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Abstract

Current deep learning based autonomous driving ap-

proaches yield impressive results also leading to in-

production deployment in certain controlled scenarios. One

of the most popular and fascinating approaches relies on

learning vehicle controls directly from data perceived by

sensors. This end-to-end learning paradigm can be applied

both in classical supervised settings and using reinforce-

ment learning. Nonetheless the main drawback of this ap-

proach as also in other learning problems is the lack of ex-

plainability. Indeed, a deep network will act as a black-box

outputting predictions depending on previously seen driving

patterns without giving any feedback on why such decisions

were taken.

While to obtain optimal performance it is not critical to

obtain explainable outputs from a learned agent, especially

in such a safety critical field, it is of paramount importance

to understand how the network behaves. This is particularly

relevant to interpret failures of such systems.

In this work we propose to train an imitation learning

based agent equipped with an attention model. The atten-

tion model allows us to understand what part of the image

has been deemed most important. Interestingly, the use of

attention also leads to superior performance in a standard

benchmark using the CARLA driving simulator.

1. Introduction

Teaching an autonomous vehicle to drive poses a hard

challenge. Whereas the problem is inherently difficult,

there are several issues that have to be addressed by a fully

fledged autonomous system. First of all, the vehicle must

be able to observe and understand the surrounding scene.

If data acquisition can rely on a vast array of sensors [17],

the understanding process must involve sophisticated ma-

chine learning algorithms [10, 20, 5, 33, 39]. Once the ve-

hicle is able to perceive the environment, it must learn to

navigate under strict constraints dictated by street regula-

tions and, most importantly, safety for itself an others. To

learn such a skill, autonomous vehicles can be instructed

to imitate driving behaviors by observing human experts

[41, 27, 18, 13, 44]. Simulators are often used to develop

and test such models, since machine learning algorithms

can be trained without posing a hazard for others [15]. In

addition to learning to transform visual stimuli into driv-

ing commands, a vehicle also needs to estimate what other

agents are or will be doing [35, 4, 30, 32].

Even when it is able to drive correctly, under unusual

conditions an autonomous vehicle may still commit mis-

takes and cause accidents. When this happens, it is of

primary importance to assess what caused such a behav-

ior and intervene to correct it. Therefore, explainability in

autonomous driving assumes a central role, which is often

not addressed as it should. Common approaches in fact, al-

though being effective in driving tasks, do not offer the pos-

sibility to inspect what generates decisions and predictions.

In this work we propose a conditional imitation learning ap-

proach that learns a driving policy from raw RGB frames

and exploits a visual attention module to focus on salient

image regions. This allows us to obtain a visual explana-

tion of what is leading to certain predictions, thus making

the model interpretable. Our model is trained end-to-end to

estimate steering angles to be given as input to the vehicle

in order to reach a given goal. Goals are given as high-level

commands such as drive straight or turn at the next intersec-

tion. Since each command reflects in different driving pat-

terns, we propose a multi-headed architecture where each

branch learns to perform a specialized attention, looking at

what is relevant for the goal at hand. The main contributions

of the paper are the following:

• We propose an architecture with visual attention for

driving an autonomous vehicle in a simulated environ-

ment. To the best of our knowledge we are the first

to explicitly learn attention in an autonomous driving

setting, allowing predictions to be visually explained.

• We show that the usage of visual attention, other than

providing an explainable model, also helps to drive

better, obtaining state of the art results on the CARLA

driving benchmark [15].

The work is described as follows: In Section 2 the related



works are described to frame our method in the current state

of the art; in Section 3 the method is shown using a top-

down approach, starting from the whole architecture and

then examining all the building blocks of our model. In

Section 4 results are analyzed and a comparison with the

state of the art is provided. Finally, in Section 7 conclusions

are drawn.

2. Related Works

Our approach can be framed in the imitation learning

line of investigation of autonomous driving. Our model im-

proves the existing imitation learning framework with an

attention layer. Attention in imitation learning is not exten-

sively used, therefore in the following we review previous

work in imitation learning and end-to-end driving and at-

tention models.

2.1. Imitation Learning & end­to­end driving

One of the key approaches for learning to execute com-

plex tasks in robotics is to observe demonstrations, perform-

ing so called imitation learning [2, 22]. Bojarski et al. [6]

and Codevilla et al. [13] were the first to propose a success-

ful use of imitation learning for autonomous driving.

