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Abstract

Detection and continuous monitoring of heart rate can

help us identify clinical relevance of some cardiac symptoms.

Over the last decade, a lot of attention has been paid to the

development of the algorigthms for remote photoplethysmog-

raphy (rPPG). As a result, we can now accurately monitor

heart rate of still sitting subjects using data extracted from

video feed. Aside from methods based on hand-crafted fea-

tures, there have also been developed the more advanced

learning-based rPPG algorithms. Deep learning methods

usually require large amounts of data for training, however,

biomedical data often suffers from lack of real-life data. To

address these issues, we have developed a HeartTrack con-

volutional neural network for remote video-based heart rate

tracking. This learning-based method has been trained on

synthetic data to accurately estimate heart rate in differ-

ent conditions. Moreover, here we provide two new rPPG

datasets - MoLi-ppg-1 and MoLi-ppg-2 - that were recorded

in complicated conditions that were close to the natural ones.

The datasets include videos that feature moving and talking

subjects, different types of lighting, various equipment, etc.

We have used our new MoLi-ppg-1 and MoLi-ppg-2 datasets

for algorithm training and testing, and the existing UBFC-

RPPG dataset for the algorithm testing and comparison

with other approaches. Our HeartTrack neural network

shows state-of-the-art results on the UBFC-RPPG database

(MAE=2.412, RMSE=3.368, R=0.983).

1. Introduction

Heart rate is an important physiological signal that re-

flects the physical state of a person. This parameter is mon-

itored in the vast majority of healthcare applications. A

normal heart rate is usually estimated as 50 to 100 beats

per minute [1]. Photoplethysmography (PPG) is a common

way of measuring heart activities which is widely used in

medicine, sports, and healthcare applications. PPG is an

optical method used to measure the light reflected from the

skin or variations in transmission intensity. Commonly used

photoplethysmography devices contact with a subject’s skin

which may cause discomfort and be inconvenient in some

cases [2]. Remote video photoplethysmography (rPPG) re-

quires only ambient light and a digital camera to capture a

person’s vital signs. This technique measures heart activ-

ity without any physical contact. In recent years, there has

been emerging a growing number of studies dedicated to

remote pulse rate estimation based on data extracted from

face videos [3, 4, 5, 6, 7, 8, 9, 10, 1]. This technology has

many potential applications such as remote patient monitor-

ing, neonatal intensive care unit monitoring, driver status

assessment, affective state assessment, vivo detection, and

etc [3].

Most rPPG algorithms are based on handcrafted features.

These approaches often include complex multi-stage meth-

ods that are difficult to adjust and implement. Most of the

methods require face tracking and registration, skin segmen-

tation, color space transformation, signal decomposition and

filtering steps. Other problems of these algorithms are a

decreased signal-to-noise ratio for the dark skin [11, 12]

and the age changes of skin. Skin of an elderly person is

typically thinner, paler, and has wrinkles. Also, number of

melanocytes (pigment-containing cells) is decreased, which

in turn changes optical features of skin [13]. Aside from

methods based on handcrafted features, there are also other

learning-based methods designed specifically for remote

heart rate estimation. The latter can potentially solve the

problems associated with the former ones. Deep learning
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has been successfully used in many tasks related to com-

puter vision, especially when large amount of labelled data

is available.

We present a novel convolutional neural network (CNN)

that learns to detect pulse signal from videos. The proposed

method is based on CNN and is capable to learn on new

data; moreover, it can be potentially used in a wide range

of conditions. The performance of the proposed method

can be improved by the increasing of the training set size,

in comparison with previous methods. Thus, the proposed

method can be used for pulse rate estimation from video

signal in any natural conditions and for a person of any age,

gender, and skin features.

Our paper has the following novelty: 1. We provide new

approach (HeartTrack) that uses synthetic data to pretrain the

1D convolutional part of the CNN, and attention mechanism

for the rPPG analysis. 2. HeartTrack shows state-of-the-

art results on the UBFC-RPPG database (MAE = 2.412,

RMSE = 3.368, R = 0.983). 3. We provide new MoLi-

ppg-1 and MoLi-ppg-2 rPPG datasets that: 1) are open for

research community, 2) contain complicated close to natural

conditions (movements, speech, different lighting, various

equipment, etc). 4. We provide baseline solution for MoLi-

ppg-1 and MoLi-ppg-2 databases received with described

Heart-Track network.

