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Abstract

Voronoi diagrams are highly compact representations that

are used in various Graphics applications. In this work,

we show how to embed a differentiable version of it – via

a novel deep architecture – into a generative deep network.

By doing so, we achieve a highly compact latent embedding

that is able to provide much more detailed reconstructions,

both in 2D and 3D, for various shapes. In this tech report,

we introduce our representation and present a set of prelim-

inary results comparing it with recently proposed implicit

occupancy networks.

1. Introduction

Choosing a shape representation is a fundamental problem

for any geometric task. Especially, with the advent of deep

methods for geometry, it defines what operations are possi-

ble (e.g. convolution), what choices of architecture can be

used (e.g. graph [19] or point networks [21, 22]), and what

input modality (e.g. point clouds or images) can be used

for training. Naturally, finding a proper differentiable rep-

resentation for geometry has been of much research interest

recently, with much focus on 3D [18, 20, 8, 23, 21, 12].

A wide variety of 3D representations exist in the literature

and are used for a variety of tasks from surface reconstruc-

tion [13, 3, 14], shape completion [9], predicting shape from

images [8], semantic segmentation [21] and many more.

At a high level, geometric representations can be grouped

into two: explicit representations, where the surface of

an object is explicitly represented using for example,

meshes [15], parameterized patches [12, 24] or point clouds

[21, 22]; and implicit methods, where a 3D object is defined

by a scalar function in R
3 (for example by defining the sur-

face as a level set of this function) [18, 8, 23, 11, 20, 4].

With deep networks, a recent trend is to use a neural net-

work to represent the scalar function for a shape [8, 18, 20,

24]. Explicit representations have the benefit that they

Figure 1. We propose a new differentiable implicit representation

of solid object based on Voronoi diagrams. An encoder EK gen-

erate a latent representation, which a decoder DK converts into a

collection of K sites {pk}. Our layer receives these sites in input,

and generate a function that can be evaluated at a point x.

make surface extractions easy – e.g. via Marching Cubes

[17] – while the implicit ones are easy to embed into a deep

network with simple architectures. Recently, hybrid repre-

sentations [10, 7] have been proposed to combine the best

of both.

Of particular relevance to our work is CvxNet [10], which

represent shapes as the intersection of a finite number of

half spaces. This representation is a universal approximator

of convex domains – similar to ours – as well as non-convex

ones via composition. However, they are still implicit when

it comes to modelling overlap. They train to make their

decompositions non-overlapping through an additional loss

term and therefore have no guarantee that it would also be

non-overlapping during inference. While this can be of mi-

nor importance for reasoning tasks such as shape classifica-

tion, it is problematic for others such as physical simulation.

Inspired by [1], we propose a novel representation that

guarantees non-overlapping convexes. In other words, any

network trained with our representation generates non-

overlapping convexes by construction. We encode geo-

metric information in the form of a point set P={pk}, and

generates the collection of convexes as the corresponding

collection of their Voronoi cells C={ck}. This representa-

tion is hybrid: the position of the seeds is explicit, and ex-

tracting the surface only requires to compute their Voronoi
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Figure 2. We encode the leftmost (3) and rightmost (5) digits in latent space and then linearly interpolate the corresponding latent codes.

Diagram – a task for which a number of robust and effi-

cient software libraries exist [5]. Note that differently from

iso-surface extraction, the Voronoi Diagram is unique and

resolution independent – no parameter needs to be selected

to compute it. Interestingly for our purposes, it is possible

to closely approximate the Voronoi Diagram with a differ-

entiable implicit function, which is ideal for training.

2. Method

We follow the trend pioneered by [8] and seek functional

networks – where the output of our network is a function

that can be queried at a desired location x. Given the fixed

vector Λ=(λk ∈ {0, 1})k, we express this function as the

the piecewise constant function over the Voronoi diagram

of the point set P = {pk ∈ R
d}k where the value of the

function at points in the kth cell have value λk:

V(x|Λ,P) = Λ

[

argmin
k

{‖x− pk‖2}
]

(1)

where we assume that Σkλk = |Λ|/2 – in other words, we

fix half of the sites to represent the “inside” (1) of a shape,

and other half to represent the “outside” (0) of a shape.