Bojarski et al [6] predict steering commands for lane fol-

lowing and obstacle avoiding tasks. Differently, the solution

proposed by Codevilla et al. [13] performs conditional imi-

tation learning, meaning that the network emits predictions

conditioned on high level commands. A similar branched

network is proposed by Wang et al. [40]. Liang et al. [27]

instead use reinforcement learning to perform conditional

imitation learning.

Sauer et al. [36], instead of directly linking perceptual

information to controls, use a low-dimensional intermedi-

ate representation, called affordance, to improve general-

ization. A similar hybrid approach, proposed by Chen et

al. [9], maps input images to a small number of perception

indicators relating to affordance environment states.

Several sensors are often available and simulators [13]

provide direct access to depth and semantic segmentation.

Such information is leveraged by several approaches [41,

26, 42]. Recently Xiao et al. [41] improved over [13, 26]

adding depth information to RGB images obtaining better

performances. Li et al. [26] exploit depth and semantic seg-

mentation at training time performing multi-task learning

while in [41] depth is considered as an input to the model.

Xu et al. [42] show that it is possible to learn from a crowd

sourced video dataset using multiple frames with an LSTM.

They also demonstrate that predicting semantic segmenta-

tion as a side task improves the results. Multi-task learn-

ing proves effective also in [43] for end-to-end steering and

throttle prediction. Temporal modelling is also used by [16]

and [18] also using Long Short-Term Memory Networks.

Zhang and Cho [44] extend policy learning allowing a

system to gracefully fallback into a safe policy avoiding to

fall into dangerous states.

2.2. Attention models

Attention has been used in classification, recognition and

localization tasks, as in [8, 23, 37]. The authors of [7] pro-

pose an attention model for object detection and counting on

drones, while [28] uses attention for small object detection.

Other examples of attention models used for image classifi-

cation are [38, 29, 12, 45]. Often, attention-based networks

are used for video summarization [21, 31] or Image Cap-

tioning task, as in the work of Anderson et al. [1] or Cornia

et al. [14]. There are some uses of attention based mod-

els in autonomous driving [24, 11]. Attention has been used

to improve interpretability in autonomous driving by Jinkyu

and Canny [24]. Salient regions extracted from a saliency

model are used to condition the network output by weighing

network feature maps with such attention weights. Chen et

al. [11] adopt a brain inspired cognitive model. Both are

multi-stage approaches in which attention is not computed

in an end-to-end learning framework.

Our approach differs from existing ones since we learn

attention directly during training in an end-to-end fashion

instead of using an external source of saliency to weigh in-

termediate network features. We use proposal regions that

our model associates with a probability distribution to high-

light salient regions of the image. This probability distri-

bution indicates how well the corresponding regions predict

steering controls.

3. Method

To address the autonomous driving problem in an urban

environment, we adopt an Imitation Learning strategy to

learn a driving policy from raw RGB frames.

3.1. Imitation learning

Imitation learning is the process by which an agent at-

tempts to learn a policy π by observing a set of demonstra-

tions D, provided by an expert E [3]. Each demonstration

is characterized by an input-output couple D = (zi, ai),
where zi is the i-th state observation and ai the action per-

formed in that instant. The agent does not have direct access

to the state of the environment, but only to its representa-

tion. In the simplest scenario, an imitation learning process,

is a direct mapping from state observations to output ac-

tions. In this case the policy to be learned is obtained by the

mapping [2]:

π : Z → A (1)

where Z represents the set of observations and A the set

of possible actions. In an autonomous driving context, the



Figure 1: Imitation learning

expert E is a driver and the policy is “safe driving”. Ob-

servations are RGB frames describing the scene captured

by a vision system and actions are driving controls such as

throttle and steering angle. Therefore, the imitation learn-

ing process can be addressed through convolutional neu-

ral networks (CNN). Demonstrations are a set of (frame,

driving-controls) pairs, acquired during pre-recorded driv-

ing sessions performed by expert drivers. The high level

architecture of this approach is shown in Figure 1.

