful. A very recent work [44]

addresses the problem of incremental object detection us-

ing deep model consolidation with auxiliary data which are

harder to obtain in many cases and often not feasible when

the memory budget is limited.

2.3. Knowledge Distillation

Knowledge distillation [12] that focuses on transferring

knowledge from a large network to a small one for model

compression has attracted intense attention in the recent

years. Much progress has been made in developing a vari-

ety of ways through matching logits [12], intermediate fea-

tures [34], attention maps [43], and feature space transfor-

mation [42]. Leveraging feature similarity [24, 28, 38] is

also another recent trend for knowledge distillation. With

growing interests in knowledge distillation, task-specific

KD methods have also been proposed for object detec-

tion [39, 4, 40, 29] but with fixed number of classes. Com-

pared to all these works, in this paper, we focus on the more

difficult problem of learning object detectors incrementally

where selecting the right knowledge (what) is also equally

important including the transfer approach.

3. Proposed Method

Our relation guided knowledge transfer approach for in-

cremental learning of object detectors is shown in Figure 2.

Given a network that is trained with the old set of classes,

Figure 2. Relation Guided Knowledge Transfer: Illustration of

our relation guided knowledge transfer approach that combines re-

lation loss with knowledge distillation and classification loss for

incremental learning of object detectors.

the incremental learning problem is to train the network

with the new set of classes. Let Ns be the base network

trained at step s with the old classes. At each incremen-

tal step s + 1 the network Ns+1 is trained for a new set of

categories using the base model. We describe our approach

which consists of a proposal selection mechanism and a loss

function that transfers knowledge from Ns to Ns+1.

3.1. Proposal selection

A main component for incrementally learning new

classes for object detection, is the selection of proposals

that will be used for transferring knowledge from old net-

work to new network. In [37], given a set of proposals the

method randomly selects a small subset of proposals based

on the proposal score for non-background class. However,

the random selection might miss proposals that are useful

to preserve the information from the old network, and we

need to select proposals that are relevant for both old and

new classes to effectively transfer knowledge.

To overcome the shortcomings from random selection,

we propose a selection mechanism that uses the ground

truth object bounding boxes as well as proposals with the

lowest background score as regions of the image for sam-

pling proposals. Given a set of proposals, for the proposal

selection mechanism we start with an initial set of propos-

als P determined by the lowest background scores (by pass-

ing all proposals through the old network we obtain a back-

ground score). To select proposals for distillation, we first

define image regions R that have a high likelihood of ob-

jects. The image regions are generated using the top B

(P ≫ B) lowest background score proposals along with

ground truth bounding boxes G as to give us a set of re-



Figure 3. Example images from VOC 2007 dataset that show

how different objects are related to each other. Objects in yellow

bounding box are close to each other, while object in red bound-

ing box is not. Our approach aims to select related proposals and

preserve object relations. Best viewed in color.

gions R = B +G for sampling proposals. In the next step,

we select proposals from the pool P using the image region

R that we defined. Since the image regions contain infor-

mative objects, we want to select proposals that are near R.

To this end, we measure locality of each proposal from the

pool in relation to the defined image region. The locality

of a proposal to each image region is evaluated using IOU

(intersection over union) and normalized l2 distance. For

each proposal Pj (the jth proposal in the pool) the locality

L from each region Ri (the ith region) is calculated using

the following formula:

Li,j = 1−
l2(Ri, Pj)

max(l2(Ri, P ))
+ IOU(Ri, Pj) (1)

The l2 distance is the euclidean distance between the fea-

ture representation of the proposal Pj to each region Ri.

The IOU is the overlap of the proposal bounding boxes.

For each proposal, we then take the maximum localities M

across all regions:

Mj = max(L:,j) (2)

We select the final set of proposals based on the highest

locality value given by M and then use them in computing

the relation loss as described in the following sections.