2. Related works

2.1. Remote photoplethysmography methods based
on hand­crafted features

A number of denoising methods have been proposed to

conduct remote photoplethysmography. One of the main

source of noise is movements and changes in lighting. Tradi-

tional denoising methods are based on handcrafted features

and contain two types of approaches - adaptive region of in-

terest (ROI) selection that aim to obtain the noiseless patch,

and color signal processing that aim to separate vital signs

from noise. The signal processing methods include typi-

cal blind source separation approaches: Independent Com-

ponent Analysis (ICA) and Principal Component Analysis

(PCA). ICA decomposes an RGB signal into components

based on the assumption that the input signals corresponding

to different sources are statistically independent [14], while

PCA maximizes the variance of original points’ projection

onto components, whereby the source signals are assumed

to be uncorrelated [15]. Another group of approaches in-

corporates a set of model-based methods that rely upon the

knowledge of different components’ color vectors in the

demixing procedure. The group of these methods contains

the chrominance model (CHROM), blood volume pulse sig-

nature (PBV) model, and a plane orthogonal to the skin

(POS) model [3].

Several approaches include different modifications of ROI

selection [4, 5, 6, 7]. For example, Kumar et al. [4] presented

a method that combined skin-color change signals from a

number of patches of the face by using a weighted average

with weights depending on blood perfusion and incident

light intensity in the patches. Tulyakov et al. [5] proposed

a self-adaptive matrix completion approach which dynam-

ically selected the most relevant face ROI for robust pulse

estimation. The main drawback of this algorithm is a large

number of hyperparameters that need to be tuned. Liu et

al. [6] used self-adaptive signal separation to distinguish the

noiseless block of facial region with a weight-based scheme.

This noiseless signal containing vital information was used

to obtain the holistic pulse signal, based on which the aver-

age pulse was computed by the means of wavelet transform

and data filter. The proposed method was shown to outper-

form the methods of Kumar et al. and Tulyakov et al. in

real-life conditions [6]. Finally, Yang et al. [7] suggested

a novel method similar to the one described above, which

presents a patch-based fusion framework for accurate pulse

estimation in moving subjects.

Thus, we have described two main groups of traditional

denoising algorithms that do not require training. Another

category of rPPG methods are based on deep-learning mod-

els.

2.2. Learning­based rPPG methods

More recently, a few such methods have been proposed

for pulse estimation. These methods include SynRhythm [8],

HR-CNN [9], DeepPhys [10], and 3D CNN for remote pulse

rate measurement [16]. DeepPhys by Chen and McDuff was

the first end-to-end system for video-based measurement of

pulse using a deep convolutional network [10]. Radim et al.

[9] proposed the HR-CNN, which remotely predicts pulse

with a two-step convolutional neural network (CNN) using

the aligned face images. Another problem is the formation

of a training sample due to the lack of real-life data. Of-

ten the amount of biomedical data has many “gaps” in the

distribution since we cannot, for various reasons, get all of

the possible signal options. It is believed that a large scale

of training data is needed in order to train a robust neural

network and improve its accuracy [17]. For this purpose

Niu et al. designed a strategy to train a deep heart rate esti-

mator from a large volume of synthetic PPG signals and a

limited number of available face video data. The results of

this experiment performed using the public databases show

the effectiveness of this approach [8].

Recently Bousefsaf et al. [16] have also proposed a 3D

CNN, and a particular training procedure that employs only

synthetic data. Authors used a public dataset UBFC-RPPG

[18] to demonstrate that this network can effectively extract

pulse rate from video without the need for any processing of

frames.