3.2. Approach

Our Imitation Learning strategy consists in learning a

driving policy that maps observed frame to the steering

angle needed by the vehicle to comply with a given high

level command. We equip our model with a visual attention

mechanisms to make the model interpretable and to be able

to explain the estimated maneuvers.

The model, which is end-to-end trainable, first extracts

features maps from RGB images with a fully convolutional

neural network backbone. A regular grid of regions, ob-

tained by sliding boxes of different scales and aspect ratios

over the image, selects Regions of Interest (RoI) from the

image. Using a RoI Pooling strategy, we then extract a de-

scriptor for each region from the feature maps generated by

the convolutional block. An attention layer assigns weights

to each RoI-pooled feature vector. These are then combined

together with a weighted sum to build a descriptor that is

fed as input to the last block of the model, which includes

dense layers of decreasing size and that emits steering angle

predictions.

The system is composed of a shared convolutional back-

bone, followed by a multi-head visual attention block and

a final regressor block. The proposed multi-head architec-

ture is shown in Figure 2. The different types of high-level

commands that can be given as input to the model include:

• Follow Lane: follow the road

• Go straight: choose to go straight to an intersection

• Turn Left: choose to turn left to an intersection

• Turn right: choose to turn right to an intersection

# Output dim Channels Kernel size Stride

1 298× 130× 24 24 5 2

2 147× 63× 36 36 5 2

3 72× 30× 48 48 5 2

4 70× 28× 64 64 3 1

5 68× 26× 64 64 3 1

Table 1: Convolutional backbone architecture. The size of

the input images is 600× 264.

In the following, we present in detail each module that is

employed in the model.

3.3. Shared Convolutional Backbone

The first part of the model takes care of extracting fea-

tures from input images. Since our goal is to make the

model interpretable, in the sense that we want to understand

which pixels contribute more to a decision, we want feature

maps to preserve spatial information. This is made possi-

ble using a fully convolutional structure. In particular, this

sub-architecture is composed of 5 convolutional layers: the

first three layers have respectively 24, 36 and 48 kernels of

size 5× 5 and stride 2 and are followed by two other layers

both with 64 3 × 3 filters with stride 1. All convolutional

layers use a Rectified Linear Unit (Relu) as activation func-

tion. Details of the convolutional backbone are summarized

in Table 1. The convolutional block is followed by a RoI

pooling layer which maps regions of interest onto the fea-

ture maps.

3.4. Region Proposals

The shared convolutional backbone, after extracting fea-

tures from input images, finally conveys into a RoI pooling

layer [19]. For each Region of Interest, which can exhibit

different sizes and aspect ratios, the RoI pooling layer ex-

tracts a fixed-size descriptor ri by dividing the region into

a number of cells on which a pooling function is applied.

Here we adopt the max-pooling operator over 4× 4 cells.

RoI generation is a fundamental step in our pipeline

since extracting good RoIs allows the attention mechanism,

explained in Section 3.5, to correctly select salient regions

of the image. To extract RoIs from an image of size H×W
we use a multi-scale regular grid. The grid is obtained by

sliding multiple boxes on the input image with a chosen step

size. For this purpose we used four sliding windows with

different strides as explained in Figure 3:

• BIG
H : a horizontal box of size H/2 × W that cov-

ers the whole width of the image, ranging from top to

bottom with a 60px vertical stride.

• BIG
V : a vertical box of size H × W/2 with horizon-

tal stride equal to W/2, therefore yielding two regions

dividing the image into a left and right side.



Figure 2: Architecture. A convolutional backbone generates a feature map from the input image. A fixed grid of Regions

Of Interest is pooled with ROI pooling and weighed by an attention layer. Separate attention layers are trained for each high

level command in order to focus on different regions and output the appropriate steering angle.

• MEDIUM: a box of size H/2×W/2 covering a quarter

of the image. The sliding window is applied on the

upper and lower half of the image with an horizontal

stride of 60px.

• SMALL: a square box of size H/2×W/4, applied with

stride 30px in both directions over the image.

We identify each window type as BIG, MEDIUM and

SMALL to address their scale and we use the H and V su-

perscripts to respectively refer to the horizontal and vertical

aspect ratios.

