
Leveraging combinatorial testing for safety-critical computer vision datasets

Christoph Gladisch Christian Heinzemann Martin Herrmann

Matthias Woehrle

Robert Bosch GmbH, Corporate Research

firstname.lastname@de.bosch.com *

Abstract

Deep learning-based approaches have gained popular-

ity for environment perception tasks such as semantic seg-

mentation and object detection from images. However, the

different nature of a data-driven deep neural nets (DNN) to

conventional software is a challenge for practical software

verification. In this work, we show how existing methods

from software engineering provide benefits for the develop-

ment of a DNN and in particular for dataset design and

analysis. We show how combinatorial testing based on a

domain model can be leveraged for generating test sets pro-

viding coverage guarantees with respect to important envi-

ronmental features and their interaction. Additionally, we

show how our approach can be used for growing a dataset,

i.e. to identify where data is missing and should be collected

next. We evaluate our approach on an internal use case and

two public datasets.

1. Introduction

Testing of perception functions is a challenge, particu-

larly if the perception function is to be used in a safety-

relevant setting such as automated driving [18], yet is a vital

part of a safety argumentation [17]. A typical approach for

evaluation from the machine learning domain is to set aside

a dataset for testing that is used to assess the performance of

a trained perception function. We may also have dedicated

data in order to check whether the perception functions con-

tains specific weaknesses [18], e.g. vision related hazards

such as blur, occlusion and exposure issues [19].

Designing effective (test) datasets is a challenge of its

own as the dimensionality of the operational domain that

needs to be mastered by the perception function is typically

enormous, especially in a complex domain such as auto-

mated driving. As an example, consider the detection of

a pedestrian at an urban intersection. In this setting, the

*The research leading to the results presented above are funded by

the German Federal Ministry for Economic Affairs and Energy within the

project KI Absicherung - Safe AI for automated driving.

perception function needs to be able to detect pedestrians

with different appearance (clothing, size, ...) at different

daytimes at different kinds of intersections with different

kinds of backgrounds under different weather conditions,

etc. Due to the high dimensionality, building a test set based

on the full cartesian product of all possible dimensions is

infeasible. In addition, increasing experience with the per-

ception function or additional use cases to be covered may

require an iterative construction of the test set. For exam-

ple, when we identify new visual effects such as CV haz-

ards [19], additional test images are needed. Our assump-

tion is that for safety-critical applications we must ensure

that all known, relevant effects need to be present in a test

set. Moreover, we may need to consider the interaction of

effects as well. Our view comes from a verification perspec-

tive: we are interested in each individual test and not in an

aggregate result from a statistical approach [18]. Note that

our focus in this work is verification and therefore the test

set; however our method can be equally applied to any data

set to be constructed, i.e. a training and validation set.

Hence, there is a need for an approach that allows testers

to (i) create domain models of relevant effects includ-

ing a so-called base context as well as visual effects (c.f .

Sec. 2.2). Such an approach must be able to (ii) handle

large discrete spaces and (iii) deal with the iterative nature

of dataset creation due to identification of additional test

concerns and hazards.

Combinatorial testing [1, 12, 15] is an approach for han-

dling high-dimensional spaces in software testing. A well-

known combinatorial testing instance is pairwise testing

(also called all-pairs testing) [6]. The input to combina-

torial testing is a set of relevant input dimensions (usu-

ally referred to as parameters in combinatorial testing) of

a software under test and a discrete set of possible values

(choices) for each dimension. Then, a set of (software) tests

is designed such that all t-wise combinations of values are

present at least once in the test set [12]. Combinatorial test-

ing approaches such as pairwise testing have been proven

highly effective for reducing the test set size, yet still re-

vealing errors. Case studies have shown that for software,

1

e.g. in the space craft and medical domain, many errors

result only from a single dimension or interactions of two

dimensions [10].

Combinatorial test tools rely on a model that defines the

combinatorial space, yet they do not provide means for effi-

cient and effective model management. However, for prac-

tical work in our problem domain, where different domain

experts collaborate, support for model management is es-

sential since (i) the dimensionality of the input space is very

large, (ii) the input domain necessitates the integration of

knowledge from different domains and (iii) analysis evolves

over time and parameters and corresponding choices may

change. As such, we leverage a method, SCODE, and its

implementation in a tool, SCODE-ANALYZER [7] that has

shown practical applicability in mastering model complex-

ity particularly for large discrete spaces [8]. We use SCODE

to modularize individual (sub-)domains into different sub-

models capturing the important input dimensions, maintain

a model hierarchy and generate a resulting composite model

that can be used as input for the combinatorial testing tool.