3. Our method

3.1. Heart rate estimation pipeline

First, our method detects faces using a RetinaNet network

[19] with MobileNet backbone [20] trained with focal loss

[19]. The detected regions of interest (ROI) associated with

faces are processed independently. We assume that there

is only one person in the video in order to simplify the

following description. Affine face alignment based on facial

landmarks detection [21] is performed for each face. We

use ROI average pooling to resize facial areas to the size of

W ×H for the heart rate estimation network, where W =
H = 36. Bandpath filter for [45bpm, 180bpm] frequencies

is applied for each (pixel, channel) pair independently in

order to filter out signals not related to pulse cycles.

The neural network for heart rate estimation named Heart-

Track (see Figure 1 (a)) is described below. It can be trained

to evaluate the median heart rate in 8 seconds (T = 200
frames) interval in end-to-end manner. A common way to

obtain a photoplethysmography signal using the given ROI

is a combination of global spatial average pooling and sig-

nal source separation methods. While global pooling is an

efficient way of getting rid of noise if a face moves or ROI

is covered by a foreign object (such as hair or hands), it can

refract the signal; such refraction may be difficult to filter out

during the next steps. Therefore we use 3D spatio-temporal

attention neural network (see Figure 1 (b)) prior to the global

pooling. We shall call this network 3D CNN. This network

enables us to do three things simultaneously: to choose the

ROI that fits best for pulse detection in each frame, to se-

lect the optimal nonlinear function of color channels, and to

complete signal filtering using temporal information.

The 3D CNN ends with a global spatial pooling layer. Its

output has a shape of batch size× T × C, where C = 32
is the channels number of the last convolutional layer of the

3D CNN. This way, we have received C time series for a

video fragment; each of them having the length of T that

can be used as rPPG signals. If the denoising process goes

successfully, these time series are supposed to be close to

periodical with a period equal to the heart rate of a subject

featuring in the video. To identify the main frequency in

these time series, we use 1D convolutional neural networks

with shared weights. As a result, we are going to get C

estimations of a subject’s heart rate. We use a feed-forward

neural network with one hidden layer with 30 neurons for

averaging the outputs of the 1D networks.

We use our MoLi-ppg-1 dataset (30 subjects, 8 hours of

data) for model training and validate it on our MoLi-ppg-

2 dataset (15 subjects, 3,5 hours of data), and vise versa.

Subjects and settings were different in these two datasets

to avoid model overfitting. Detaied description of our new

datasets can be found in Section 4.1. Additionally, we tested

these two models on public UBFC-RPPG dataset [18].

3.2. 3D spatio­temporal attention neural network

3D CNN (see Figure 1 (b)) has 3 inputs: diff, mask and

frames.

• diff input is a time-domain discrete derivative of the

video in ROI. Its size is batch size×200×36×36×3.

We use diff as the main source of pulse information in

our network.

• mask is a tensor of size batch size× T ×W ×H × 1.

We first define a facial mask where the value of each

pixel is equal to 0 if the corresponding pixel in the ROI

belongs to eyes or mouth or does not belong to the

facial area; otherwise, its value is considered equal to 1.

In order to evaluate mask tensor, we apply ROI mean

pooling to the facial mask. Facial landmarks detection

is used for face, mouth and eyes areas localization.

mask tensor is used in hard attention mechanism to

prevent the network from using irrelevant background

information from the video.

• frames tensor of size batch size× 200× 36× 36× 3
consists of video frames content located in the ROI area.

It is used in the soft attention mechanism. For example,

it can help the model to filter out the areas of the face

covered by hair, areas with face paint, or moving face

parts.

Diff input goes through two 3D convolutional blocks with

subsequent average pooling layers. The first block has 16

channels kernel size = 3× 3× 3 , and ends with an average

pooling layer with kernel size and stride = 1 × 2 × 2;, the

second one has 32 channels kernel size = 5× 3× 3 and ends

with a global average pooling layer.

Each convolutional block (“3D Conv Block” at figure 1

(b)) with kernel size t×w×h and c channels has sequential

structure and consists of the following layers:

· 3D Convolution, c channels, kernel size = 1× w × h

· ReLU activation

· 3D Convolution, c channels, kernel size = t× 1× 1
· Batch Normalization

· ReLU activation

· 3D Convolution, c channels, kernel size = 1× w × h

· ReLU activation

· 3D Convolution, c channels, kernel size = t× 1× 1
· Batch Normalization

· ReLU activation

· Dropout layer (p = 0.25)

We tried using 3D convolutions with kernel size t×w×h,

but a model with convolutions (1 × w × h) + (t × 1 × 1)
performed slightly better in our experiments.

