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Abstract

Detection and continuous monitoring of heart rate can
help us identify clinical relevance of some cardiac symptoms.
Over the last decade, a lot of attention has been paid to the
development of the algorigthms for remote photoplethysmog-
raphy (rPPG). As a result, we can now accurately monitor
heart rate of still sitting subjects using data extracted from
video feed. Aside from methods based on hand-crafted fea-
tures, there have also been developed the more advanced
learning-based rPPG algorithms. Deep learning methods
usually require large amounts of data for training, however,
biomedical data often suffers from lack of real-life data. To
address these issues, we have developed a HeartTrack con-
volutional neural network for remote video-based heart rate
tracking. This learning-based method has been trained on
synthetic data to accurately estimate heart rate in differ-
ent conditions. Moreover, here we provide two new rPPG
datasets - MoLi-ppg-1 and MoLi-ppg-2 - that were recorded
in complicated conditions that were close to the natural ones.
The datasets include videos that feature moving and talking
subjects, different types of lighting, various equipment, etc.
We have used our new MoLi-ppg-1 and MoLi-ppg-2 datasets
for algorithm training and testing, and the existing UBFC-
RPPG dataset for the algorithm testing and comparison
with other approaches. Our HeartTrack neural network
shows state-of-the-art results on the UBFC-RPPG database
(MAE=2.412, RMSE=3.368, R=0.983).

1. Introduction

Heart rate is an important physiological signal that re-
flects the physical state of a person. This parameter is mon-
itored in the vast majority of healthcare applications. A

normal heart rate is usually estimated as 50 to 100 beats
per minute [!]. Photoplethysmography (PPG) is a common
way of measuring heart activities which is widely used in
medicine, sports, and healthcare applications. PPG is an
optical method used to measure the light reflected from the
skin or variations in transmission intensity. Commonly used
photoplethysmography devices contact with a subject’s skin
which may cause discomfort and be inconvenient in some
cases [2]. Remote video photoplethysmography (rPPG) re-
quires only ambient light and a digital camera to capture a
person’s vital signs. This technique measures heart activ-
ity without any physical contact. In recent years, there has
been emerging a growing number of studies dedicated to
remote pulse rate estimation based on data extracted from
face videos [3, 4, 5, 6, 7, 8, 9, 10, 1]. This technology has
many potential applications such as remote patient monitor-
ing, neonatal intensive care unit monitoring, driver status
assessment, affective state assessment, vivo detection, and
etc [3].

Most rPPG algorithms are based on handcrafted features.
These approaches often include complex multi-stage meth-
ods that are difficult to adjust and implement. Most of the
methods require face tracking and registration, skin segmen-
tation, color space transformation, signal decomposition and
filtering steps. Other problems of these algorithms are a
decreased signal-to-noise ratio for the dark skin [11, 12]
and the age changes of skin. Skin of an elderly person is
typically thinner, paler, and has wrinkles. Also, number of
melanocytes (pigment-containing cells) is decreased, which
in turn changes optical features of skin [13]. Aside from
methods based on handcrafted features, there are also other
learning-based methods designed specifically for remote
heart rate estimation. The latter can potentially solve the
problems associated with the former ones. Deep learning



has been successfully used in many tasks related to com-
puter vision, especially when large amount of labelled data
is available.

We present a novel convolutional neural network (CNN)
that learns to detect pulse signal from videos. The proposed
method is based on CNN and is capable to learn on new
data; moreover, it can be potentially used in a wide range
of conditions. The performance of the proposed method
can be improved by the increasing of the training set size,
in comparison with previous methods. Thus, the proposed
method can be used for pulse rate estimation from video
signal in any natural conditions and for a person of any age,
gender, and skin features.

Our paper has the following novelty: 1. We provide new
approach (HeartTrack) that uses synthetic data to pretrain the
1D convolutional part of the CNN, and attention mechanism
for the rPPG analysis. 2. HeartTrack shows state-of-the-
art results on the UBFC-RPPG database (MAE = 2.412,
RMSE = 3.368, R = 0.983). 3. We provide new MoLi-
ppg-1 and MoLi-ppg-2 rPPG datasets that: 1) are open for
research community, 2) contain complicated close to natural
conditions (movements, speech, different lighting, various
equipment, etc). 4. We provide baseline solution for MoLi-
ppg-1 and MoLi-ppg-2 databases received with described
Heart-Track network.