3.2. Relation Loss

Given a selected set of object proposals, our goal is to

learn a new set of classes while preserving the network per-

formance on the old set of classes. Unlike image classifi-

cation, in object detection we observe that multiple classes

can co-occur in the same image and they exhibit natural re-

lations. For example, a chair and person are highly likely to

occur in the same image as shown in Figure 3. Our hypoth-

esis is that relationships encode the network representations

more precisely for the problem of object detection. In our

proposed approach we use a matrix to encode the relations

between every pair of object proposals.

In the incremental learning problem, we start with a base

model Ns trained on the old set of categories. At each in-

cremental step, we train a network Ns+1 on the new set

of categories. Once the proposals are selected as described

in Section 3.1, we extract feature representations f(pi) for

i = 1, . . . , P for each of the selected P proposals from

the base model Ns and new network Ns+1. The features

are used to compute a relational matrix, As for the base

network and As+1 for the new network. The euclidean-

distance based matrix is computed for Ns as;

As(i, j) = ||f(pi)− f(pj)||2, i, j = 1, .., P (3)

and similarly for Ns+1 as;

As+1(i, j) = ||f(pi)− f(pj)||2, i, j = 1, .., P (4)

The matrices that capture relations between selected ob-

ject proposals are used to constrain the learning of the new

network and better transfer knowledge from the base model

to the new network. For this we define a loss, called relation

loss (LR) which is the l2 norm between two relation matri-

ces. Given the relation matrices, As of the base network and

As+1 of the new network, the loss LR is given by;

LR = ||As–As+1||2 (5)

As shown in Figure 2, the relation loss LR aims to min-

imize the divergence in pair-wise distances of selected pro-

posals between the old and new network. The proposal re-

lations provides a strong learning signal for training the new

network without forgetting the old classes.

3.3. Relation Guided Knowledge Transfer

Our proposed approach denoted as RKT combines the

relation loss LR with distillation LKD and classification

loss Lc as shown in Figure 2. For the distillation loss, log-

its computed for the proposals by Ns serve as targets for

the new network Ns+1. As in [37], the mean over the class

dimension from unnormalized logits f of each RoI is sub-

tracted to obtain the corresponding centered logits (f ) used

in the distillation loss. Bounding box regression outputs b

(of the same set of proposals used for computing the logit

loss) also constrain the loss of the network.

LKD =
1

N

∑
[(fs − fs+1)

2 + (bs − bs+1)
2] (6)

The classification loss function per ROI to train the Fast

R-CNN detector [9], is given by:

LC(p, k
⋆, t, t∗) = –logp⋆k + [k⋆ ≥ 1]R(t–t⋆) (7)



In the above equation, p is the softmax output of the net-

work for all the classes, t is the output of bounding box

layer while t⋆ is the ground truth bounding box and k⋆ is a

ground truth class. While the first part of the loss function

corresponds to the classification loss and the second part

represents the localization loss as in [9].

The total loss function is defined as;

LRKT = λrLR + λcLC + λdLKD (8)

where λr, λc and λd are the hyperparameters that bal-

ance the different loss terms.

3.4. Training procedure

We follow the same training procedure and settings as

outlined in [37] for our approach. Following [37], we use

Fast-RCNN for object detection since we can exploit pro-

posal selection as a mechanism to guide our learning. We

use Edge boxes [46] to pre-compute proposals for all the

datasets and the network input is an image with 2000 pre-

computed proposals represented as bounding boxes.

At step s, a Fast-RCNN [9] base network Ns is trained

on a set of categories for detection. At step s + 1, a new

network Ns+1 is trained for the new set of categories. The

new network Ns+1 is a copy of Ns that is adapted for the

new classes. The adaptation is done on the last fully con-

nected classification and bounding box regression layers.

Fully connected layers are created for new classes only and

the outputs concatenated with the original ones. The new

layers are initialized randomly in the same way as the cor-

responding layers in Fast R-CNN.