We use mask data in two ways. Firstly, it is concatenated

to diff tensor in channels axis. Secondly, after each convolu-

tional block, all elements of the internal representation of diff
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Figure 1: HeartTrack network architecture.

channel are multiplied by zero, if any of the corresponding

mask values is not equal to 1. This way we are getting rid of

possible influence of the background on pulse estimation. In

order to choose parts of a face most suitable for pulse track-

ing at each particular moment, we use attention mechanism

(see Figure 1 (c, d)).

To identify the relevant parts of the face, we use original

RGB frames of the video since it is commonly acknowledged

that they are suitable for detecting face parts and foreign

objects. In the end of Attention blocks, we divide attention

weights by their mean value over W,H dimensions. This

way, the choice of the most relevant fragments does not

change the order of values in the network

3.3. Time Series analysis network

In order to obtain the heart rate value from time series

extracted from one of the 3D CNN channels, we use 1-

dimensional convolutional neural network (1D CNN) with

the following sequential architecture:

· Instance Normalization

· 1D Conv, 16 channels, kernel size = 3

· ReLU activation

· 1D Conv, 16 channels, kernel size = 3
· Batch Normalization

· ReLU activation

· Max Pooling, kernel size = 2, stride = 2
· 1D Conv, 32 channels, kernel size = 3, dilation = 2
· Batch Normalization

· ReLU activation

· Max Pooling, kernelsize = 2, stride = 2
· 1D Conv, 64 channels, kernel size = 3, dilation = 2
· Batch Normalization

· ReLU activation

· Max Pooling, kernel size = 2, stride = 2
· 1D Conv, 128 channels, kernel size = 3, dilation = 2
· Batch Normalization

· ReLU activation

· Global Max Pooling

· Fully Connected Layer, 30 neurons

· tanh activation

· Fully Connected Layer, 30 neurons

· tanh activation

· Fully Connected Layer, 1 neuron



3.4. Synthetic data usage

Speed-up and slow-down video augmentation [22] allows

us to synthesize video fragments and corresponding heart

rate values for frequencies that are poorly represented in

the training data. We also use horizontal flip augmentation

during training.

Unlike most computer vision tasks, frequency analysis of

temporal signal is critical for the rPPG analysis, while each

frame itself does not contain information about the target

variable. To address this issue, we have designed a network

with a separate 1D CNN part.

We use synthetic data to pre-train the 1D CNN part of

the network. Synthetic data does not include video, it is

only PPG curves. We sample PPG curves with the following

formula:

s(t) = A sin

(

2π

∫ t

0

hr(τ)dτ + φhr

)

+

A2 sin

(

4π

∫ t

0

hr(τ)dτ + φhr

)

+

B sin

(

2π

∫ t

0

br(τ)dτ + φbr

)

+ Cn(t),

where hr(τ) is an instantaneous heart rate value, br(τ) is

an instantaneous breath rate value, φhr is an initial phase of

the heart cycle, φbr is an initial phase of the breath cycle,

A is a magnitude of the pulse signal, A2 is a dicrotic pulse

magnitude, B is a breath signal magnitude, n(τ) is a white

noise sample, and C is the standard deviation of the noise.

hr(τ) can be sampled from a uniform distribution hr0 ±

δhrhr0, where hr0 is a reference heart rate on the segment,

and δhr refers heart rate variability (we use, δhr = 0.05). In

the same way we introduce breath rate variability parameter

δbr = 0.1. Amplitudes of the signals are sampled from

uniform distributions A ∼ [0.2, 0.7], A2 ∼ [0, 0.3], B ∼

[0.3, 2]. We use C = 0.05.

A sampled curve example is shown at Figure 2.

3.5. Training procedure

First, we perform Xavier initialization [23] with magni-

tude = 2.34 of all HeartTrack model weights.