Given an input I (e.g. image, point cloud, voxel grid) from

a training dataset {In}, an encoder Eω maps I to a la-

tent code z which a decoder Dω maps to the collection of

Voronoi centers: P=Dω(Eω(I)). Figure 1 illustrates this

architecture visually. The parameters of encoder and de-

coder are then trained by minimizing a reconstruction loss:

Lrec(ω) =
∑

n

Ex∈[0,1]D [‖On(x)− V(x|Dω(Eω(In)))‖2]

(2)

where On is the ground truth occupancy function corre-

sponding to In. If we compare our representation to the one

provided by ReLU functional networks [18, 8, 20], we dif-

fer in a fundamental way: our learnable parameters have lo-

calized support, while the transition boundaries of an MLP

generally have a global support.

Regularizers. While the reconstruction loss Lrec lies at the

core of our method, minimizing this loss is ill-posed. In

particular, there exist an infinite space of solutions where

voronoi cell agrees with the occupancy of the ground truth.

To remedy this, we develop a number of regularizers that aid

our training process. Notably, these losses do not typically

produce pareto-optimal variants of the trained network.

Lemma 1. Let |P| > 6 be a set of points such that half

of pk ∈ R
2 are labelled 1, and let On = V(x|Λ,P) be

the occupancy function of the associated Voronoi diagram.

Assume that there are three points labelled 1 so that the

triangle they form is contained in On. Then, there exist an

infinite number of minimizers (P∗,Λ∗) to (2).

Proof. Assume without loss of generality that p1, p2, p3 are

all labelled 1 and the triangle they form is inside On. Then

let q be any point inside this triangle. Label q with 1, and

define (P∗,Λ∗) by adding this labeled point to (P,Λ).
Then V(x|Λ∗,P∗) is a minimizer of (2) for On. In fact

V(x|Λ∗,P∗) = On since the (P∗,Λ∗) produces the same

function as (P,Λ).

Soft-Voronoi. To differentiate through our Voronoi func-

tion, we generalize (1) by replacing the argmin with a soft-

argmin. Given Dk(x)=‖x − pk‖2, we first define a vec-

tor W:

Wk(x|P, β) = e−βDk(x)/Σke
−βDk(x) (3)

where β∈R+ is a temperature parameter and then formulate

the soft version of (1) as:

V(x|Λ,P, β) = Λ ·W(x|P, β) (4)

hence the temperature hyper-parameter β controls the soft-

argmin approximation to argmin. In all experiments in the

paper we set β=10, 000.

Bounds loss. We naturally want to prevent our Voronoi

sites from drifting far away from the data, which can be

enforced in a smooth way via [7]:

Lbound(ω) =
∑

{pk}

∑

d

soft-bound(pk[d]) (5)



Figure 3. Plot of the number of parameters (x-axis) vs. Hausdorff

distance (y-axis) from the ground truth for the overfitted sphere

example using (left) Voronoi and (right) OccNet.

Figure 4. We compare the reconstruction power in terms of neural

capacity of our VoronoiNet (top) vs. the one of traditional multi-

layer perceptrons used in OccNet [18] (bottom) on a simple 3D

sphere – note these are overfitting results on a single example.

where [d] extracts the dth dimension and soft-bound(x) =
max(−x, 0)+max(x−1, 0). We favor this to the use of

output layers with bounded ranges as [7] noting how these

can suffer of vanishing gradients.

Signed distance Loss. As we prescribe the Voronoi (in-

side/outside) classes Λ rather than optimizing them, it is

clear that if the λk=1, then the corresponding pk should be

inside, or in other words O(pk)=1 (and symmetrically for

λk=0). Hence, we can define a loss that induces strong gra-

dients towards the satisfaction of this property. With φ+(x)
let us define the distance function to O, and with φ−(x) the

distance function to its complement space Ō(x)=1−O(x),
and then define:

Lsdf(ω) =
∑

k

λkφ
+(pk) + (1− λk)φ

−(pk) (6)

Note that all correct approximations P,Λ of the ground

truth occupancy lie in the null space of this loss. Thus,

Lsdf simply accelerates training and does not prevent the

network from finding a global minimum to the problem.