2. Related works

2.1. Remote photoplethysmography methods based
on hand-crafted features

A number of denoising methods have been proposed to
conduct remote photoplethysmography. One of the main
source of noise is movements and changes in lighting. Tradi-
tional denoising methods are based on handcrafted features
and contain two types of approaches - adaptive region of in-
terest (ROI) selection that aim to obtain the noiseless patch,
and color signal processing that aim to separate vital signs
from noise. The signal processing methods include typi-
cal blind source separation approaches: Independent Com-
ponent Analysis (ICA) and Principal Component Analysis
(PCA). ICA decomposes an RGB signal into components
based on the assumption that the input signals corresponding
to different sources are statistically independent [14], while
PCA maximizes the variance of original points’ projection
onto components, whereby the source signals are assumed
to be uncorrelated [15]. Another group of approaches in-
corporates a set of model-based methods that rely upon the
knowledge of different components’ color vectors in the
demixing procedure. The group of these methods contains
the chrominance model (CHROM), blood volume pulse sig-
nature (PBV) model, and a plane orthogonal to the skin
(POS) model [3].

Several approaches include different modifications of ROI

selection [4, 5, 6, 7]. For example, Kumar et al. [4] presented
a method that combined skin-color change signals from a
number of patches of the face by using a weighted average
with weights depending on blood perfusion and incident
light intensity in the patches. Tulyakov et al. [5] proposed
a self-adaptive matrix completion approach which dynam-
ically selected the most relevant face ROI for robust pulse
estimation. The main drawback of this algorithm is a large
number of hyperparameters that need to be tuned. Liu et
al. [6] used self-adaptive signal separation to distinguish the
noiseless block of facial region with a weight-based scheme.
This noiseless signal containing vital information was used
to obtain the holistic pulse signal, based on which the aver-
age pulse was computed by the means of wavelet transform
and data filter. The proposed method was shown to outper-
form the methods of Kumar et al. and Tulyakov et al. in
real-life conditions [6]. Finally, Yang et al. [7] suggested
a novel method similar to the one described above, which
presents a patch-based fusion framework for accurate pulse
estimation in moving subjects.

Thus, we have described two main groups of traditional
denoising algorithms that do not require training. Another
category of rPPG methods are based on deep-learning mod-
els.

2.2. Learning-based rPPG methods

More recently, a few such methods have been proposed
for pulse estimation. These methods include SynRhythm [&],
HR-CNN [9], DeepPhys [10], and 3D CNN for remote pulse
rate measurement [ | 6]. DeepPhys by Chen and McDuff was
the first end-to-end system for video-based measurement of
pulse using a deep convolutional network [10]. Radim et al.
[9] proposed the HR-CNN, which remotely predicts pulse
with a two-step convolutional neural network (CNN) using
the aligned face images. Another problem is the formation
of a training sample due to the lack of real-life data. Of-
ten the amount of biomedical data has many “gaps” in the
distribution since we cannot, for various reasons, get all of
the possible signal options. It is believed that a large scale
of training data is needed in order to train a robust neural
network and improve its accuracy [17]. For this purpose
Niu et al. designed a strategy to train a deep heart rate esti-
mator from a large volume of synthetic PPG signals and a
limited number of available face video data. The results of
this experiment performed using the public databases show
the effectiveness of this approach [8].

Recently Bousefsaf et al. [16] have also proposed a 3D
CNN, and a particular training procedure that employs only
synthetic data. Authors used a public dataset UBFC-RPPG
[18] to demonstrate that this network can effectively extract
pulse rate from video without the need for any processing of
frames.