The four box types are thought to take into account dif-

ferent aspects of the scene. The first scale (BIG
H and BIG

V )

is coarse and follows the structural elements in the scene

(e.g. vertical for traffic signs or buildings and horizontal for

forthcoming intersections). The remaining scales instead

focus on smaller elements such as vehicles or distant turns.

In total we obtain a grid of 48 regions: 2 BIG
V , 6 BIG

H ,

8 MEDIUM and 32 SMALL. Note that despite having a fixed

grid may look as a limitation, this is necessary to ensure that

the model understands the spatial location of each observed

region. Furthermore it allows to take into account all re-

gions at the same time to generate the final attention, which

is more effective than generating independent attentions for

each region. This aspect is further discussed in Section 5.

3.5. Visual Attention

Visual attention allows the system to focus on salient re-

gions of the image. In an autonomous driving context, ex-

plicitly modeling saliency can help the network to take de-

cisions considering relevant objects or environmental cues,

such as other vehicles or intersections. For this purpose,

Figure 3: Four sliding windows are used to generate a multi-

scale grid of RoIs. Colors indicate the box type: BIG
V (red),

BIG
H (green), MEDIUM (yellow) SMALL (blue).

the attention layer must be able to weigh image regions by

estimating a probability distribution over the calculated set

of RoI-pooled features. We learn to estimate visual atten-

tion directly from the data, training the model end-to-end

to predict the steering angle of the ego-vehicle in a driving

simulator. Therefore the attention layer is trained to assign

weights to image regions by relying on the relevance of each

input in the driving task. In order to condition attention on

high level driving commands, we adopt a different head for

each command. Each head is equipped with an attention

block structured as follows.

At first, region features ri obtained by RoI-pooling are

flattened and concatenated together in a single vector r.

This is then fed to a fully connected layer that outputs a

logit for each region. Each logit is then normalized with

a softmax activation to be converted into a RoI weight

α = α1, ..., αR, where R is the number of regions:

α = Softmax(r ·Wa + ba) (2)



Figure 4: Attention Block. A weight vector α is generated

by a linear layer with softmax activation. The final descrip-

tor is obtained as a weighted sum of RoI-pooled features.

Here Wa and ba are the weights and biases of the linear

attention layer, respectively. The softmax function helps the

model to focus only on a small subset of regions, since it

boosts the importance of the regions with the highest logits

and dampens the contribution of all others. The final atten-

tion feature ra is obtained as a weighted sum of the region

features ri:

ra =

R∑

i=1

ri · αi (3)

The architecture of the attention block adopted in each

head of the model is shown in Figure 4.

3.6. Multi­head architecture

The model is requested to output a steering angle based

on the observed environment and a high level command.

High level commands encode different behaviors, such as

moving straight or taking a turn, which therefore entail dif-

ferent driving patterns. To keep our architecture as flexi-

ble and extendable as possible, we use a different predic-

tion head for each command, meaning that additional heads

could be easily plugged in to address additional high level

commands. Moreover, multi-head architectures have been

shown to outperform single-headed models [13, 36]. Each

command has its own specialized attention layer, followed

by a dense block to output predictions. This has also the

benefit of increasing explainability, since we can gener-

ate different attention maps conditioned on different com-

mands.

The weighted attention feature ra, produced by the at-

tention layer, is given as input to a block of dense layers

of decreasing size, i.e. 512, 128, 50, 10, respectively. Fi-

nally, a last dense layer predicts the steering angle required

to comply with the given high level command.

The high level command is provided to the model along

with the input image and acts as a selector to determine

which head to use. Therefore, at training time, the error

is backpropagated only through the head specified by the

current command and then through the shared feature ex-

traction backbone, up to the input in an end-to-end fashion.

3.7. Training details

As input for the model we use 600×264 images captured

by a camera positioned in front of the vehicle. Through-

out training and testing we provide a constant throttle to the

vehicle, with an average speed of 10Km/h as suggested

in the CARLA driving benchmark [15]. For each image,

a steering angle s represents the action performed by the

driver. Therefore the loss function is calculated using Mean

Squared Error (MSE) between the predicted value and the

ground truth steer (4):

L = ‖sGT − sp‖
2 (4)

Where sGT and sp represent respectively ground truth

and predicted steer values. The model is trained using the

Adam optimizer [25] for 20 epochs with batch size of 64

and initial learning rate of 0,0001.