The contribution of this paper is a method for effec-

tive dataset generation for testing perception functions us-

ing combinatorial testing. At the core of our method, we

capture the results of a domain analysis in a model man-

agement tool, SCODE-ANALYZER [7]. From SCODE-

ANALYZER, we export a model as input to the combinato-

rial testing tool PICT [6] for computing a covering test set.

While selected parts of the overall approach have been pub-

lished before, the synthesis of these techniques from sepa-

rate communities into an overall workflow that provides (in-

cremental) generation of tests with formal guarantees pro-

vides a novel approach for coverage guarantees in datasets.

While we discuss our contributions from a testing perspec-

tive, the method may be used more generally for design and

analysis of datasets. Our contributions can be summarized

as follows:

1. We present a domain analysis based on a decomposi-

tion of base context and visual appearance leveraging

an existing tool for analysis.

2. We use the resulting domain model in combination

with an open-source combinatorial testing tool to (i)

generate test sets of reasonable size with formal guar-

antees on coverage and (ii) demonstrate a workflow for

iterative improvement of datasets for training and val-

idation of machine learning applications.

3. We demonstrate our approach on an internal use case

as well as two public datasets used in the context of a

perception function in an autonomous driving context.

As part of our experimental evaluation of our approach,

we show the ability of our approach to derive datasets of

practical size to cover all pairwise combinations of param-

eters of the operational domain. In particular, we demon-

strate how to build up an initial dataset using our approach

and how to incrementally extend the dataset with pairwise

coverage guarantees. Additionally, we demonstrate how to

analyze existing datasets for pairwise coverage.

2. Background

2.1. Combinatorial testing

Combinatorial testing is a test case generation technique

that addresses the dilemma of exponential growth of tests

due to exhaustive enumeration of possible combinations of

inputs. Since testing typically has a finite test budget and

exhaustive testing is typically intractable [10] combinato-

rial testing addresses the burden of test selection from the

full combinatorial product. Combinatorial testing does not

require all combinations of parameter values but only all

combinations of values for all subsets of parameters con-

taining t parameters, also called t-wise combinations. A

particular instance is pairwise testing (i.e. t = 2), where

test cases shall cover all combinations of value choices for

all pairs of input parameters. The validity of this approach

has been shown in several domains showing that most faults

are caused by a small number of interactions of input di-

mensions [10].

Mature tools like the open-source PICT tool1 are avail-

able [6]. PICT generates t-wise test suites based on a model

of parameters and corresponding choices, allowing a user to

additionally model constraints that exclude combinations.

PICT supports incremental generation of test suites, by al-

lowing a user to provide so-called seed test cases in addition

to the model, i.e. test cases that are already available. PICT

can analyze the seeds and generate additional test cases for

combinations not yet covered. For further details, we refer

to [6]. In the context of datasets for computer vision, a test

suite in combinatorial testing corresponds to a test set while

a test case is one specific image in the test set.

To illustrate the idea of t-wise testing, we describe a sim-

ple example, where we have n = 6 input parameters with

2-8 possible choices: 2, 2, 3, 7, 7, 8. The total number of all

possible combinations possible is: 2∗2∗3∗7∗7∗8 = 4704.

For t-wise combinations, we have
(
n

t

)
subsets of parame-

ters. In this example we consider t = 3 which yields 20
subsets. For each subset we compute all possible combina-

tions, i.e. in our example between 12 and 392 triplets and

therefore the number of 9866 resulting combinations c(t)
can be determined by:

c(t = 3) = (2 ∗ 2 ∗ 3) + (2 ∗ 2 ∗ 7) + . . .+ (7 ∗ 7 ∗ 8)
︸ ︷︷ ︸

20subsets

The number of tests, however, will be significantly less

because a single test case can cover combinations of several

parameter tuples concurrently, e.g. in Table 3 we see that

420 tests can cover 7088 pairwise combinations.

1https://github.com/microsoft/pict

Wang et al. discuss combinatorial testing in the context

of deep learning, showing its applicability in white-box

testing of neural networks [11]. While they also show

the usefulness of combinatorial testing for handling high-

dimensional test spaces, their work considers white-box

testing and therefore focuses on coverage metrics of a DNN.