3. Our method
3.1. Heart rate estimation pipeline

First, our method detects faces using a RetinaNet network
[19] with MobileNet backbone [20] trained with focal loss
[19]. The detected regions of interest (ROI) associated with
faces are processed independently. We assume that there
is only one person in the video in order to simplify the
following description. Affine face alignment based on facial
landmarks detection [21] is performed for each face. We
use ROI average pooling to resize facial areas to the size of
W x H for the heart rate estimation network, where W =
H = 36. Bandpath filter for [45bpm, 180bpm] frequencies
is applied for each (pixel, channel) pair independently in
order to filter out signals not related to pulse cycles.

The neural network for heart rate estimation named Heart-
Track (see Figure 1 (a)) is described below. It can be trained
to evaluate the median heart rate in 8 seconds (7" = 200
frames) interval in end-to-end manner. A common way to
obtain a photoplethysmography signal using the given ROI
is a combination of global spatial average pooling and sig-
nal source separation methods. While global pooling is an
efficient way of getting rid of noise if a face moves or ROI
is covered by a foreign object (such as hair or hands), it can
refract the signal; such refraction may be difficult to filter out
during the next steps. Therefore we use 3D spatio-temporal
attention neural network (see Figure 1 (b)) prior to the global
pooling. We shall call this network 3D CNN. This network
enables us to do three things simultaneously: to choose the
ROI that fits best for pulse detection in each frame, to se-
lect the optimal nonlinear function of color channels, and to
complete signal filtering using temporal information.

The 3D CNN ends with a global spatial pooling layer. Its
output has a shape of batch_size x T' x C, where C' = 32
is the channels number of the last convolutional layer of the
3D CNN. This way, we have received C' time series for a
video fragment; each of them having the length of 7' that
can be used as rPPG signals. If the denoising process goes
successfully, these time series are supposed to be close to
periodical with a period equal to the heart rate of a subject
featuring in the video. To identify the main frequency in
these time series, we use 1D convolutional neural networks
with shared weights. As a result, we are going to get C
estimations of a subject’s heart rate. We use a feed-forward
neural network with one hidden layer with 30 neurons for
averaging the outputs of the 1D networks.

We use our MoLi-ppg-1 dataset (30 subjects, 8 hours of
data) for model training and validate it on our MoLi-ppg-
2 dataset (15 subjects, 3,5 hours of data), and vise versa.
Subjects and settings were different in these two datasets
to avoid model overfitting. Detaied description of our new
datasets can be found in Section 4.1. Additionally, we tested
these two models on public UBFC-RPPG dataset [18].

3.2. 3D spatio-temporal attention neural network

3D CNN (see Figure 1 (b)) has 3 inputs: diff, mask and
frames.

e diff input is a time-domain discrete derivative of the
video in ROL. Its size is batch_size x 200 x 36 x 36 x 3.
We use diff as the main source of pulse information in
our network.

e mask is a tensor of size batch_size x T'x W x H x 1.
We first define a facial mask where the value of each
pixel is equal to O if the corresponding pixel in the ROI
belongs to eyes or mouth or does not belong to the
facial area; otherwise, its value is considered equal to 1.
In order to evaluate mask tensor, we apply ROI mean
pooling to the facial mask. Facial landmarks detection
is used for face, mouth and eyes areas localization.
mask tensor is used in hard attention mechanism to
prevent the network from using irrelevant background
information from the video.

e frames tensor of size batch_size x 200 x 36 x 36 x 3
consists of video frames content located in the ROI area.
It is used in the soft attention mechanism. For example,
it can help the model to filter out the areas of the face
covered by hair, areas with face paint, or moving face
parts.

Diff input goes through two 3D convolutional blocks with
subsequent average pooling layers. The first block has 16
channels kernel size = 3 x 3 X 3, and ends with an average
pooling layer with kernel size and stride = 1 x 2 x 2;, the
second one has 32 channels kernel size = 5 X 3 x 3 and ends
with a global average pooling layer.