Once the network is initialized, each image and corre-

sponding proposals serve as input to both the networks.

Based on the scores computed for the proposals using net-

work Ns and the ground truths, a subset of proposals are

selected as described in Section 3.1. These set of proposals

are used for knowledge transfer from base to new network.

For knowledge transfer we compute the LRKT loss as out-

lined in Section 3.2. During inference, the high-scoring pro-

posals are refined according to bounding box regression.

Then, a per-category non-maxima suppression (NMS) is

performed to get the final detection results.

4. Experiments

In this section, we present extensive experiments to

demonstrate the effectiveness of our proposed approach for

incrementally learning of object detectors.

4.1. Datasets and Evaluation

We evaluate the performance of our approach using three

datasets: (i) PASCAL VOC 2007, (ii) PASCAL VOC12

dataset and iii) KITTI dataset. Both the VOC datasets [7]

have 20 object classes. While VOC07 dataset is divided into

2 subsets, such as trainval containing 5011 images and test

containing 4952 images, the VOC12 detection benchmark

consists of 5717 images for training and 5823 for testing.

We use the standard test splits for evaluation on both VOC

datasets. For the KITTI dataset [22], we use the split of

3712 images for training and 3769 for testing.

We use the standard mean average precision (mAP) at

0.5 IoU threshold (i.e., a predicted bounding box is correct

if its intersection over union with the ground truth bound-

ing box is higher than 0.5) as the evaluation metric. In

addition, following [15], we also compute another metric

called ΩB by dividing the performance of an incremental

learning method with the performance of an offline base

model trained with all the categories, which we assume is

the ideal performance. Both of the metric represents the

model’s ability to retain prior knowledge while still learn-

ing new knowledge. While only mAP is used to asses the

performance of the model at the end of the last task in [37],

we believe that performance of the model at every episode

rather than the end of the learning better characterizes the

dynamic aspects of incremental learning. Thus, we consider

mAP and ΩB at each episode as the performance measures

for a fair evaluation in incremental learning.

4.2. Experimental Settings

We use SGD with a mini-batch size of 2 images to train

the networks in all our experiments. While learning the

base network, the initial learning rate is set to 0.001 and

decreased by a factor of 10 after each 30K iterations. We

use a learning rate of 0.0001 while doing incremental learn-

ing over the previously learned model. We also use a weight

decay parameter of 0.00005. We train the networks for 40

epochs on both datasets. We adopt the same settings fol-

lowed by [15] to integrate ResNet into the Fast R-CNN. We

apply per-class NMS with an IoU threshold of 0.3 and a

batch consists of 64 proposals per image, with 16 of them

having an IoU of at least 0.5 with a groundtruth object. We

also filtered all the proposals to have IoU less than 0.7 [46].

For incremental learning, we follow the same class order-

ing (alphabetical) as in [15] and select a subset of classes

to learn at each episode. We did not use annotations of all

the other classes except the ones that are used in the current

episode while learning a network in the incremental set up.

We use 10 lowest background score proposals from the base

network for computing locality in all our experiments.

4.3. Baselines

Our main baseline is IOD-KD [37] that uses randomly

selected object proposals and a sum of a classification loss,

bounding box regression loss and distillation loss to trans-

fer knowledge from the old to the new model. Our approach

utilizes relational knowledge transfer loss (Eq. 8) over the

object proposals selected using ground truth priors in addi-



tion to the same classification and regression loss to consis-

tent with the baseline. We additionally compare with elastic

weight consolidation (EWC) [17], which is a model-based

approach to regularize the parameter updates using Fisher

Information while learning the new classes. Furthermore,

we compared with another simple baseline approach for ad-

dition of new classes through fine-tuning the old network

by replacing the last layer (denoted as Fine-Tune in our

work) without any knowledge transfer. We use the publicly

available code for the IOD-KD implementation and set the

hyper-parameters as recommended in the published work.