Amersbach and Winner propose a functional decomposition

approach for validation of automated driving functions and

also use combinatorial testing [2]. Similar to this work, they

leverage a domain model in the context of automated driv-

ing. They reduce the test suites on exemplary parameters

spaces from 6.8× 106 to 5× 104 tests. Our work differs in

a focus on the environment perception tasks and therefore

different domain models. Additionally, our approach de-

scribed in this paper (i) relates abstract tests with images for

computer vision, (ii) includes management of models, and

(iii) presents an approach for incremental construction of

test suites. The latter is a crucial aspect for practical work-

flows.

2.2. Domain analysis

We rely on an analysis of the domain to identify major

factors for the operational domain (base context) as well

as for visual effects. For this purpose, we use a commer-

cial tool called SCODE-ANALYZER which has been pre-

viously used in automotive applications for mastering com-

plexity [8]. We refer to related work for detailed back-

ground, yet offer an overview of essential elements in the

following.

SCODE relies on so-called Zwicky-Boxes. An example

is shown in Table 1, which we refer to in the following. A

Zwicky-Box consists of dimensions (e.g. DAYTIME) and al-

ternatives for each dimension (morning, day, ...). Please note

that these directly correspond to parameters and choices in

PICT. Conceptually, the domain model is very similar to

a plain PICT model. However, SCODE allows us to itera-

tively and jointly design composite domain models support-

ing the development of heterogeneous domain models by

experts from different domains, e.g. visual appearance (CV

experts; see Sec. 3.1) and base context (ADAS experts; see

Sec. 5.1).2

Note that the need for domain analysis is already present

in several works in the context of machine learning systems.

The ML rubric [4] explicitly mentions that “Model quality

is sufficient on all important data slices” as part of testing

for model development. Especially in a complex domain

such as computer vision in autonomous driving where we

need to consider performance across a wide range of sce-

narios, a domain model such as the one presented in this

work supports the systematic creation of data slices. Sim-

ilarly, in order to avoid hidden stratification, an analysis

across subsets is important in safety-critical domains such

2CV: computer vision, ADAS: advanced driver-assistance system.

as medicine [13]. The paper describes three methods to

avoid hidden stratifications, where their suggested schema

completion can be assisted by the approach described in this

paper.

2.3. Variation in machine learning

For training and validation of computer vision functions

large amount of data is required. However, the amount of

data alone is not a sufficient criterion for a good dataset. Va-

riety of the data also must be ensured [14]. Techniques like

image augmentation and domain randomization are used to

extend and increase the variation of an existing dataset [16].

In this way, the generalization ability of a neural network

in a computer vision function is increased during training

or it is more robustly assessed during validation and test-

ing. This may include adding different kinds of noise to

an image, applying geometrical image transformations, ma-

nipulating brightness, and augmenting image content and

including objects from other domains. Most transforma-

tions operate on a pixel level (color, geometry,...) while our

approach contributes to systematic variation on a semantic

level. Please note that an individual variation on a seman-

tic level may necessitate many corresponding images espe-

cially for training.

3. A motivating example

We start by introducing an example from our domain,

where we analyze an existing scenario in the context of

NCAP Vulnerable Road Users (VRU) Protection Tests3 In

particular, we study a scenario on an intersection with traf-

fic lights, where a child is jaywalking across the road in

front of an approaching vehicle, see Figure 1. A model of

such a scenario can be decomposed into: a base context that

describes the road network, infrastructure, vegetation, etc;

dynamic actors that participate in the scenario; and a visual

domain model.

We base our experiments on previously generated sim-

ulation sequences that were used for sensitivity analysis

w.r.t. environmental conditions. Using this example we

show how we use SCODE and PICT with a visual domain

model (Sec. 3.1) and then show the advantage of combina-

torial testing compared to random data collection (Sec. 3.2).

In this first example, the base context (the setup of the inter-

section) is fixed, but addressing the base context is further

described in 5.1.

3.1. A visual domain model for a traffic scenario

A domain analysis may yield a simple model for the

VRU example as shown with the Zwicky-Box in Table 1

3https://www.euroncap.com/en/for-engineers/

protocols/vulnerable-road-user-vru-protection/

Figure 1: Intersection scenario at daytime (VRU example)

DAYTIME morning day evening night

HAZE/FOG no yes

STREET CONDITION dry wet icy snow broken

SKY cloudy no clear

RAIN no yes

REFLECTION ON ROAD no yes

SHADOW ON ROAD no yes

VRU TYPE adult child

VRU POSE pedestrian jogger cyclist

VRU CONTRAST TO BG low high

Table 1: Zwicky-Box with aspects for traffic scenarios.