Each convolutional block (“3D Conv Block™ at figure 1
(b)) with kernel size ¢ X w x h and ¢ channels has sequential
structure and consists of the following layers:

- 3D Convolution, ¢ channels, kernel_size =1 x w X h
- ReLU activation

- 3D Convolution, ¢ channels, kernel_size =t x 1 x 1

- Batch Normalization

- ReLU activation

- 3D Convolution, ¢ channels, kernel_size =1 x w X h
- ReLU activation

- 3D Convolution, ¢ channels, kernel_size =t x 1 x 1

- Batch Normalization

- ReLU activation

- Dropout layer (p = 0.25)

We tried using 3D convolutions with kernel size ¢ X w X h,
but a model with convolutions (1 x w x h) + (t x 1 x 1)
performed slightly better in our experiments.

We use mask data in two ways. Firstly, it is concatenated
to diff tensor in channels axis. Secondly, after each convolu-
tional block, all elements of the internal representation of diff
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Figure 1: HeartTrack network architecture.

channel are multiplied by zero, if any of the corresponding
mask values is not equal to 1. This way we are getting rid of
possible influence of the background on pulse estimation. In
order to choose parts of a face most suitable for pulse track-
ing at each particular moment, we use attention mechanism
(see Figure 1 (c, d)).

To identify the relevant parts of the face, we use original
RGB frames of the video since it is commonly acknowledged
that they are suitable for detecting face parts and foreign
objects. In the end of Attention blocks, we divide attention
weights by their mean value over W, H dimensions. This
way, the choice of the most relevant fragments does not
change the order of values in the network

- ReLU activation

- 1D Conv, 16 channels, kernel size = 3

- Batch Normalization

- ReLU activation

- Max Pooling, kernel size = 2, stride = 2

- 1D Conv, 32 channels, kernel size = 3, dilation = 2
- Batch Normalization

- ReLU activation

- Max Pooling, kernelsize = 2, stride = 2

- 1D Conv, 64 channels, kernel size = 3, dilation = 2
- Batch Normalization

- ReLU activation

- Max Pooling, kernel size = 2, stride = 2

- 1D Conv, 128 channels, kernel size = 3, dilation = 2

3.3. Time Series analysis network

- Batch Normalization

- ReLU activation

In order to obtain the heart rate value from time series
extracted from one of the 3D CNN channels, we use 1-
dimensional convolutional neural network (1D CNN) with
the following sequential architecture:

- Global Max Pooling

- Fully Connected Layer, 30 neurons
- tanh activation

- Fully Connected Layer, 30 neurons

- tanh activation

- Instance Normalization
- 1D Conv, 16 channels, kernel size = 3

- Fully Connected Layer, 1 neuron



3.4. Synthetic data usage

Speed-up and slow-down video augmentation [22] allows
us to synthesize video fragments and corresponding heart
rate values for frequencies that are poorly represented in
the training data. We also use horizontal flip augmentation
during training.

Unlike most computer vision tasks, frequency analysis of
temporal signal is critical for the rPPG analysis, while each
frame itself does not contain information about the target
variable. To address this issue, we have designed a network
with a separate 1D CNN part.

We use synthetic data to pre-train the 1D CNN part of
the network. Synthetic data does not include video, it is
only PPG curves. We sample PPG curves with the following
formula:

s(t) = Asin (27r /Ot hr(r)dr + %) +

t
Ay sin (47/ hr(T)dr + gth) +
0

Bsin (271' /t br(7)dr + ¢bT> + Cn(t),
0

where hr(7) is an instantaneous heart rate value, br(7) is
an instantaneous breath rate value, ¢y, is an initial phase of
the heart cycle, ¢, is an initial phase of the breath cycle,
A is a magnitude of the pulse signal, A, is a dicrotic pulse
magnitude, B is a breath signal magnitude, n(7) is a white
noise sample, and C'is the standard deviation of the noise.

hr(7) can be sampled from a uniform distribution hrg &
Onr-hrg, where hrg is a reference heart rate on the segment,
and 0y, refers heart rate variability (we use, dp,- = 0.05). In
the same way we introduce breath rate variability parameter
dpr = 0.1. Amplitudes of the signals are sampled from
uniform distributions A ~ [0.2,0.7], Ay ~ [0,0.3], B ~
[0.3,2]. We use C' = 0.05.