Method mAP1−19 mAP20 mAP ΩB

N1−19 67.8 - - -

+N20 w/ Fine-tune 25.0 52.1 26.4 0.38

+N20 w/ IOD-KD [37] 67.1 58.1 66.7 0.97

+N20 w/ RKT (Ours) 67.6 59.4 67.2 0.98

N1−20 68.2 69.3 68.3 1.00

Table 1. Learning 19+1 Classes in VOC07 Dataset. Results

show the addition of one class i.e., “tvmonitor” class to a pre-

trained detection network trained with 19 classes. Our approach

RKT outperforms IOD-KD [37] baseline on both measures.

Method mAP1−10 mAP11−20 mAP ΩB

N1−10 65.8 - - -

+ N11−20 w/ Fine-tune 13.0 61.8 37.4 0.54

+ N11−20 w/ IOD-KD [37] 66.6 58.2 62.4 0.91

+ N11−20 w/ EWC [17] 31.6 61.0 46.3 0.67

+ N11−20 w/ RKT (Ours) 67.1 59.2 63.1 0.92

N1−20 67.9 68.7 68.3 1.00

Table 2. Learning 10+10 Classes in VOC07 Dataset. Results

show the the addition of 10 classes, all at once, to a pre-trained

object detection network trained initially with 10 classes. The pro-

posed approach outperforms all the baselines.

4.4. Results and Analysis

Table 1-8 show the results of our method and other base-

lines under different incremental learning scenarios on both

VOC datasets. We show that we can retain the performance

of base classes for a longer time when more classes are in-

crementally added to the classifier by using our proposed

approach as compared to the baseline IOD-KD.

4.4.1 Results on VOC2007 Dataset

We perform 3 different set of experiments with varying

number of incremental episodes as follows.

Learning 19+1 Classes. We take 19 classes in alphabeti-

cal order from the VOC dataset, and the remaining one as

the only new class to be added to the old network (N1−19).

Specifically, we first train the the base network N1−19 on

trainval subset containing any of the 19 classes, and then

train the new network N20 on the trainval subset containing

the only new class. Table 1 shows that our approach outper-

forms IOD-KD baseline on both the performance measures.

While the IOD-KD baseline achieves 58.1% AP on the new

class, our approach achieves 59.4% mAP on the new class

including an improvement of 0.5% on the old classes. As

expected, fine-tuning performs relatively well on the new

classes but fails to preserve the accuracy of old classes due

to catastrophic forgetting. Our proposed approach on the

other hand improves the new class accuracy while preserv-

ing the old class accuracy through relation guided knowl-

edge transfer over the selected proposals.

Learning 10+10 Classes. In this experiment, we train the

base network on the first 10 classes (alphabetical order) and

then use the remaining 10 classes as the new classes. Ta-

ble 2 shows that our approach outperforms both the Fine-

tune and EWC baseline by a significant margin. The IOD-

KD baseline is the most competitive. However, we still out-

perform it by a margin of about 1% in both the measures,

showing the utility of object relationships while transferring

knowledge from the old to the new network.

Learning 5+5+5+5 Classes. We perform this experiment

by using 5 classes at each incremental episode to verify the

effectiveness of our approach in multi-episode incremental

learning. Table 3 shows the summarized results, with the

full results in Table 4. The proposed approach significantly

outperforms the IOD-KD baseline by a margin of more than

5% in mAP at the end of the last episode learning. As ex-

pected, the performance difference between our approach

and the IOD-KD baseline approach increases with the in-

crease in number of episodes. The mAP difference between

our proposed method and IOD-KD baseline after the first

episode of training is only 0.4% but the difference is about

6% at the end of the episode. IOD-KD fails to preserve

the old class accuracy when the number episodes keep in-

creasing. However our approach on the other hand better

preserves the old class accuracies by exploiting object re-

lations. For example, we improve by 10% in mAP over

the IOD-KD baseline while preserving the accuracy of base

5 classes at the end of the incremental learning (49.9% vs

59%). As seen in Table 4, for classes like bird we improve

by about 25% in AP over IOD-KD at the last episode of the

learning by selecting proposals that overlap with the ground

truth plant class. We believe this is due to the fact that bird

and plant often co-occur in the same image.