(DAYTIME: dimension, morning: alternative of this dimen-

sion, VRU: Vulnerable Road User, BG: background)

including 10 dimensions. It is the result of a domain ex-

pert’s analysis combining dimensions 1-7 for visual mod-

eling of the environment with dimensions 8-10 addressing

the VRU context. Albeit being simple, it already spans a

space of 11 520 possible states/combinations. Additionally

SCODE allows us to model constraints that may be physi-

cally motivated or restrict the regarded safety scope of the

computer vision function, also known as operational design

domain (ODD). For example, a physical constraint on this

model may be based on the assumption that STREET CONDI-

TION: wet|icy always results in REFLECTION ON ROAD: yes.4

If we add this constraint in SCODE-ANALYZER, the space

is reduced by 2304 states. Thus to cover the complete space

9216 different test cases would be needed. In contrast, PICT

generates 21 pairwise test cases.5

A test case for the scenario in Figure 1 based on the def-

initions of the Zwicky-Box is shown below and covers ex-

actly one state. Obviously, this is an abstract test that still

needs to be mapped to a concrete test image as further de-

scribed in Sec. 4.

Test case 1. DAYTIME: day, HAZE/FOG: no, STREET CON-

4The example that there needs to be some reflection on the road in this

case is just used for illustration.
5Respectively 73 for 3-wise combinations.

DITION: dry, SKY: cloudy, RAIN: no, REFLECTION ON ROAD:

no, SHADOW ON ROAD: yes, VRU TYPE: child, VRU POSE:

pedestrian, VRU CONTRAST TO BG: high

We defined 8 already existing scenarios similar to Test

case 1. These 8 initial test cases only cover 14 states in

total. If we provide existing test cases to PICT as seeds, it

generates 15 additional test cases (compared to 21 test cases

without considering seed test cases). As described below in

Sec. 4, a simple extension of PICT allows us to compute a

coverage measure on existing test cases, i.e. to extract how

many combinations are already covered by seed cases given

to PICT. As we can see from Table 2, there are 321 pairwise

combinations to cover for the model. The initially existing

8 scenarios already cover 175 combinations, i.e. ≈ 54.5%.

In Table 2, we can see how the number of combinations as

well as the number of required tests grows as we increase

the parameter t. The number of tests is easily manageable

for t ≤ 3 and the execution time of PICT is low.

t 2 3 4 5 6 7 8

Tests 21 73 210 544 1224 2484 4393

Combin. 321 2217 9866 29600 60704 84112 75424

Time < 1 < 1 < 1 1 2 6 11

Table 2: Overview of PICT runs on our NCAP VRU use

case. For each setting of parameter t, we see the number

of tests PICT generates, the number of combinations, and

PICT execution time in seconds.

3.2. Random data collection gets you only so far

21 30 50 100
No. of tests

0

10

20

30

40

50

N
o.

 o
f m

is
se

d
co

m
bi

na
tio

ns

Constraints Used
Yes
No

Figure 2: Box plot showing the number of missed combina-

tions (y-axis) for the number of generated tests (x-axis)

State-of-the-art data sets for training, validation and test-

ing are often collected according to some plan but not with

focus on satisfying the combination of dimensions of a do-

main analysis. In the following, we use random sampling

to mimic data collection in untargeted real-world driving or

simulation. To this end we perform a simple experiment that

(i) random sampling provides good coverage when sam-

pling a few tests and (ii) random sampling suffers in the tail

from not hitting all possible t-wise interactions, i.e., exactly

the kind of guarantee that combinatorial testing provides.

For illustration, we use our VRU example. In our ex-

periments we randomly sample (i) the model without con-

straints with 323 pairwise interactions. In addition, we per-

form (ii) random sampling with rejection of invalid combi-

nations resulting in a model with 321 pairwise interactions.