Centroidal Voronoi loss. To remedy the ill posedness

(Lemma 1) of the reconstruction loss (2), we add a loss

that pushes each Voronoi point towards the centroid of its

corresponding cell. A Voronoi diagram whose points lie

Figure 5. A qualitative comparisons of the representation power

of different neural decoders as the number of degrees of freedom

is increased.

at the centroid of its cells is known as centroidal. Cen-

troidal Voronoi tesselations have cells with roughly equal

shape and have been used for many years in graphics to gen-

erate high quality tesselations of space [2, 6, 16]. Asking

the Voronoi diagram to be as centroidal as possible prevents

points from clustering and introduces a unique reconstruc-

tion minimum. Given m Voronoi sites P, we augment the

sites with
√
m points on the boundary with 0 (outside), we

compute their Delaunay triangulation, and express its cor-

responding graph Laplacian operator via a sparse matrix L;

a CVD-like loss can then be expressed by:

Lcvd(ω) =
∑

k

‖Lpk‖22 (7)

3. Experiments and Results

Overfitting a Sphere. We start by evaluating the re-

construction power of our network in terms of number of

degrees of freedom used for a simple 3D dataset (Fig-

ure 4). We compare our method to the state of the art Oc-

cNet [18] and DeepSDF [20]. Note that while both Oc-

cNet and DeepSDF guarantee C0 continuity, the number

of neurons necessary to generate reconstructions compara-

ble to Voronoi networks in terms of Hausdorff distance to



Figure 6. A tSNE embedding of our latent code on the MNIST dataset, where the ground truth class has been used to color their identity.

the ground truth is three orders of magnitudes larger than

with our approach. Figure 3 plots the number of parameters

for the function versus Haussdorff distance from the ground

truth for all 3 methods. Figure 4 shows the reconstructions

for each method visually.

MNIST. We evaluate our formulation on the MNIST

dataset by treating the digits as an occupancy function in

the [0, 1]2 domain that needs to be predicted. We compare

our method against OccNet [18]. Both methods use a 4

layer fully connected encoder with 1024 neurons per layer.

The encoder maps an MNIST digit image to a 16 dimen-

sional latent variable. The decoder for our method is a 3

layer fully connected network with 1024 neurons per layer

which maps the latent code to 128 Voronoi cells. The de-

coder for occnet has one hidden layer with a varying number

of neurons. The decoder maps a latent code and point x to

a probability of occupancy.

Embedding space. We start by visualizing the tSNE em-

bedding in Figure 6. Notice that while the method was

trained in a self-supervised fashion, the latent space was

able to organize the various digits by clearly separating the

semantic classes. It is interesting to note how part of the

“8” embedding space is wedged between the “3” and the

“5”, reflecting the geometric similarity between these char-

acters, and the required topological changes to interpolate

between them. To show this, we also visualize a path in

the embedding space by encoding two digits, and then in-

terpolating their latent codes; see Figure 2. Notice how the

topology of the “9” is first converted into the one of a “5”,

then into a “6” and finally smoothly deformed towards the

target configuration.

We conclude our experiments by evaluating (on the test

set) the auto-encoding performance on MNIST. Note in this

comparison we keep the capacity of the encoder portion of

our auto-encoder consistent across the various baselines. In

particular, we compare our Voronoi decoders to popular im-

plicit pipelines that use a multi-layer perceptron as a (con-

ditional) implicit decoder [18, 20, 8]. Figure 5 shows ran-

domly drawn results illustrate how the Voronoi decoder al-

lows for a significantly more compact representation of oc-

Method Mean Std Med

OccNet 128 83.803001 28.211296 85.692169

OccNet 512 76.165771 28.211296 75.422150

OccNet 16k 52.658348 14.332524 53.036644

Voronoi 128 57.996124 17.018425 58.294270

Table 1. Autoencoder statistics for different methods with different

degrees of freedom. Note how Voronoi with 128 cells is compara-

ble to OccNet with with 4 orders of magnitude more parameters.

cupancy than occnet. Table 1 compares statistics of voronoi

reconstructions versus occnet on the test set with varying

number of degrees of freedom.

4. Conclusion and Future Work

We introduced a new differentiable layer for solid geometry

representation leveraging the Voronoi diagram. Similarly

to [18, 20, 8], we expect our solution to scale to the model-

ing of 3D objects with minor modifications. The challenge

will be the identification of a random sampling tailored to

evaluate the expectation of Lrec. While CvxNet [10] in-

troduced the idea of hybrid representation learning, where

training is performed in the implicit domain, and inference

in the explicit domain (i.e. generates meshes), our network

can infer discrete geometry as the crust separating the in-

side/outside Voronoi cells, removing the need for the iso-

surfacing post-processing (e.g. marching cubes [17]).

Our work is early in its stage. As future work, we plan to

apply our method to higher dimensional data, to produce

meshing of volume and not only surfaces, to analyze the

benefit it brings in physical simulations.
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