4.4.2 Results on VOC2012 Dataset

We perform two different set of experiments one with single

episode (10+10) and another with 3 episodes (5+5+5+5)

to compare with different methods.

Learning 10+10 Classes. Table 5 summarizes the results.

Similar to the results in VOC07 dataset, the proposed ap-



Method mAP1−5 mAP6−10 mAP11−15 mAP16−20 mAP ΩB

N1−5 57.6 - - - - -

N1−5 + N6−10 w/ IOD-KD [37] 60.5 51.4 - - 55.9 0.85

N1−5 + N6−10 w/ RKT (Ours) 60.1 53.5 - - 56.8 0.86

N1−10 64.7 66.6 - - 65.6 1.00

N6−10 + N11−15 w/ IOD-KD [37] 56.7 47.6 56.8 - 53.7 0.77

N6−10 + N11−15 w/ RKT (Ours) 61.1 51.6 57.8 - 56.9 0.82

N1−15 64.9 69.7 73.9 - 69.5 1.00

N11−15 + N16−20 w/ IOD-KD [37] 49.9 41.7 55.0 41.6 47.0 0.69

N11−15 + N16−20 w/ RKT (Ours) 59.0 49.5 57.6 45.4 52.9 0.77

N1−20 65.0 70.9 73.3 64.1 68.3 1.00

Table 3. Learning 5+5+5+5 Classes in VOC07 Dataset. Results show multiple episodic performance of different methods while adding

5 classes at each episode of the incremental learning. We also report the base class performance of a network trained using the same

number of classes without any incremental learning. Our proposed approach performs the best, especially when the number of episodes

keep increasing. We outperform IOD-KD by a margin of about 9% in mean mAP on the old 15 classes at the end of incremental learning.

Method aero bike bird boat bottle bus car cat chair cow table dog hor mbi per plant sheep sofa train tv

N1−5 69.1 69.7 48.7 52.3 48.4 - - - - - - - - - - - - - - -

+ N6−10 w/ IOD-KD [37] 70.6 73.3 56.6 54.1 48.1 52.5 67.9 57 26.2 53.3 - - - - - - - - - -

+ N6−10 w/ RKT (Ours) 68.2 70.8 54.5 53 54.0 53.3 67.3 62.9 32.3 51.5 - - - - - - - - - -

+ N11−15 w/ IOD-KD 69.7 70.1 44.5 51.9 47.4 50.8 66.9 42.5 30.0 47.9 44.6 51.2 67.2 60.4 60.7 - - - - -

+ N11−15 w/ RKT 68.5 74.4 56.1 53.8 54.7 54.8 68.0 59.0 32.3 43.8 50.1 53.7 61.5 60.0 63.9 - - - - -

+ N16−20 w/ IOD-KD 63.3 70.1 26.8 47.9 41.2 40.6 67.3 42.7 30.2 27.6 44.8 46.7 64.3 63.6 56.0 26.2 33.5 41.9 51.6 54.7

+ N16−20 w/ RKT 68.0 74.2 50.2 53.1 49.7 53.1 68.5 50.0 34.1 41.9 52.0 51.0 59.5 60.9 64.8 27.2 46.1 46.4 47.0 60.2

N1−20 75.6 77.6 68.0 55.2 48.6 75.7 79 77.7 44.8 77.3 65.8 75.3 79.9 69.7 75.9 43.6 65.2 66.1 76.4 69.3

Table 4. Per-class Performance of Learning 5+5+5+5 Classes in VOC07 Dataset. Results show per-class average precision while

adding 5 classes at each episode of the incremental learning. We also report the base class performance of a network trained using the same

number of classes without any incremental learning. Our approach on an average, outperforms the baseline on most of the classes.