We perform random sampling of test cases from our

model and check coverage across subsets in varying sizes

of (21, 30, 50, 100), where 21 would be a lower bound

determined with systematic generation using combinatorial

testing. We perform 100 runs in each setting (with and w/o

constraint) and summarize the results as boxplots in Fig-

ure 2. For our baseline of 21 tests, random sampling with

and without constraints does not achieve full coverage, and

misses ≈ 28.5 combinations respectively. Even with 50

test cases, we miss about 3.2 pairwise interactions. As we

can see, with 100 tests, we typically achieve full coverage,

sometimes missing 1 or 2 combinations. In consequence,

this means that constructing a test dataset that achieves pair-

wise coverage based on random sampling (or untargeted

real-world driving) requires a significantly higher amount of

data compared to our approach. This would even be further

exacerbated when requiring t-wise interactions for t > 2.

Note that in this simple model, the few constraints do not

have an impact on these results. However, for complex in-

teractions between dimensions such constraints may render

random sampling even more difficult.

Note that this is a known fact from the software testing

literature, e.g. Pezzè et al. [15] discuss that pairwise testing

only grows logarithmically with the number of parameters,

while the number of all combinations grows exponentially.

However, given the new application context in this work, we

underline this fact with a relevant example from our domain

and show that there are already benefits for small domains.

4. Approach

Figure 3 shows an overview of how we integrate do-

main analysis with SCODE and PICT into a test toolchain.

Leveraging knowledge from domain and testing experts, the

toolchain iteratively reduces the infinite open context space

to a manageable test set. The domain model is created with

SCODE (and may be subsequently refined with constraints)

and is exported into a Combination model to the combina-

torial testing tool PICT. The main output of PICT are ab-

stract test cases, i.e. tests on the level of the domain model

as shown in Test case 1. As indicated by the Box X in the

figure, we can either (i) synthesize data for these descrip-

tions as shown with Figure 1 or similarly (ii) start a data

collection campaign with abstract test cases as guidelines

for data gatherers.

Note that this workflow allows us to create a diverse test

set on a budget [15]: we can (i) focus on a restricted do-

Test

cases

Open context

ZBs + Rules

Zwicky-Boxes (ZB)

SCODE

PICT

Existing

data

Coverage

Domain

model (DM)

DM reduced

by constraints

Combination

model

seeds

X
abstract

c
o
n
c
re

te

Figure 3: Overview of our approach of integrating domain

analysis with SCODE and combinatorial testing using PICT

into a test toolchain.

main model containing important characteristics and (ii) set

the parameter t to adjust the test depth w.r.t interaction of

dimensions.

Basis of the approach is a domain model as described

above. We use separate Zwicky-Boxes to model (parts of)

the open context domain. We constrain the domain model

in SCODE using so-called non-system modes. We export

the composed domain model to PICT including any con-

straints. We leverage SCODE modes [8] to model previous

test cases and export these for PICT as test case seeds. In

summary, this tooling allows us to describe (i) the overall

model including constraints as well as (ii) existing test cases

in the language of the domain model. While not integrated

yet, for (ii) a re-import of generated test cases from PICT

into SCODE-ANALYZER would complete the round-trip

between the tools.

The tooling provides a user with several outputs:

SCODE-ANALYZER already provides us with a state

space of the domain model including reductions due to con-

straints. PICT provides information on the combination

model space and lets us generate a set of test cases for com-

plete t-wise coverage. Additionally, we include a simple,

yet practical extension in our tooling a calculation of so-

called seed coverage. Here, we extract from PICT the num-

ber of combinations that are already covered by a given set

of seed test cases as a further coverage metric.

Test case seeds and seed coverage can also be used to

rate an existing dataset that was obtained, e.g., based on

real-world driving as shown in the experiments of Sec 5.3

and 5.4. The feedback on missing combinations provides

an indication on which test data should be acquired next

and can be used to design targeted test drives.

5. Experiments

In the following, we report on three experiments that we

conducted to check the feasibility of our approach. First,

we check the ability to generate an initial set of so-called

base contexts out of a practically sized SCODE model for

road infrastructure (Section 5.1). Second, we demonstrate

the impact of adding an additional context dimension to this

SCODE model (Section 5.2). This is a typical case when in-

crementally building up datasets due to knowledge gained

during development of a perception function. Finally, we

illustrate for two existing datasets, namely Cityscapes [5]

and the AEV dataset [9], an analysis for pairwise coverage

with our approach (Section 5.3 and 5.4). If the datasets do

not achieve full coverage, the analysis also provides infor-

mation on what additional test cases would be necessary to

achieve pairwise coverage. In combination, these experi-

ments cover the main steps of building up a dataset: build-

ing up a dataset, checking for completeness of an existing

dataset, and incrementally extending the dataset.