After that, we pre-train the 1D CNN network for the

task of heart rate value estimation by PPG curve. For this

purpose, we synthesise 106 PPG curves (i.e. 2222 hours)

as described in section 3.4 with reference pulse rate uni-

formly distributed in [45bpm,180bpm] interval. We use

Adam [24] to optimize MSE loss with respect to the 1D

CNN model weights. We train the model for 100 epochs

with batch size = 32, learning rate = 3× 10−5.

And finally, only after all the above procedures we

train HeartTrack network end-to-end on video sequences,

using Adam optimizer with learning rate exponentially

Figure 2: Examples of synthetic photoplethysmography sig-

nal with heart rate = 51 bpm.

decreasing from 10−4 to 10−5 during 200 epochs with

batch size = 16.

We have implemented our heart rate estimation pipeline

using MXNet framework (https://mxnet.apache.

org). HeartTrack network was trained on 1 NVIDIA

GeForce GTX 1080Ti GPU. Our HeartTrack implementation

can be used for free via API 1.

We believe that our architecture and the way we train

the network is specific for the rPPG analysis and heart rate

recognition, even though 3D CNN and attention networks

are widely used in computer vision.

4. Experiments

4.1. Datasets

We used three datasets for training and testing: two our

new databases and the existing database. The first dataset is

a Motion and Light photoplethysmography (MoLi-ppg-1)

dataset, the second dataset is a MoLi-ppg-2, and the third

one is UBFC-RPPG.

Our two new MoLi-ppg-1 and MoLi-ppg-2 rPPG datasets

contain complicated and close to natural conditions (move-

ments, speech, different lighting, various equipment, etc).

Since at this point the field of rPPG studies is affected by the

lack of training data, we believe that these new high-quality

datasets themselves will become a valuable contribution to

this field.

The first dataset contains 8 hours of video recordings

of 30 subjects. The videos were recorded with the fol-

lowing webcams: Logitech C920, Logitech C270, and an

HD video camera Canon LEGRIA HFG40. The second

1https://api.neurodatalab.dev/



dataset was recorded with different cameras and different

subjects. It contains 3,5 hours of video recordings of 15

new subjects. The videos were recorded with a webcam

Canyon 720p, and an HD video camera Panasonic. The

ground-truth data collected by contact PPG (cPPG) for both

datasets was obtained with an optical pulse sensor Shim-

mer3 GSR+ (www.shimmersensing.com) attached to

the subject’s finger (sampling rate = 256 Hz), and the data

was synced with the video recording. The videos from the

webcams were in uncompressed bitmap format with either

800x600 or 1280x720 pixel resolution, and 25 fps. The

videos from HD cameras were in uncompressed bitmap for-

mat with 1920x1080 pixel resolution and 50 fps. A total of

35 subjects aged 18-35 - both males and females - took part

in the experiments. Subjects were lit by fluorescent ceiling

lamps and sat in front of the cameras at a distance of about 1

m.

Figure 3: Snapshots of the MoLi-ppg dataset videos. a -

frame from video with ”cartoon” settings (HD camera), b

- frame from video with ”light” settings (HD camera), c -

frame from video with large head movements (HD camera),

d - frame from video with large head movements (Logitech

C920). Informed consent for publication was obtained from

the subjects..

Three different conditions were used in the first dataset

(MoLi-ppg-1):

1. Static. The subjects were recorded in varying lighting

settings (90-300 lux) while they were sitting naturally

in front of the webcam. Among the various illumina-

tion conditions there were a) only fluorescent ceiling

lamps, b) fluorescent ceiling lamps with an additional

spotlight, and c) fluorescent ceiling lamps with a turned

on monitor with video.

2. Movements. Three cases of head motion in standard

conditions included large and small movements as well

as speech. In the first two cases the subjects were

instructed to perform various types of head movements:

left-right, up-down and round. The amplitude of these

movements (measured from the straight head position)

had to be no more than 45 degrees in the task with small

head movements and 80 degrees in the one with large

head movements. As for the speech subcategory, the

participants were asked to sit facing the cameras and

read a text out loud without any head movements.