A sampled curve example is shown at Figure 2.

3.5. Training procedure

First, we perform Xavier initialization [23] with magni-
tude = 2.34 of all HeartTrack model weights.

After that, we pre-train the 1D CNN network for the
task of heart rate value estimation by PPG curve. For this
purpose, we synthesise 106 PPG curves (i.e. 2222 hours)
as described in section 3.4 with reference pulse rate uni-
formly distributed in [45bpm,180bpm] interval. We use
Adam [24] to optimize MSE loss with respect to the 1D
CNN model weights. We train the model for 100 epochs
with batch_size = 32, learning_rate = 3 x 1072,

And finally, only after all the above procedures we
train HeartTrack network end-to-end on video sequences,
using Adam optimizer with learning_rate exponentially
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Figure 2: Examples of synthetic photoplethysmography sig-
nal with heart rate = 51 bpm.

decreasing from 10~ to 10~° during 200 epochs with
batch_size = 16.

We have implemented our heart rate estimation pipeline
using MXNet framework (https://mxnet.apache.
orqg). HeartTrack network was trained on 1 NVIDIA
GeForce GTX 1080Ti GPU. Our HeartTrack implementation
can be used for free via API !

We believe that our architecture and the way we train
the network is specific for the rPPG analysis and heart rate
recognition, even though 3D CNN and attention networks
are widely used in computer vision.

4. Experiments
4.1. Datasets

We used three datasets for training and testing: two our
new databases and the existing database. The first dataset is
a Motion and Light photoplethysmography (MoLi-ppg-1)
dataset, the second dataset is a MoLi-ppg-2, and the third
one is UBFC-RPPG.

Our two new MoLi-ppg-1 and MoLi-ppg-2 rPPG datasets
contain complicated and close to natural conditions (move-
ments, speech, different lighting, various equipment, etc).
Since at this point the field of rPPG studies is affected by the
lack of training data, we believe that these new high-quality
datasets themselves will become a valuable contribution to
this field.

The first dataset contains 8 hours of video recordings
of 30 subjects. The videos were recorded with the fol-
lowing webcams: Logitech C920, Logitech C270, and an
HD video camera Canon LEGRIA HFG40. The second

lhttps://api.neurodatalab.dev/



dataset was recorded with different cameras and different
subjects. It contains 3,5 hours of video recordings of 15
new subjects. The videos were recorded with a webcam
Canyon 720p, and an HD video camera Panasonic. The
ground-truth data collected by contact PPG (cPPG) for both
datasets was obtained with an optical pulse sensor Shim-
mer3 GSR+ (www . shimmersensing.com) attached to
the subject’s finger (sampling rate = 256 Hz), and the data
was synced with the video recording. The videos from the
webcams were in uncompressed bitmap format with either
800x600 or 1280x720 pixel resolution, and 25 fps. The
videos from HD cameras were in uncompressed bitmap for-
mat with 1920x1080 pixel resolution and 50 fps. A total of
35 subjects aged 18-35 - both males and females - took part
in the experiments. Subjects were lit by fluorescent ceiling
lamps and sat in front of the cameras at a distance of about 1

LR

180 lux

i

Figure 3: Snapshots of the MoLi-ppg dataset videos. a -
frame from video with “cartoon” settings (HD camera), b
- frame from video with “light” settings (HD camera), c -
frame from video with large head movements (HD camera),
d - frame from video with large head movements (Logitech
C920). Informed consent for publication was obtained from
the subjects..

Three different conditions were used in the first dataset
(MoLi-ppg-1):

1. Static. The subjects were recorded in varying lighting
settings (90-300 lux) while they were sitting naturally
in front of the webcam. Among the various illumina-
tion conditions there were a) only fluorescent ceiling
lamps, b) fluorescent ceiling lamps with an additional
spotlight, and c) fluorescent ceiling lamps with a turned
on monitor with video.