5.1. Generation of base context

The base context of a scenario as shown in Figure 1 con-

sists of a road network, landscape, buildings, vegetation,

etc. We define a model for roads with a Zwicky-Box Road

with dimensions ROAD-TYPE, HEADING, SHAPE, ELEVATION,

LENGTH, etc. We model road lanes with another Zwicky-

Box Lane with dimensions LANE-TYPE, WIDTH, LANEMARK-

TYPE, LANEMARK-COLOR, etc. We use these Zwicky-Boxes

to configure and generate road networks in OpenDrive for-

mat [3] for simulation of driving scenarios. To facilitate

modeling, we use separate Road (R) and Lane (L) Zwicky-

Boxes and combine them hierarchically (Road+Lane) us-

ing SCODE. A summary of model complexity is shown in

Table 3 detailing the number of dimensions of each model

and the resulting state space.

We apply PICT to generate test cases for each model.

All PICT runs for these models execute in < 1s. The num-

ber of resulting tests is shown in the final column of Ta-

ble 3. As we can see, while the number of states (i.e. pos-

sible road configurations) suffers from a combinatorial ex-

plosion, the number of pairwise combinations stays man-

ageable and even more so the resulting number of tests.

5.2. Incremental data generation

Based on this Road+Lane model, we perform an addi-

tional experiment that shows the benefit of our model-based

approach in an incremental development process. Here, we

need to support model updates, e.g. additional domain di-

mensions and alternatives need to be considered, while ex-

isting test cases (and corresponding test artifacts) should be

reused to keep the incremental effort low.

ZB Dims States Combin. Tests

R 7 272 160 1185 185

L 8 6.8× 106 1789 210

R+L 15 1.8× 1012 6604 420

R+L+F 16 7.4× 1012 7088 420

Table 3: Overview of different models Road (R), Lane (L)

and Friction (F), their composition and the number of states

in the domain model, combinations (Combin.) for pairwise

coverage as well as generated PICT tests.

As a concrete example, we identify ROAD FRICTION as an

environmental factor that should be considered as an addi-

tional test dimension. This can be easily added, e.g. as a

separate Zwicky-Box Friction, with options very low, low,

normal and high. Our compositional modeling approach al-

lows us to easily integrate ROAD FRICTION into a new test

model called Road+Lane+Friction (R+L+F). As we can

see in Table 3, the model state space increases by a fac-

tor of four due to the four new (unconstrained) options as

expected. Interestingly, when we run PICT on this model

without seed test cases, the resulting number of test cases

remains the same. This is because there are other parame-

ters with a large number of choices and existing test cases

can be used to include the needed variety in road friction.

However, in our incremental development process we

would like to reuse previously generated tests and corre-

sponding test artifacts (e.g. results). Since the test data

before did not identify ROAD FRICTION specifically, all pre-

vious test data implicitly set the ROAD FRICTION to a fixed

value of normal. When we leverage the previously gener-

ated test cases as seeds for PICT, as described above, PICT

merely generates 63 new test cases for adding the new do-

main with additional options very low, low, and high. Please

note that this is an upper bound of additional tests, because

having a parameter previously set to a single value is the

worst-case for t-wise testing as it represents least possible

variability. Newly modeled aspects may have been previ-

ously randomly selected such that the variation in the new

dimension may further reduce the number of additional test

cases. As an example, we randomly populate the friction

in the previous 420 test cases. For 10 random experiments,

this results typically in no additional test cases, as the test

dataset already satisfies the pairwise constraint, i.e. includes

sufficient variety in the ROAD FRICTION dimension.6

5.3. Analyzing an existing dataset (Cityscapes)

Next, we show the analysis of an existing dataset.

In particular we analyze the train and validation set of

Cityscapes [5] for pairwise coverage (t = 2). Typically

6In just a single case one additional test case is generated. Our PICT

coverage output shows that in this case 7087 out of 7088 valid combina-

tions were already covered.

Data No. Pics States Combin. Coverage

Train 2307
1.7× 1010 2244

89.8 %

Val. 464 82.9 %

Table 4: Seed test cases for train and validation set of

Cityscapes, the states space, number of pairwise combina-

tions as well as coverage analysis

we would like to analyze meta-data, but for showing scala-

bility we need detailed metadata in the size of the presented

models. As such detailed metadata is not available in the

dataset, we use semantic segmentation maps as a proxy for

semantic meta-data.7

We use semantic segmentation maps as they allow us to

determine coverage of semantic concepts in the data. Our

experimental setup is as follows: (i) We create a SCODE

model that includes each segmentation class as a dimen-

sion8 and as options (True/False) whether it is included in

an image or not. (ii) For all images, we compute from their

corresponding semantic segmentation maps if a semantic

class is included in the image.9 (iii) The extracted test cases

are provided as seed test cases to PICT in order to determine

t-wise coverage of the semantic classes as shown in Fig 3.