3.8. Dataset

For training and evaluating our model, we use data from

the CARLA simulator [15]. CARLA is an open source ur-

ban driving simulator, that can be used to test and evaluate

autonomous driving agents. The simulator provides two re-

alistically reconstructed towns with different day time and

weather conditions.

The authors of the simulator, also released a dataset for

training and testing [13]. The dataset uses the first town

to collect training images and measurements and the sec-

ond town for evaluation only. The training set is composed

by data captured in four different weather conditions for

about 14 hours of driving. For each image in the dataset,

a vector of measurements is provided which includes val-

ues for steering, accelerator, brake, high level command

and additional information that can be useful for training

an autonomous driving system such as collisions with other

agents.

To establish the capabilities of autonomous agents,

CARLA also provides a driving benchmark, in which

agents are supposed to drive from a starting anchor point

on the map to an ending point, under different environmen-

tal conditions. The benchmark is goal oriented and is com-

posed of several episodes divided in four main task:

1. Straight: drive in a straight road.

2. One turn: drive performing at least one turn.

3. Navigation: driving in an urban scenario performing

several turns.



4. Navigation Dynamic: same scenario as Navigation, in-

cluding pedestrians and other vehicles.

For each task, 25 episodes are proposed in several different

weather conditions (seen and unseen during training). Two

towns are used in the benchmark: Town1, i.e. the same town

used for training the network, and Town2, which is used

only at test time. In total the benchmark consists of 1200

episodes, 600 for each town.

4. Results

In our experiments, we train our model with the training

data from [13] and evaluate the performance using the driv-

ing benchmark of CARLA [15]. In order to compare our

model with the state of the art, we considered several related

works that use the CARLA banchmark [15] as a testing pro-

tocol. In Table 3 we use the acronyms MP, IL, RL to refer

to the CARLA [15] agents, respectively: Modular Pipeline

agent, Imitation Learning agent and Reinforcement Learn-

ing agent. Note that IL was first detailed in [13] and then

tested on the CARLA benchmark in [15]. With the initials

CAL, CIRL and MT we refer to the results from the works

of Sauer et al. [36], Liang et al. [27] and Li et al. [26].

Finally, EF indicates results from the work on multi-modal

end-to-end autonomous driving system proposed by Xiao et

al. [41].

When comparing results it must be taken into account

which input modality is used and whether decisions are

based on single frames or multiple frames. Our model bases

its predictions solely on a single RGB frame. All baselines

rely on RGB frames, but some use additional sources of

data, namely depth and semantic segmentations. MP [15] in

addition to driving commands, predicts semantic segmenta-

tion. Similarly MT [26] is built as a multi-task framework

that predicts both segmentation and depth. While not us-

ing directly these sources of data as input, these models are

trained with an additional source of supervision. EF [41]

feeds depth images along with RGB as input to the model.

To show results comparable to ours, we report also the RGB

variant which does not use depth information and we refer

to it as EF-RGB. All models work emitting predictions one

step at a time, with the exception of CAL [36], which is

trained either with LSTM, GRU or temporal convolution to

model temporal dynamics and take time into account.

Table 2 reports the average success rate of episode across

all tasks in the benchmark. Our method obtains state of

the art results when compared to other methods that rely

solely on RGB data. Overall, only EF [41] is able to obtain

a higher success rate but has to feed also depth data to the

model. In fact, the success rate of its RGB counterpart (EF-

RGB) has a 17% drop, i.e. 8% lower than our approach.

Table 3 shows the percentage of completed episodes for

each task. Results are divided according to weather condi-

tions and town. It can be seen that using attention to guide

predictions allows the model to obtain good results in the

evaluation benchmark, especially in the New weather set-

ting where our method achieves state of the art performance

in 3 tasks out of 4. We observe that methods using depth,

i.e. MT [26] and EF [41], perform very well in navigation

tasks, hinting that adding this additional cue will likely im-

prove the performance of our model too.

Moreover, compared to the other methods, our model has

the advantage of being explainable thanks to the attention

layer. In fact, instead of treating the architecture as a black

box, we are able to understand what is guiding predictions

by looking at attention weights over Regions of Interest. Vi-

sual attention activations highlight which image features are

useful in a goal oriented autonomous driving task, hence re-

jecting possible noisy features.