Method mAP1−10 mAP11−20 mAP ΩB

N1−10 60.3 - - -

+ N11−20 w/ Fine-tune 5.90 56.7 31.3 0.62

+ N11−20 w/ IOD-KD [37] 48.5 52.1 50.3 0.79

+ N11−20 w/ RKT (Ours) 57.8 49.4 53.6 0.84

N1−20 63.4 63.4 63.4 1.00

Table 5. Learning 10+10 Classes in VOC12 Dataset. Results

show the addition of 10 classes, all at once, to a pre-trained object

detection network initially trained with 10 classes. Our approach

outperforms the baseline method by a margin of 3.3% in mAP.

proach outperforms both Fine-tune and IOD-KD baselines

by a significant margin. The Fine-tuning baseline performs

very poorly on the old classes, reaching only 5.90% mAP

compared to the 57.8% accuracy achieved using our method

for the old classes. We improve over IOD-KD by 3.3%

in overall mAP by selecting both right proposals and rela-

tions while transferring knowledge from the old to the new

network. Note that while our performance on the new 10

classes are about 3% lower than IOD-KD, we improve by

more than 9% in old class accuracy which once again show

the efficacy of our method in reducing the catastrophic in-

terference in incremental learning.

Learning 5+5+5+5 Classes. Results of adding 5 classes

at each episode are shown in Table 6 and Table 7. Similar

to the results in VOC07 dataset, our approach consistently

outperforms the IOD-KD baseline at each episode of the

learning. We observe that the performance of both old and

new classes are well preserved using our approach that not

only focuses on selecting the right knowledge but also on

how to effectively transfer them for minimizing the effect

of catastrophic forgetting in incremental object detection.

4.4.3 Results on KITTI Dataset

Learning 2+1Classes. In this experiment we train the base

network on the first 2 classes (Car and Cyclist) and then use

the 3rd class (Pedestrian) for incremental learning. Table 8

shows that our approach outperforms the IOD-KD baseline

on both new and old accuracies. This once again shows

the utility of object relationships for transferring knowledge

even in datasets with extremely small number of classes.

4.5. Ablation Analysis

To understand the impact of the different components,

we analyzed the performance of the proposed approach,

by ablating each component on the VOC07 dataset. With

all the components working, the mAP while learning 10

classes incrementally is 63.1%. By turning off our proposed

proposal selection strategy (i.e., no ground truth bounding

boxes are used for selecting proposals), the mAP decreases



Method mAP1−5 mAP6−10 mAP11−15 mAP16−20 mAP ΩB

N1−5 51.1 - - - - -

N1−5 + N6−10 w/ IOD-KD [37] 53.7 48.1 - - 50.9 0.77

N1−5 + N6−10 w/ RKT (Ours) 54.4 48.2 - - 51.3 0.78

N1−10 64.7 66.6 - - 65.6 1.00

N6−10 + N11−15 w/ IOD-KD [37] 54.2 47.0 52.3 - 51.1 0.80

N6−10 + N11−15 w/ RKT (Ours) 56.2 46.8 54.8 - 52.6 0.82

N1−15 61.0 62.5 68.4 - 63.9 1.00

N11−15 + N16−20 w/ IOD-KD [37] 53.3 44.6 51.0 36.6 46.4 0.73

N11−15 + N16−20 w/ RKT (Ours) 55.5 42.6 52.0 39.3 47.3 0.75

N1−20 61.5 65.3 69.6 57.3 63.4 1.00

Table 6. Learning 5+5+5+5 Classes in VOC12 Dataset. Results show multiple episodic performance while adding 5 classes at each

episode of incremental learning. Our approach outperforms the baseline at each episode of the incremental learning.