Table 4 displays the results of our analysis. As we can

see, the 34 dimensions with 2 choices each result in 2244

pairwise combinations (
(
34

2

)
= 561 subsets with 4 elements

each), a significant reduction from the 234 combinations

possible. PICT determines that only 13 tests are sufficient

to achieve full pairwise coverage (without seed tests). The

train and validation set satisfy 89.8% and 82.9% pairwise

coverage and 4 and 5 additional tests would be sufficient

to achieve full pairwise coverage, respectively. A further

analysis of the training set shows that most missing combi-

nations, concretely 3, are within the following dimensions:

EGO VEHICLE, OUT OF ROI, LICENSE PLATE. This is not sur-

prising, since all of these dimensions are set to only one

value globally. For the validation set, the corresponding re-

sults are similar: the 3 parameters above and additionally

TUNNEL are missing the most, i.e. 3 interactions. This is

because there are no TUNNEL labels present in the validation

set. If we look at the generated test cases for the training

set in Table 5 for the above-mentioned variables, we see the

following: (i) The dimensions are predominantly set to the

value that was previously missing. (ii) However, 1 out of 4

7As we use labels for the analysis and these are not available for a

competition test set, we can only analyze training and validation labels.
8In particular these are: EGO VEHICLE, RECTIFICATION BORDER,

OUT OF ROI, STATIC, DYNAMIC, GROUND, ROAD, SIDEWALK, PARKING,

RAIL TRACK, BUILDING, WALL, FENCE, GUARD RAIL, BRIDGE, TUNNEL, POLE,

POLEGROUP, TRAFFIC LIGHT, TRAFFIC SIGN, VEGETATION, TERRAIN, SKY, PER-

SON, RIDER, CAR, TRUCK, BUS, CARAVAN, TRAILER, TRAIN, MOTORCYCLE, BI-

CYCLE, LICENSE PLATE.
9We use a simple threshold of 50 pixels to determine if a class is present

in an image.

EGO VEHICLE OUT OF ROI LICENSE PLATE

False False False

False False True

True False True

False True True

Table 5: Additional training data suggested by PICT w.r.t.

variables that are set to only one value in the training set.

value assignments must still be set to the previously avail-

able value in order to generate missing interactions with the

other dimensions.

Figure 4 gives an additional overview of the amount of

missing combinations. As we can see, the training set in-

cludes more interactions than the validation set, so the vali-

dation set may be insensitive for validating certain types of

interactions.

0 1 2 3
Missing pairs

0

100

200

300

400

Nu
m

be
r o

f c
om

bi
na

tio
ns train

valid

Figure 4: Histograms of missing combinations for dimen-

sion pairs of Cityscapes training and validation data.

5.4. Experiments on a larger existing dataset (AEV)

As a second experiment, we perform an analysis of vari-

ations with the same setup as above, however with a 5-fold

increase in data on a larger dataset [9]. Table 6 summa-

rizes the results. As we can see, even with an increase in

model size from 34 to 38 dimensions10, the increase in the

amount of combinations necessary grows moderately from

2244 to 2812. The higher number of tests in the dataset also

provides a substantial increase in the coverage w.r.t. the do-

main model to 96.4%. Even on this larger dataset, PICT

generates new test cases for the given model and the larger

number of seed test cases in under ten seconds.

A detailed view of missing combinations is provided in

Figure 5. We can see that most dimension pairs are com-

pletely covered (602), while 101 pairs have three out of four

combinations covered. Additionally, all labels are present at

least once. The classes most challenged in interaction are:

RAINDIRT, SPEEDBUMPER and EGOCAR.

10The set contains 55 labels for segmentation with separable instances,

which we map to 38 labels: one label per class. We use a threshold of 50

pixels for a class to be relevant.