2. Movements. Three cases of head motion in standard
conditions included large and small movements as well
as speech. In the first two cases the subjects were
instructed to perform various types of head movements:
left-right, up-down and round. The amplitude of these
movements (measured from the straight head position)

had to be no more than 45 degrees in the task with small
head movements and 80 degrees in the one with large
head movements. As for the speech subcategory, the
participants were asked to sit facing the cameras and
read a text out loud without any head movements.

3. Recovery after physical stress. To obtain more broad
distribution of pulse, each subject was asked to perform
20-30 squats and was recorded immediately after that.

The second dataset (MoLi-ppg-2) also included three
categories:

1. Static. The subjects were recorded in varying lighting
settings (20-300 lux): a) daylight without lamps, b)
fluorescent ceiling lamps with an additional spotlight,
¢) fluorescent ceiling lamps with a turned on monitor
with video.

2. Speech. This category includes small natural head mo-
tion during speech.

3. Recovery after physical stress. Each subject was
asked to perform 20-30 squats and was recorded imme-
diately after that, just like in the first dataset.

The public dataset UBFC-RPPG [18] is used to verify
the performance of our HeartTrack network. The UBFC-
RPPG is specifically designed for the remote pulse rate mea-
surement task. It contains 42 videos from 42 different sub-
jects. The videos were recorded by a Logitech C920HD Pro
camera with a resolution of 640x480 in an uncompressed
8-bit RGB format. The participant was asked to play a time-
sensitive mathematical game to keep their heart rate varied.
The video records natural movements of subjects, including
different motions.

4.2. Evaluation Metrics

To evaluate the performance of our CNN HeartTrack on
three databases we used the following metrics:

e Mean Absolute Error (MAE) in beats per minute
(bpm) is calculated as the mean between the pulse ob-
tained from rPPG signals and the pulse obtained from

T,
: : i v, |[rPPG, r—cPPG,,
cPPG signals with Lveviten 2okt | - 2 . kl,
v Evideos ~ YV
where T, is the number of frames in the video v.

e Root mean square error (RMSE) =
Zv€vidsos Zz‘iﬂTPPGv-,k*CPPGv,kF
ZUEVidEOS TU '

e Pearson correlation coefficient (r) =

"PPG cPPG .
Z[(TPPGv,k_ZT To vk )(CPPGv,k_Z To 2ok )}
rPPGy 2 PPG, \2
VE(PPas BT 5 (PG B

where the sums are taken over all videos v and all the
frame ids & < T, in the same way as for MAE and
RMSE.
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(a) HeartTrack CNN trained on MoLi-ppg-2 and pre-
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(c) HeartTrack CNN trained on MoLi-ppg-1 and MoLi-
ppg-2 and predicted on UBFC-RPPG database.

Figure 4: A scatter plot of ground truth and predicted values.

5. Results and Discussion

We trained our CNN HeartTrack on MoLi-ppg-1 and
tested on MoLi-ppg-2, and vise versa. CNN trained on MoLi-
ppg-1 showed better quality on the MoLi-ppg-2 dataset
(MAE 4.9 bpm, RMSE 7.9 bpm, r 0.8), than trained on MoLi-

ppg-2 and tested on MoLi-ppg-1 (MAE 6.4 bpm, RMSE 10.6
bpm, r 0.6), Table 1, Figure 4 a, b. Most likely, this is due to
the fact that the first database is much larger than the second.
In general, both MoLi-ppg databases are challenging since
contain various and difficult conditions. MoLi-ppg-1 and
MoLi-ppg-2 datasets were collected in September 2019, so
these results are baselines for these databases.

Table 1: Result metrics of HeartTrack network on MoLi-ppg-
1 and MoLi-ppg-2 datasets (Mean Absolute Error (MAE),
Root mean square error (RMSE)).

Train set Test set MAE, bpm | RMSE, bpm
MoLi-ppg-1 | MoLi-ppg-2 4.901 7.864
MoLi-ppg-2 | MoLi-ppg-1 6.446 10.648

Then we trained CNN HeartTrack on the combination
of the MoLi-ppg-1 and MoLi-ppg-2, and tested it on the
UBFC-RPPG dataset. We compare our results with existing
state-of-the-art methods on this database, that we extracted
from the literature. Our approach shows better results than
existing ones in most metrics (MAE 2.4 bpm, RMSE 3.4
bpm, r 0.98), Table 2, Figure 4 c.