To underline the importance of attention, we report in Ta-

ble 2 and Table 3 also a variant of our model without atten-

tion. This considers the whole image instead of performing

ROI-pooling on a set of boxes, but still maintains an iden-

tical multi-head structure to emit predictions. Adding the

attention layer yields to an increase in performance for each

task. The most significant improvements are for navigation

tasks, especially in the Dynamic setting, i.e. with the pres-

ence of other agents. Attention in fact helps the model to

better take into account other vehicles, which is pivotal in

automotive.

Examples of visual attention activations for each high

level command are shown in Figure 5. It can be seen that

each head of the model focuses on different parts of the

scene, which are more useful for the given command. As

easily imaginable, the Turn Right and Turn Left commands

focus respectively on the right and left parts of the image.

The model though, is able to identify where the intersection

is, which allows the vehicle to keep moving forward until it

reaches the point where it has to start turning. When a turn-

ing command is given and there is no intersection ahead,

the model keeps focusing on the road, enlarging its attention

area until it is able to spot a possible turning point. Inter-

estingly, the Turn Right usually focuses on the lower part of

the image and the Turn Left on the upper part. This is due to

the fact that right turns can be performed following the right

sidewalk along the curve, while for left turns the vehicle has

to cross the road and merge onto the intersecting road.

The head specialized for the Go Straight command in-

stead focuses on both sides of the road at once, since it

has to maintain an intermediate position in the lane, without

turning at any intersection. The model here is focusing on

the right sidewalk and the road markings to be able to keep

a certain distance from both sides.

Finally, with the Follow Lane command, the model looks

ahead to understand whether the road will keep leading for-

ward or if it will make a turn. An interesting case is given



Method MP [15] MT [26] CAL [36] EF [41] RL [15] IL [15, 13] EF-RGB [41] CIRL [27] Ours no Att. Ours

Additional data S S+D T D - - - - - -

Success Rate 69 83 84 92 27 72 75 82 69 84

Table 2: Success Rate averaged across all tasks. For each method we show whether additional data is used other than a single

RGB frame: temporal sequence of frames (T), semantic segmentations (S), depth (D).

Training conditions

Task MP § [15] MT §� [26] CAL† [36] EF� [41] RL [15] IL [15, 13] EF-RGB [41] CIRL [27] Ours no Att. Ours

Straight 98 98 100 99 89 95 96 98 100 100

One turn 82 87 97 99 34 89 95 97 91 95

Navigation 80 81 92 92 14 86 87 93 80 91

Nav. Dynamic 77 81 83 89 7 83 84 82 79 89

New weather

Task MP § [15] MT §� [26] CAL† [36] EF� [41] RL [15] IL [15, 13] EF-RGB [41] CIRL [27] Ours no Att. Ours

Straight 100 100 100 96 86 98 84 100 100 100

One turn 95 88 96 92 16 90 78 94 96 100

Navigation 94 88 90 90 2 84 74 86 76 92

Nav. Dynamic 89 80 82 90 2 82 66 80 72 92

New Town

Task MP § [15] MT §� [26] CAL† [36] EF� [41] RL [15] IL [15, 13] EF-RGB [41] CIRL [27] Ours no Att. Ours

Straight 92 100 93 96 74 97 82 100 94 99

One turn 61 81 82 81 12 59 69 71 37 79

Navigation 24 72 70 90 3 40 63 53 25 53

Nav. Dynamic 24 53 64 87 2 38 57 41 18 40

New weather and new Town

Task MP § [15] MT §� [26] CAL† [36] EF� [41] RL [15] IL [15, 13] EF-RGB [41] CIRL [27] Ours no Att. Ours

Straight 50 96 94 96 68 80 84 98 92 100

One turn 50 82 72 84 20 48 76 82 52 88

Navigation 47 78 68 90 6 44 56 68 52 67

Nav. Dynamic 44 62 64 94 4 42 44 62 36 56

Table 3: Comparison with the state of the art, measured in percentage of completed tasks. Two variants of the proposed

method are reported: the full method and a variant without attention. Additional sources of data used by a model are

identified by superscripts: � (depth), § (semantic segmentation), † (temporal modeling). The best result per task is shown in

bold and the second best is underlined, both for methods RGB-based and that use additional data.

by the presence of a T-junction under the Follow Lane com-

mand (first row in Figure 5). This is a command that is not

present in the dataset nor the evaluation benchmark, since

the behavior is not well defined as the agent might turn right

or left. We observed that in these cases the model stops

looking only ahead and is still able to correctly make a turn

in one of the two directions, without going off road.