No. Pics States Combin. Coverage

10557 2.7× 1011 2812 96.4 %

Table 6: Seed test cases for train and validation set of the

AEV dataset, the states space, number of pairwise combi-

nations as well as coverage analysis

0 1 2 3
Missing pairs

0

100

200

300

400

500

600

Nu
m

be
r o

f c
om

bi
na

tio
ns

Figure 5: Histograms of missing combinations for dimen-

sion pairs of AEV data.

6. Conclusions

This paper describes an approach for data-driven func-

tions such as DNNs that integrates established software en-

gineering methods. In particular, we define a workflow

that uses a model of the input domain created and man-

aged with SCODE and combinatorial testing for incremen-

tally creating test sets with coverage guarantees. Our ap-

proach enables to generate test sets of reasonable size even

for large input domains. We demonstrate our approach on

several examples, where we outline test set generation as

well as analyzing coverage and incremental test set genera-

tion based on existing test sets. While we focus on test sets,

our method can be equally applied to training and valida-

tion sets as well as for creating stratified data folds based on

(parts of) the domain model. In particular this approach is

useful for systematic generation of synthetic data, e.g. in a

related public project 11.

References

[1] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures. Con-

strained interaction testing: A systematic literature study.

IEEE Access, 5:25706–25730, 2017.

[2] Christian Amersbach and Hermann Winner. Functional

decomposition–a contribution to overcome the parameter

space explosion during validation of highly automated driv-

ing. Traffic Injury Prevention, 20(sup1):S52–S57, 2019.

[3] ASAM - Association for Standardization of Automation and

Measuring Systems. ASAM - OpenDrive, 2019. https://

www.asam.net/standards/detail/opendrive.

[4] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and

D. Sculley. The ml test score: A rubric for ml production

11https://www.ki-absicherung.vdali.de/

readiness and technical debt reduction. In Proceedings of

IEEE Big Data, 2017.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 3213–3223, 2016.

[6] Jacek Czerwonka. Pairwise testing in real world. In 24th

Pacific Northwest Software Quality Conf., volume 200, 2006.

[7] ETAS GmbH. SCODE-ANALYZER Software for describ-

ing and visualizing complex closed-loop control systems,

2019. https://www.etas.com/scode.

[8] Guilherme Torres Ferreira, Gustavo Tineli, and Martin Her-

rmann. Flex fuel software maintainability improvement: A

case study. In 25th SAE BRASIL International Congress and

Display. SAE International, oct 2016.

[9] Jakob Geyer et al. A2D2: AEV Autonomous Driving

Dataset. http://www.a2d2.audi, 2019.

[10] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software

fault interactions and implications for software testing. IEEE

Trans. on Software Engineering, 30(6):418–421, June 2004.

[11] Lei Ma, Fuyuan Zhang, Minhui Xue, Bo Li, Yang Liu, Jian-

jun Zhao, and Yadong Wang. Combinatorial testing for deep

learning systems. CoRR, abs/1806.07723, 2018.

[12] Changhai Nie and Hareton Leung. A survey of combinatorial

testing. ACM Comput. Surv., 43(2):11:1–11:29, Feb. 2011.

[13] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro,

and Christopher Ré. Hidden stratification causes clinically

meaningful failures in machine learning for medical imag-

ing. arXiv preprint arXiv:1909.12475, 2019.

[14] Luis Perez and Jason Wang. The effectiveness of data aug-

mentation in image classification using deep learning. CoRR,

abs/1712.04621, 2017.

[15] Mauro Pezzè and Michal Young. Software testing and anal-

ysis: process, principles, and techniques. 2008.

[16] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-

ciech Zaremba, and Pieter Abbeel. Domain randomization

for transferring deep neural networks from simulation to the

real world. In 2017 IEEE/RSJ international conference on

intelligent robots and systems, pages 23–30. IEEE, 2017.

[17] Oliver Willers, Sebastian Sudholt, Shervin Raafatnia, and

Stephanie Abrecht. Safety concerns and mitigation ap-

proaches regarding the use of deep learning in safety-critical

perception tasks, 2020.

[18] Matthias Woehrle, Christoph Gladisch, and Christian

Heinzemann. Open questions in testing of learned computer

vision functions for automated driving. In International Con-

ference on Computer Safety, Reliability, and Security, pages

333–345. Springer, 2019.

[19] Oliver Zendel, Katrin Honauer, Markus Murschitz, Daniel

Steininger, and Gustavo Fernández Domı́nguez. Wilddash -

creating hazard-aware benchmarks. In ECCV 2018, pages

407–421, 2018.