Table 2: Result metrics of different rPPG methods on the
UBFC-RPPG dataset (Mean Absolute Error (MAE), Root
mean square error (RMSE) and Pearson’s correlation coeffi-
cient (r)).

Method MAE, bpm | RMSE, bpm r
ICA [25] 3.507 8.635 0.908
CHROM [25] 3.435 4.614 0.968
POS [25] 2.436 6.608 0.936
CK [25] 2.292 3.803 0.981
3D CNN [16] 5.450 8.640
HeartTrack (Ours) 2.412 3.368 0.983

5.1. HeartTrack internal representations explo-
ration

Even though deep learning models are usually considered
to be “black boxes”, sometimes exploring internal represen-
tations can help to understand, how these models work. We
built HeartTrack network under the assumption that its 3D
CNN part will learn to clean out the information not related
to heart rate from RGB channels. However, we have not
optimized 3D CNN weights for this denoising task directly.
On Figure 5 we visualize the internal representation (embed-
ding) after 3d CNN filtering. This representation has shape
T x C and we have visualized it as C' time series of length
T each. One can notice that some of these time series reflect
periodical nature of the physiological signal, as we expected.
Thus, they are much more beneficial for final heart rate es-
timation task in comparison with the raw RGB signal (see



Figure 6). Therefore, our 3D CNN architecture is well suited
for filtering photoplethysmography signals. However, some
channels seem to be useless for heart rate estimation and will
likely be ignored in consequent fully-connected layers.
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Figure 5: Internal representation of a UBFC video fragment
after 3D CNN filtering. Each of the 32 channels is shown as a
plot. Constant values were added to each plot for illustrative
purposes.
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Figure 6: Raw RGB color channels, averaged over facial
mask area for a UBFC video fragment.

The effectiveness of 3D CNN as a denoising approach
can be explained by the attention mechanism. It allows the
model to choose most relevant facial areas using spatial and
temporal information. These areas will probably have high
signal to noise ratio. These areas will be individual for each
person. We visualize attention weights for two subjects from
UBFC dataset (Figure 7). As we can see, different areas of
the face may be important for different subjects.

However, our method has some limitations. One of them
is the distance between the camera and the person as we
verified our method only at a distance of 1-1.5 meters. An-
other limitation of HeartTrack CNN is the need for adequate

3D CNN output
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(a) Subject 1.
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(b) Subject 2.

Figure 7: Visualisation of the attention mechanism on one
frame for each of the two subjects.

lighting. The lighting level plays an important role in correct
pulse detection [26, 27] which suggests that this condition is
challenging for remote PPG methods. We intend to investi-
gate this issue in more detail, in particular to test our model
in more complex conditions such as different distance be-
tween the camera and the subject, various color temperature,
quantity, quality, and position of light sources. Furthermore,
in addition to external conditions, in the future it is necessary
to study the quality of HeartTrack CNN’s work on people of
different races and ages.

6. Conclusion

In this paper, we describe the HeartTrack neural network
for remote heart rate monitoring. The new method was
designed to combine the advantages of data synthesis for
training with convolutional neural network with attention
mechanisms. Our method was tested on three datasets: the
public UBFC-RPPG dataset and two introduced datasets,
MoLi-ppg-1 and MoLi-ppg-2. Our HeartTrack neural net-
work has shown state-of-the-art results on the UBFC-RPPG
database (MAE=2.412 bpm, RMSE=3.368 bpm, R=0.983).
The analysis of the results obtained has confirmed that the
approach that includes CNN and data synthesis is a promis-
ing method for heart rate tracking using real-life data. Fur-
thermore, here we provide a baseline solution for our new
datasets that was obtained using the described HeartTrack
network. We provide open access to these databases for
the research community. In the future, we plan to improve
our method using super-resolution neural network and by
increasing videos’ fps with intermediate frame synthesis as
preprocessing steps for heart rate variability estimation.
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