5. Ablation Study

Box type importance In Table 3 we have shown the im-

portance of using attention in our model. We now inves-

tigate the importance of the attention boxes types. As ex-

plained in Sec. 3.4, we adopt four different box formats,

varying scale and aspect ratio. We train a different model,

selectively removing a targeted box type at a time. To carry

out the ablation we use a subset of the CARLA benchmark

composed of 10 episodes for the Straight and One turn tasks

and 15 episodes for Navigation and Navigation Dynamic.

Each episode is repeated for 6 different weather conditions

(4 conditions can also be found in the training set and 2 are

testing conditions), for a total of 300 episodes. All episodes

are taken from Town1. Results are shown in Table 4.

It emerges that all versions perform sufficiently well on

simpler tasks such as Straight and One turn, although all

models with less boxes still report a small drop in suc-

cess rate. For more complex tasks though, the lack of

BIG
V and MEDIUM lead to consistently worse driving per-

formance. The box type that appears to be the most impor-

tant is MEDIUM, which due to its aspect ratio and scale is

able to focus on most elements in the scene. Interestingly,

we observe that despite most of the boxes belong to the

SMALL type (32 out of 48), when removing them the model

is still able to obtain sufficiently high results, with a loss of

2.5 points on average. Removing these boxes though will

reduce the interpretability of the model, producing much

coarser attention maps.

Fixed grid analysis Our model adopts a fixed grid to ob-

tain an attention map over the image. This may look like



Figure 5: Each row shows attention patterns on the same scene with different high level commands: Follow Lane (green),

Turn Left (red), Turn Right (cyan), Go Straight (yellow).

Task All No BIG
H No BIG

V No MEDIUM No SMALL Independent RoIs

Straight 100 100 95 95 100 100

One turn 97 92 95 90 95 47

Navigation 91 86 84 83 86 45

Nav. Dynamic 91 88 81 83 88 39

Table 4: Ablation study selectively removing a box type.

Box types refer to the regions depicted in Figure 3: BIG
H

(Green), BIG
V (Red), MEDIUM (Yellow), SMALL (Blue).

We also evaluate our model with attention scores generated

independently for each RoI.

a limitation of our architecture, restricting its flexibility.

Whereas to some extent this is certainly true, designing an

attention layer with a variable grid, i.e. with boxes that

change in number and shape, is not trivial. Generating a

variable amount of boxes, e.g. using a region proposal [34],

would require to process each box independently, depriving

the attention layer of a global overview of the scene. The

main issue lays in the lack of spatial information about each

box: the model is indeed able to observe elements such as

vehicles, traffic lights or lanes, but does not know where

they belong in the image without this position being explic-

itly specified.

To demonstrate the inability of the model to work with-

out a fixed grid, we modified our attention layer to emit

attention scores for each RoI-pooled feature independently.

This means that instead of concatenating all features and

feeding them to a single dense layer, we adopt a smaller

dense layer, shared across all RoIs, to predict a single at-

tention logit. All logits are then concatenated and jointly

normalized with a softmax to obtain the attention vector α.

We show the results obtained by this model in Table 4.

The only task that this architecture is able to successfully

address is Straight. As soon as the model is required to take

a turn, it is unable to perform the maneuver and reach its

destination. On the other hand, using a fixed grid, allows

the model to learn a correlation between what is observed

and where it appears in the image and jointly generating

attention scores for each box. A flexible grid with variable

boxes is currently an open issue and we plan to address it in

future work.
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7. Conclusions

In this paper we have presented an autonomous driving sys-

tem based on imitation learning. Our approach is equipped with

a visual attention layer that weighs image regions and allows pre-

dictions to be explained. Moreover we have shown how adopting

attention, the model improves its driving capabilities, obtaining

state of the art results.
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