3. Recovery after physical stress. To obtain more broad

distribution of pulse, each subject was asked to perform

20-30 squats and was recorded immediately after that.

The second dataset (MoLi-ppg-2) also included three

categories:

1. Static. The subjects were recorded in varying lighting

settings (20-300 lux): a) daylight without lamps, b)

fluorescent ceiling lamps with an additional spotlight,

c) fluorescent ceiling lamps with a turned on monitor

with video.

2. Speech. This category includes small natural head mo-

tion during speech.

3. Recovery after physical stress. Each subject was

asked to perform 20-30 squats and was recorded imme-

diately after that, just like in the first dataset.

The public dataset UBFC-RPPG [18] is used to verify

the performance of our HeartTrack network. The UBFC-

RPPG is specifically designed for the remote pulse rate mea-

surement task. It contains 42 videos from 42 different sub-

jects. The videos were recorded by a Logitech C920HD Pro

camera with a resolution of 640x480 in an uncompressed

8-bit RGB format.The participant was asked to play a time-

sensitive mathematical game to keep their heart rate varied.

The video records natural movements of subjects, including

different motions.

4.2. Evaluation Metrics

To evaluate the performance of our CNN HeartTrack on

three databases we used the following metrics:

• Mean Absolute Error (MAE) in beats per minute

(bpm) is calculated as the mean between the pulse ob-

tained from rPPG signals and the pulse obtained from

cPPG signals with
∑

v∈videos

∑Tv
k=1

|rPPGv,k−cPPGv,k|
∑

v∈videos Tv
,

where Tv is the number of frames in the video v.

• Root mean square error (RMSE) =
√

∑

v∈videos

∑Tv
k=1

(rPPGv,k−cPPGv,k)
2

∑

v∈videos Tv
.

• Pearson correlation coefficient (r) =
∑

[

(rPPGv,k−
∑

rPPGv,k

Tv
)(cPPGv,k−

∑

cPPGv,k

Tv
)
]

√

∑

(

rPPGv,k−
∑

rPPGv,k

Tv

)2
∑

(

cPPGv,k−
∑

cPPGv,k

Tv

)2
,

where the sums are taken over all videos v and all the

frame ids k ≤ Tv, in the same way as for MAE and

RMSE.



(a) HeartTrack CNN trained on MoLi-ppg-2 and pre-

dicted on MoLi-ppg-1 database.

(b) HeartTrack CNN trained on MoLi-ppg-1 and pre-

dicted on MoLi-ppg-2 database.

(c) HeartTrack CNN trained on MoLi-ppg-1 and MoLi-

ppg-2 and predicted on UBFC-RPPG database.

Figure 4: A scatter plot of ground truth and predicted values.

5. Results and Discussion

We trained our CNN HeartTrack on MoLi-ppg-1 and

tested on MoLi-ppg-2, and vise versa. CNN trained on MoLi-

ppg-1 showed better quality on the MoLi-ppg-2 dataset

(MAE 4.9 bpm, RMSE 7.9 bpm, r 0.8), than trained on MoLi-

ppg-2 and tested on MoLi-ppg-1 (MAE 6.4 bpm, RMSE 10.6

bpm, r 0.6), Table 1, Figure 4 a, b. Most likely, this is due to

the fact that the first database is much larger than the second.

In general, both MoLi-ppg databases are challenging since

contain various and difficult conditions. MoLi-ppg-1 and

MoLi-ppg-2 datasets were collected in September 2019, so

these results are baselines for these databases.

Table 1: Result metrics of HeartTrack network on MoLi-ppg-

1 and MoLi-ppg-2 datasets (Mean Absolute Error (MAE),

Root mean square error (RMSE)).

Train set Test set MAE, bpm RMSE, bpm

MoLi-ppg-1 MoLi-ppg-2 4.901 7.864

MoLi-ppg-2 MoLi-ppg-1 6.446 10.648

Then we trained CNN HeartTrack on the combination

of the MoLi-ppg-1 and MoLi-ppg-2, and tested it on the

UBFC-RPPG dataset. We compare our results with existing

state-of-the-art methods on this database, that we extracted

from the literature. Our approach shows better results than

existing ones in most metrics (MAE 2.4 bpm, RMSE 3.4

bpm, r 0.98), Table 2, Figure 4 c.