Method aero bike bird boat bottle bus car cat chair cow table dog hor mbi per plant sheep sofa train tv

N1−5 78.3 60.7 37.1 34.9 44.9 - - - - - - - - - - - - - - -

+ N6−10 w/ IOD-KD [37] 78.6 64.7 49.3 29.6 46.2 60.6 53.7 72.5 24.2 29.2 - - - - - - - - - -

+ N6−10 w/ RKT (Ours) 79.6 65.2 47.7 31.5 48.0 55.3 53.8 73.7 26.1 32.0 - - - - - - - - - -

+ N11−15 w/ IOD-KD 77.1 67.9 49.8 31.7 44.5 60.1 54.6 70.2 23.7 26.4 30.6 60.6 41.4 63.6 65.4 - - - - -

+ N11−15 w/ RKT 79.4 69.6 51.5 32.9 47.4 55.9 53.6 72.5 21.6 30.4 38.2 62.4 44.1 61.9 67.3 - - - - -

+ N16−20 w/ IOD-KD 75.8 67.4 45.2 34.2 43.9 54.7 52.9 65.3 22.8 27.5 28.2 62 39.8 64.8 60.4 21.0 44.8 28.6 31.3 57.4

+ N16−20 w/ RKT 77.3 69.9 47.8 35 47.3 52.9 49.3 62.5 17.4 31.0 33.6 60.9 44.5 66.4 54.5 22.6 44.1 30.7 39.9 59.2

N1−20 79.4 71.8 67.9 43.2 45.6 75.5 65.1 85.3 41.7 57.9 49.7 82.4 68.4 73.2 74.3 37.1 60.5 48.9 73.1 67.0

Table 7. Per-class Performance of Learning 5+5+5+5 Classes in VOC12 Dataset. Results show per-class average precision while

adding 5 classes at each episode of the incremental learning. Our proposed approach outperforms the baseline on most of the classes.

Method mAP1−2 mAP3 mAP ΩB

N1−2 42.0 - - -

+ N3 w/ IOD-KD [37] 44.7 33.2 40.9 0.97

+ N3 w/ RKT (Ours) 45.2 34.6 41.7 0.99

N1−3 44.1 38.1 42.1 1.00

Table 8. Learning 2+1 Classes in KITTI dataset. Results show

addition of 1 class to base network trained with two classes. Even

in this small dataset, our approach outperforms IOD-KD.

Method mAP1−10 mAP11−20 mAP ΩB

N1−10 65.8 - - -

+ N11−20 w/o Proposal Selection 65.3 54.0 59.7 0.87

+ N11−20 w/o Relation Transfer 66.6 57.1 61.9 0.90

+ N11−20 w/ RKT (Ours) 67.1 59.2 63.1 0.92

N1−20 67.9 68.7 68.3 1.00

Table 9. Ablation Analysis with 10+10 classes on VOC2007

dataset. Results of incrementally adding 10 classes (N11−20 to

base network (N1−10) trained with the first 10 classes under dif-

ferent settings. Our approach works the best while both proposal

selection and relation transfer are working.

to 59.7%. This highlights the importance of selecting the

right object proposals, i.e information for transfer for incre-

mental learning. Similarly, by turning off the relation trans-

fer (i.e., not using relation loss over selected proposals), the

mAP becomes 61.9%. Overall, adding relation transfer loss

over the selected object proposals further improves the re-

sult on both the old and new classes.

5. Conclusion

In this paper, we propose a relation guided knowledge

transfer approach that use proposal relationships for incre-

mental learning of object detectors without accessing old

classes data. Specifically, we first propose a proposal se-

lection mechanism that utilizes ground truth as priors for

selecting what knowledge to transfer and then introduce a

relation guided transfer loss to preserve the relations of se-

lected proposals between the base network and the new net-

work trained on new classes. Extensive experiments show

that our approach outperforms the baselines highlighting

the importance of relationships in object detection. While

we explored incremental learning in the context of images,

we believe that our approach can be extended to videos

where natural relations between objects and actions exist.

We leave this as an interesting direction for future work.
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