Table 2: Result metrics of different rPPG methods on the

UBFC-RPPG dataset (Mean Absolute Error (MAE), Root

mean square error (RMSE) and Pearson’s correlation coeffi-

cient (r)).

Method MAE, bpm RMSE, bpm r

ICA [25] 3.507 8.635 0.908

CHROM [25] 3.435 4.614 0.968

POS [25] 2.436 6.608 0.936

CK [25] 2.292 3.803 0.981

3D CNN [16] 5.450 8.640

HeartTrack (Ours) 2.412 3.368 0.983

5.1. HeartTrack internal representations explo­
ration

Even though deep learning models are usually considered

to be “black boxes”, sometimes exploring internal represen-

tations can help to understand, how these models work. We

built HeartTrack network under the assumption that its 3D

CNN part will learn to clean out the information not related

to heart rate from RGB channels. However, we have not

optimized 3D CNN weights for this denoising task directly.

On Figure 5 we visualize the internal representation (embed-

ding) after 3d CNN filtering. This representation has shape

T × C and we have visualized it as C time series of length

T each. One can notice that some of these time series reflect

periodical nature of the physiological signal, as we expected.

Thus, they are much more beneficial for final heart rate es-

timation task in comparison with the raw RGB signal (see



Figure 6). Therefore, our 3D CNN architecture is well suited

for filtering photoplethysmography signals. However, some

channels seem to be useless for heart rate estimation and will

likely be ignored in consequent fully-connected layers.

Figure 5: Internal representation of a UBFC video fragment

after 3D CNN filtering. Each of the 32 channels is shown as a

plot. Constant values were added to each plot for illustrative

purposes.

Figure 6: Raw RGB color channels, averaged over facial

mask area for a UBFC video fragment.

The effectiveness of 3D CNN as a denoising approach

can be explained by the attention mechanism. It allows the

model to choose most relevant facial areas using spatial and

temporal information. These areas will probably have high

signal to noise ratio. These areas will be individual for each

person. We visualize attention weights for two subjects from

UBFC dataset (Figure 7). As we can see, different areas of

the face may be important for different subjects.

However, our method has some limitations. One of them

is the distance between the camera and the person as we

verified our method only at a distance of 1-1.5 meters. An-

other limitation of HeartTrack CNN is the need for adequate

(a) Subject 1. (b) Subject 2.

Figure 7: Visualisation of the attention mechanism on one

frame for each of the two subjects.

lighting. The lighting level plays an important role in correct

pulse detection [26, 27] which suggests that this condition is

challenging for remote PPG methods. We intend to investi-

gate this issue in more detail, in particular to test our model

in more complex conditions such as different distance be-

tween the camera and the subject, various color temperature,

quantity, quality, and position of light sources. Furthermore,

in addition to external conditions, in the future it is necessary

to study the quality of HeartTrack CNN’s work on people of

different races and ages.

6. Conclusion

In this paper, we describe the HeartTrack neural network

for remote heart rate monitoring. The new method was

designed to combine the advantages of data synthesis for

training with convolutional neural network with attention

mechanisms. Our method was tested on three datasets: the

public UBFC-RPPG dataset and two introduced datasets,

MoLi-ppg-1 and MoLi-ppg-2. Our HeartTrack neural net-

work has shown state-of-the-art results on the UBFC-RPPG

database (MAE=2.412 bpm, RMSE=3.368 bpm, R=0.983).

The analysis of the results obtained has confirmed that the

approach that includes CNN and data synthesis is a promis-

ing method for heart rate tracking using real-life data. Fur-

thermore, here we provide a baseline solution for our new

datasets that was obtained using the described HeartTrack

network. We provide open access to these databases for

the research community. In the future, we plan to improve

our method using super-resolution neural network and by

increasing videos’ fps with intermediate frame synthesis as

preprocessing steps for heart rate variability estimation.
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